

Draft Environmental Assessment October 2022

### Applicant:




State of Hawaii Department of Hawaiian Home Lands 91-5420 Kapolei Parkway Kapolei, Hawaii 96707

#### Prepared By:



SSFM International, Inc. 501 Sumner St., Suite 620 Honolulu, Hawaii 96817

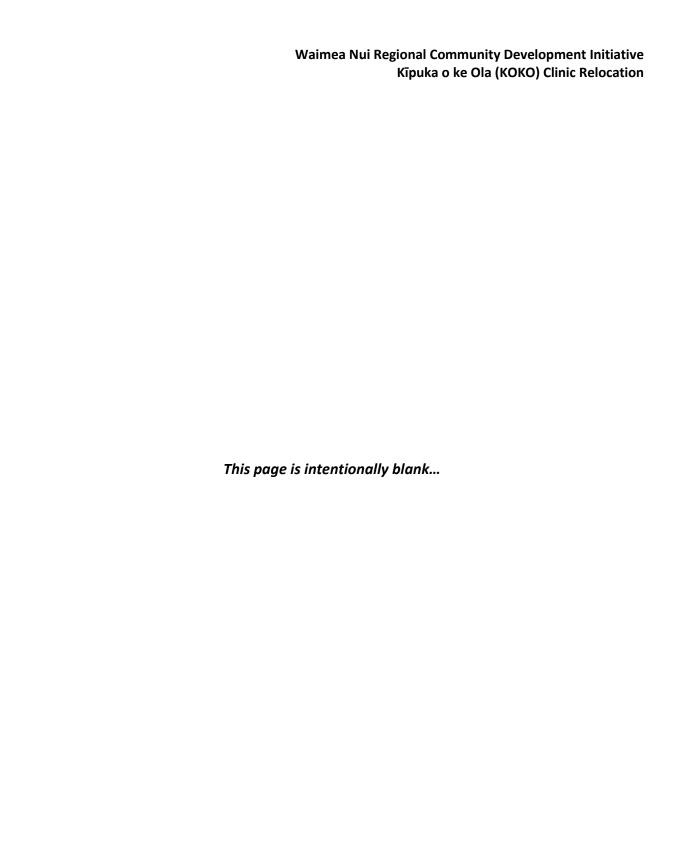




### **Table of Contents**

| 1.0 | Background 1 |            |                                                    |    |
|-----|--------------|------------|----------------------------------------------------|----|
|     | 1.1          | Kīpuka     | o ke Ola (KOKO) Clinic                             | 1  |
|     |              | 1.1.1      | Ulu Laukahi Program                                | 2  |
|     | 1.2          | Waime      | a Nui Community Development Initiative             | 2  |
|     | 1.3          | Purpose    | e of Environmental Assessment                      | 2  |
| 2.0 | Proje        | ct Descrip | otion                                              | 5  |
|     | 2.1          | Purpose    | e and Need                                         | 5  |
|     | 2.2          | Project    | Location                                           | 5  |
|     | 2.3          | •          | ed Action                                          |    |
|     | 2.4          | Approv     | als and Permits                                    | 6  |
| 3.0 | Affect       |            | onment, Potential Impacts, and Mitigation Measures |    |
|     | 3.1          |            | e and Climate Change                               |    |
|     | 3.2          | _          | y and Topography                                   |    |
|     | 3.3          |            |                                                    |    |
|     | 3.4          |            | and Marine Waters                                  |    |
|     | 3.5          |            | Hazards                                            |    |
|     | 3.6          | Flora ar   | nd Fauna                                           |    |
|     |              | 3.6.1      | Flora                                              |    |
|     |              | 3.6.2      | Fauna                                              |    |
|     | 3.7          |            | llity                                              |    |
|     | 3.8          |            | and Archaeological Resources                       |    |
|     | 3.9          |            | l Resources                                        |    |
|     | 3.10         |            | conomic Conditions                                 |    |
|     | 3.11         | •          | anes                                               |    |
|     | 3.12         |            | ucture                                             |    |
|     |              |            | Water                                              |    |
|     |              | 3.12.2     | ,                                                  |    |
|     |              | 3.12.3     | Drainage                                           |    |
|     |              | 3.12.4     |                                                    |    |
|     |              |            | Traffic                                            |    |
|     | 3.13         | •          | Easement                                           |    |
|     | 3.14         | Noise      |                                                    |    |
|     | 3.15         | Public F   | Facilities and Services                            |    |
|     |              | 3.15.1     | Hospitals, Clinics, and Urgent Care                |    |
|     |              | 3.15.2     | Police                                             |    |
|     |              | 3.15.3     |                                                    |    |
|     |              | 3.15.4     |                                                    |    |
|     |              |            | Parks and Recreation                               |    |
|     | 3.16         | Potenti    | al Cumulative and Secondary Impacts                | 42 |

| 4.0    | Relatio | onship to Plans and Policies                                                      | 45 |
|--------|---------|-----------------------------------------------------------------------------------|----|
|        | 4.1     | Federal Aviation Administration                                                   | 45 |
|        | 4.2     | State of Hawai'i Policies                                                         |    |
|        |         | 4.2.1 Hawai'i State Plan                                                          |    |
|        |         | 4.2.2 State Land Use Classification                                               |    |
|        |         | 4.2.3 Coastal Zone Management Program, HRS Chapter 205A                           |    |
|        |         | 4.2.4 State Historic Preservation                                                 |    |
|        | 4.3     | County of Hawai'i Plans and Polices                                               |    |
|        |         | 4.3.1 County of Hawai'i General Plan                                              |    |
|        |         | 4.3.2 South Kohala Community Development Plan                                     |    |
|        | 4.4     | 4.3.3 COH Comprehensive Zoning Ordinance  Department of Hawaiian Home Lands Plans |    |
|        | 4.4     | 4.4.1 DHHL Hawai'i Island Plan                                                    |    |
|        |         | 4.4.2 DHHL Waimea Nui Regional Plan                                               |    |
| 5.0    | Altern  | ative to the Proposed Action                                                      | 63 |
| 6.0    | Findin  | gs and Determination                                                              | 65 |
|        | 6.1     | Determination                                                                     |    |
|        | 6.2     | Significance Criteria Findings                                                    | 65 |
| 7.0    | _       | ies and Organizations Consulted                                                   |    |
|        | 7.1     | Consultation List                                                                 |    |
|        | 7.2     | Summary of Comments                                                               | 73 |
| 8.0    | Refere  | ences                                                                             | 87 |
| List   | of Fig  | gures                                                                             |    |
| Figure | 1:      | Project Location                                                                  | 9  |
| Figure | 2:      | Site Plan                                                                         | 10 |
| Figure | 3:      | Topography Map                                                                    | 13 |
| Figure | 4:      | NRCS Soils                                                                        | 14 |
| Figure | 5:      | Agricultural Lands of Importance to the State of Hawai'i                          | 16 |
| Figure | 6:      | Land Study Bureau                                                                 | 17 |
| Figure | 7:      | Lava Flow Hazard Zones                                                            | 19 |
| Figure | 8:      | FEMA Flood Hazard Zones                                                           | 20 |
| Figure | 9:      | Waikoloa Maneuver Area                                                            | 21 |
| Figure | 10:     | Waikoloa Maneuver Area Sectors                                                    | 23 |


| Figure 11: | Location of Trench Sites                                        | 31 |
|------------|-----------------------------------------------------------------|----|
| Figure 12: | Existing Study Intersections and Lane Configurations            | 39 |
| Figure 13: | Aviation Easement                                               | 41 |
| Figure 14: | Public Facilities and Services                                  | 44 |
| Figure 15: | State Land Use Districts                                        | 51 |
| Figure 16: | Land Use Pattern Allocation Guide                               | 58 |
| Figure 17: | County of Hawaiʻi Zoning                                        | 61 |
|            |                                                                 |    |
| List of T  | ables                                                           |    |
| Table 1:   | Potential Permits and Approvals Required                        | 6  |
| Table 2:   | Faunal Species Observed Within and Surrounding the Project Site | 23 |
| Table 3:   | USFWS IPaC Species List                                         | 25 |
| Table 4:   | Hawai'i State Planning Act Objectives and Policies              | 46 |
| Table 5:   | Agency Consultation List                                        | 69 |
| Table 6:   | Pre-Assessment Consultation Comments and Responses              | 74 |
|            |                                                                 |    |

### **List of Appendices**

Appendix A: Pre-Assessment Consultation Comment Letters

Appendix B: USFWS IPaC General Project Design Guidelines

Appendix C: 2022 Traffic Impact Analysis Report



### **Project Information Summary**

**Project Name** Waimea Nui Regional Community Development Initiative

Kīpuka o ke Ola (KOKO) Clinic Relocation

Applicant State of Hawai'i,

Department of Hawaiian Home Lands

91-5420 Kapolei Parkway Kapolei, Hawai'i 96707 Contact: Andrew Choy

Email: andrew.h.choy@hawaii.gov

Accepting Authority Hawaiian Homes Commission

Department of Hawaiian Home Lands

Hale Kalaniana'ole

91-5420 Kapolei Parkway Kapolei, Hawai'i 96707

**EA Preparer** SSFM International, Inc.

501 Sumner St., Suite 620 Honolulu, Hawai'i 96817

Contact: Carah Kadota, Project Planner

Email: <a href="mailto:ckadota@ssfm.com">ckadota@ssfm.com</a>
Phone: (808) 356-1233

Project Location Pu'ukapu, Waimea, Island of Hawai'i

**Tax Map Key** (3) 6-4-038:011 (por.)

Parcel Lot Area 191.71 acres

Project Area Approximately 2 acres

**Landowner** State of Hawai'i, Department of Hawaiian Home Lands

Existing Use Undeveloped land
State Land Use District Agricultural District

**DHHL Existing Land Use** General Agricultural (per the Waimea Nui Regional Plan)

County of Hawai'i Zoning A-40a

**County of Hawai'i Land Use** 

Pattern Allocation Guide Important Agricultural Lands

County of Hawai'i Community

**Development Plan** 

South Kohala Community Development Plan

Special Management Area Not in SMA

Flood Zone X

Chapter 343, HRS Trigger Use of State funds and lands per HAR 11-200.1-8(1)

**Proposed Uses** Independent rural health clinic



### 1.0 BACKGROUND

### 1.1 Kīpuka o ke Ola (KOKO) Clinic

The Waimea Hawaiian Homesteaders' Association (WHHA) incorporated Kīpuka o ke Ola (KOKO) as the Association's Medical Division. KOKO was founded by Five Mountains Hawai'i Inc., a 501c3 non-profit organization that was inspired by Dr. Earl Bakken and Kenneth Brown. In January 2014, Five Mountains Hawai'i, Inc. elected a new Board of Directors, new Executive Management Team, and officially began doing business as KOKO. The KOKO Native Hawaiian Health Clinic ("KOKO Clinic") was established in response to a community needs assessment conducted by the WHHA, which called for a health clinic that could specifically address the health disparities endured by Native Hawaiians in North Hawai'i.

The clinic's mission statement is: "KOKO provides cultural, spiritual, medical, and psychological services to all residents of North Hawai'i with a special emphasis for the Kānaka Maoli. This mission is our kuleana. KOKO provides culturally-informed direct services, actively collaborates with hawaiian agencies and associations in order to meet their members' needs, and is led by the community it serves." KOKO is designed to provide a full range of bio-psycho-social services to the residents of North Hawai'i. It provides primary care services (including pediatric services), women's health services, individual, couple, and family psychotherapy services, acupuncture/lomilomi massage, and psycho-educational trainings for the community and organizations.

On March 28, 2017, the clinic received Federal Accreditation as the first independent Rural Health Clinic in the State of Hawai'i. An "independent" rural health clinic is one that is not owned by a hospital, nursing home, or home health agency. To be accredited as a rural health clinic, the following criteria must be met:

- Employ a Nurse Practitioner (NP) or Physician's Assistant (PA)
- Have a NP, PA, or Certified Nurse-Midwife (CNM) working at the clinic at least 50 percent of the time the RHC operates
- Directly furnish routine diagnostic and laboratory services
- Have arrangements with one or more hospitals to furnish medically necessary services that are not available at the rural health clinic
- Have available drugs and biologicals necessary for the treatment of emergencies
- Furnish all of these laboratory tests on site: chemical examination of urine by stick or tablet method or both; hemoglobin or hematocrit; blood sugar; examination of stool specimens for occult blood; pregnancy tests; primary culturing for transmittal to a certified laboratory

### 1.1.1 Ulu Laukahi Program

In 2022, the KOKO Clinic established the Ulu Laukahi Program, which is designed to recruit Native Hawaiian community members at-risk or struggling with chronic diseases (diabetes, hypertension, obesity, and mental health concerns) to provide prevention/intervention services to mitigate the factors that contribute to the need for emergency interventions. The goal of the program is to help Native Hawaiians achieve a longer and healthier lifestyle, and to educate, inspire, and assist participants to successfully integrate healthy habits to pass along to future generations. The program is a free year-long program for Native Hawaiians, and includes access to a personal fitness coach, yearlong membership to a fitness center, nutritional guidance from a licensed nutritionist, monthly educational workshops, quarterly medical care visits, psychotherapy intervention, and community support.

### 1.2 Waimea Nui Community Development Initiative

The WHHA and its subsidiary organization, the Waimea Nui Community Development Corporation (WNCDC) have been actively conceptualizing a community development project for over 40 years to address the cultural, economic, and social needs of the Waimea area and of Waimea Homestead families. The Waimea Nui Regional Community Development Initiative (WNR-CDI) was developed based upon the ideas and concepts articulated by the homestead community, and it incorporates the long-term visions of both WHHA and the Department of Hawaiian Home Lands (DHHL), as outlined in the DHHL Waimea Regional Plan (2012).

In 2015, a Final Environmental Assessment - Finding of No Significant Impact (FEA-FONSI) was prepared for the WNR-CDI, which proposed the following facilities and land uses to be located within approximately 114-acres of DHHL Homestead Land in a portion of Tax Map Key (TMK) (3) 6-4-038:011: a homestead cemetery/chapel which includes a columbarium; a community agriculture complex inclusive of a community agricultural park, a green waste biodigester with electric grid, a post-harvest facility, and commercial kitchen; an equestrian center; and a golf facility inclusive of playing greens, driving range, chip and putt, and a clubhouse. Following completion of the FEA-FONSI, the Hawaiian Homes Commission approved a 65-year General Lease to WNCDC that encompasses the 161-acres of land within TMK (3) 6-4-038:011 to develop the aforementioned facilities and land uses. The 161-acre property is inclusive of the 114-acres covered in the 2015 FEA-FONSI.

### 1.3 Purpose of Environmental Assessment

The WNR-CDI proposes to relocate the KOKO Clinic from its existing location at 64-1035 Māmalahoa Highway, to a 2-acre portion of the undeveloped 161-acre property leased by WNCDC. The clinic's proposed location would be within 2 acres of the area that was previously identified for the equestrian center in the 2015 WNR-CDI FEA-FONSI. The clinic is a new land use that is being considered for inclusion with the land uses proposed in the WNR-CDI's 2015 FEA-FONSI.

This Draft Environmental Assessment (Draft EA) has been prepared in accordance with the requirements of Hawai'i Revised Statutes (HRS), Chapter 343 and Hawai'i Administrative Rules (HAR), Title 11, Department of Health, Chapter 200.1, Environmental Impact Statement Rules. The proposed project will require the use of State lands, as it would be located on DHHL Homestead lands, and the use of State funds, thus triggering the preparation of an Environmental Assessment (EA) as prescribed by HAR 11-200.1-8(1) and HRS, Chapter 343-5(a)(1).

|          | Waimea Nui Regional Community Development Initiative<br>Kīpuka o ke Ola (KOKO) Clinic Relocation |
|----------|--------------------------------------------------------------------------------------------------|
|          |                                                                                                  |
|          |                                                                                                  |
|          |                                                                                                  |
|          |                                                                                                  |
|          |                                                                                                  |
|          |                                                                                                  |
| This pag | ge is intentionally blank                                                                        |
|          |                                                                                                  |

### 2.0 PROJECT DESCRIPTION

### 2.1 Purpose and Need

The KOKO Clinic has outgrown their current facility resulting in a need for more space to 1) provide clinical space for rent, and 2) to serve more patients, as an increase in number of patients is anticipated to occur as DHHL awards more homestead lots in the Waimea region. Per the KOKO Clinic's 2019 Annual Report, the clinic saw a 20% increase in number of patients from 2018, for a total of 2,663 patients. In 2019 the clinic had 8,800 patient encounters amongst the seven healthcare providers and seven support staff at the facility. In addition, the clinic is focused on expanding their Ulu Laukahi Program, which is designed to address chronic care disease management. The expansion of the program's services would require a certified kitchen, workout facilities, and group meeting rooms for patient education.

The relocation of the KOKO Clinic to the WNR-CDI planned development aligns with the goals and vision of the initiative to build a vibrant and self-sufficient community, and to move towards the intent of the Hawaiian Homes Commission Act of 1921 to enable "native Hawaiians to return to their lands in order to fully support self-sufficiency for native Hawaiians and the self-determination of native Hawaiians..." In addition, the KOKO Clinic's relocation and upgrade in facility size and capacity would better prepare the Waimea region for anticipated growth as more homestead lots are awarded. The KOKO Clinic envisions serving up to 800 patients in anticipation of the future growth from awarded homestead lots.

The proposed project would support Hawaiian Homes Commission Act beneficiaries by creating jobs for current and future beneficiaries, as well as providing additional capacity to provide medical services to native Hawaiian beneficiaries and the larger region of North Hawaii.

### 2.2 Project Location

The KOKO Clinic is currently located in Waimea at 64-1035 Māmalahoa Highway within the Uilani Plaza building, which contains other commercial units. The clinic proposes to develop its own facility on 2-acre portion of the 191.711-acre parcel identified as TMK (3) 6-4-038:011 ("project site"), which is owned by DHHL; approximately 161 acres of the parcel will be under lease to the WNCDC. The project site is located approximately 1.5 miles (or 2.5 driving miles) from the KOKO Clinic's current site (see Figure 1).

The project site is located in the South Kohala District on the island of Hawai'i, within the Pu'ukapu Tract of DHHL Homestead Lands (see Figure 1). The Waimea-Kohala Airport is located approximately 1.5 miles southwest of the site. Kanu O Ka 'Āina Charter School (KOKA Charter School) and residential farm lots are located north west of the site along Hi'iaka Street.

### 2.3 Proposed Action

The proposed action includes the development of an approximate 9,600 square feet (SF), one-story building for the KOKO Clinic within a 2-acre portion of TMK (3) 6-4-038:011 (see Figure 2). The new clinic would include treatment rooms to provide primary care, psychiatry, psychology, women's health, la'au lapa'au, lomilomi and acupuncture services. In addition, the clinic would expand its Ulu Laukahi Program that addresses chronic care disease management, which would require a certified kitchen, workout facilities, and meeting rooms.

The expansion of the KOKO Clinic would result in an additional five full-time positions to increase the clinic's treatment capacity to 800 additional patients. Operations at the clinic would remain the same; Monday through Friday from 8:00AM to 5:00PM.

### 2.4 Approvals and Permits

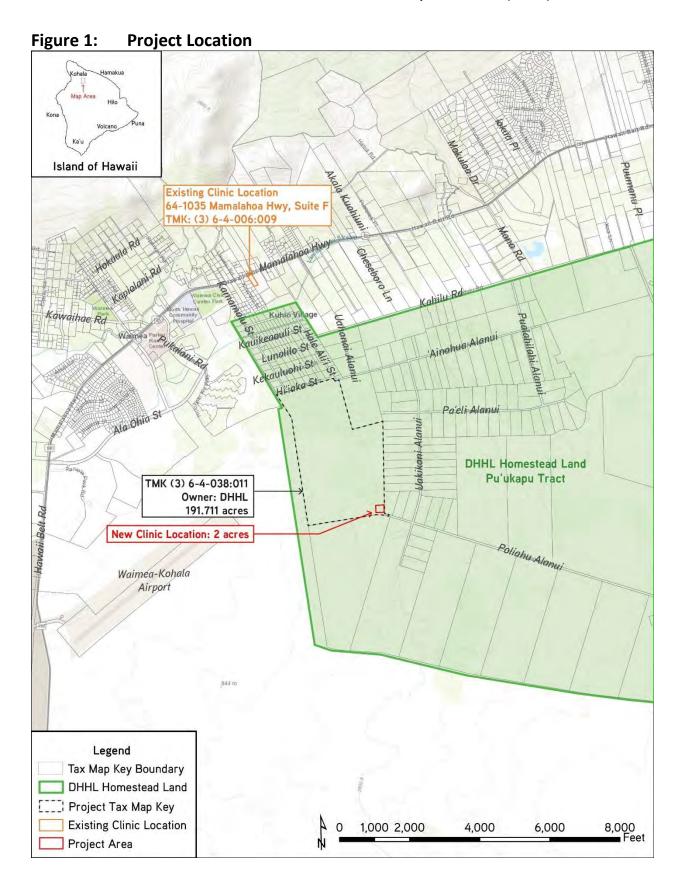

To implement the proposed action, the following Federal, State, and County permits and approvals listed in Table 1 are anticipated to be required.

Table 1: Potential Permits and Approvals Required

| Federal Approvals/Permits                                              |                                                                                                                                                                  |  |  |  |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Federal Aviation Administration                                        | Form 7460-1 Notice of Proposed Construction or Alteration Approval                                                                                               |  |  |  |
| U.S. Department of Agriculture (USDA), Rural Development Agency        | Compliance with requirements per 7 Code of Federal Regulations (CFR) Part 1970 – Environmental Policies and Procedures                                           |  |  |  |
| State Approvals/Permits                                                |                                                                                                                                                                  |  |  |  |
| State of Hawai'i, Department of<br>Health (DOH), Clean Water<br>Branch | <ul> <li>National Pollutant Discharge Elimination System<br/>(NPDES) General Permit</li> <li>Approval of wastewater system construction<br/>documents</li> </ul> |  |  |  |

| State of Hawai'i, Department of Agriculture                                                                             | <ul> <li>Application for Irrigation Water Service</li> <li>Approval letter for use of agriculture water for potable use</li> </ul>                                                                  |  |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| State of Hawai'i, Department of<br>Health, Safe Drinking Water<br>Branch                                                | Approval of water treatment system construction documents                                                                                                                                           |  |
| State of Hawai'i, Department of<br>Health, Wastewater Branch                                                            | Approval of wastewater system construction documents                                                                                                                                                |  |
| State of Hawai'i, Department of<br>Health,<br>Indoor and Radiological Health<br>Branch                                  | <ul> <li>Form 1 - Air Conditioning and Ventilation<br/>Application for Permit</li> <li>Noise Permit Application</li> </ul>                                                                          |  |
| State of Hawai'i, Department of<br>Land and Natural Resources<br>(DLNR), State Historic<br>Preservation Division (SHPD) | HRS Chapter 6E-8 Review                                                                                                                                                                             |  |
| County Approvals/Permits                                                                                                |                                                                                                                                                                                                     |  |
| County of Hawaiʻi (COH),<br>Planning Department                                                                         | Plan Approval                                                                                                                                                                                       |  |
| County of Hawaiʻi, Department of<br>Public Works (DPW), Building<br>Division                                            | <ul> <li>Building Permit (Non-Residential)</li> <li>Electrical Permit (Non-Residential)</li> <li>Plumbing Permit (Non-Residential)</li> <li>Sign Permit</li> <li>Outdoor Lighting Permit</li> </ul> |  |

| County of Hawai'i, Department of<br>Public Works, Engineering<br>Division | <ul><li> Grading and Grubbing Permit</li><li> Driveway Connection Permit</li></ul> |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| County of Hawai'i, Department of<br>Water Supply (DWS)/Water<br>Board     | Water Development Agreement                                                        |



 CONCEPTUAL SITE PLAN REPRESENTATION FOR USE AS MEDICAL CENTER ON 2 ACRE SITE. PROPOSED STRUCTURES SITE PLAN NOTES LEGEND (19) TRUE (19) PROPOSED 1-STORY BUILDING 9,600 S.F. DRIVE PORTE GARDENS Site Plan SITE PLAN SCALE: 1" = 20'-0" Figure 2:

**Draft Environmental Assessment** 

# 3.0 AFFECTED ENVIRONMENT, POTENTIAL IMPACTS, AND MITIGATION MEASURES

### 3.1 Climate and Climate Change

The annual temperature in Waimea is relatively cool due to its high elevation; it averages at 65 degrees Fahrenheit (Giambelluca, et al., 2014). The annual rainfall in the project area is approximately 26 inches, with most rainfall occurring between November to April. Annual wind speed in this area averages at 10 miles per hour (mph).

The rapid build-up of greenhouse gases from human activity, particularly carbon dioxide but also methane, nitrous oxide, and fluorinated gases, is causing global warming and climate disruption (Hawai'i Climate Mitigation and Adaptation Commission, 2017). Global atmosphere and ocean warming is leading to glacier mass loss and ocean thermal expansion and is causing an acceleration in global mean sea level rise. The islands of Hawai'i are uniquely exposed to the impacts of climate change and sea level rise. Many existing developments including hotels, houses, roads, beach parks, public facilities, and infrastructure have been located close to hazard prone and low-lying shorelines.

Sea level rise will multiply the impacts from coastal hazards, resulting in the acceleration of shoreline erosion, increase in chronic and event-based flooding along the shoreline and in low lying areas, and impediment of stormwater drainage. The Hawai'i Sea Level Rise Vulnerability and Adaptation Report modeled exposure to chronic coastal flooding and erosion using projections from the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (IPCC, 2013) where the high-end scenario was up to 3.2-ft of sea level rise by the end of the century (Courtney et al., 2020). The National Oceanic and Atmospheric Administration (NOAA) (Sweet et al., 2017) updated global and regional projections based on a review of the most upto-date scientific literature on sea level rise (Courtney et al., 2020) and identified 3 ft. of sea level rise in this century as a mid-range scenario, and a "physically plausible" upper-end projection of 6 to 8 ft. of sea level rise by the end of this century.

### Potential Impacts and Mitigation Measures

The proposed project is not anticipated to have an adverse effect on the climatic conditions of the Waimea region. The development of the KOKO Clinic would result in short-term release of greenhouse gas (GHG) emissions from construction activities, which is anticipated to be minor and temporary in nature.

The project site is located 10 miles away from the nearest shoreline, and thus is not anticipated to be subject to climate change and sea level rise impacts.

### 3.2 Geology and Topography

The project site is located at an elevation of approximately 2,760 feet in between Mauna Kea and the Kohala Mountains (see Figure 3). The site is relatively flat and slopes down towards the northwest side of the site. There are no significant landforms on the proposed site.

### Potential Impacts and Mitigation Measures

The proposed project is not anticipated to have an adverse impact on the topography of the site. Development of the new KOKO Clinic will require excavation and grading for the clinic building, parking lot, and utilities; however it is not anticipated to adversely impact any significant landforms in the area. Grading of the project site would be done in conformance with Hawai'i County Code, Chapter 10 – Erosion and Sedimentation Control.

As the disturbed area would be greater than one acre, a NPDES Permit would be required. Grading activities would follow Best Management Practices (BMPs) in compliance with the NPDES Permit and the County's Grading Permit to mitigate any potential impacts of soil erosion and fugitive dust during grading or excavation.

### 3.3 Soils

Based on the USDA Natural Resources Conservation Service (NRCS) Web Soil Survey, the soils within the surrounding project area are primarily Kikoni medial very fine sandy loam (map unit symbol 487), Waimea medial very fine sandy loam (map unit symbol 383), and Kikoni medial silt loam (map unit symbol 493) (see Figure 4). The Kikoni and Waimea series of soils are found on the northern side of Mauna Kea on the Waimea plains and consist of well-drained very fine sandy loams that formed in volcanic ash. Permeability is moderately rapid, runoff is slow, and the erosion hazard is slight. The project site consists of mainly the Waimea medial very fine sandy loam soil.

In Hawai'i, three classification systems are commonly used to rate soils: 1) Land Capability Grouping, 2) Agricultural Lands of Importance to the State of Hawai'i (ALISH), and 3) Overall Productivity Rating. The following is a description of the project site's soils' rating under each classification system.

# Land Capability Grouping, U.S. Department of Agriculture, Natural Resources Conservation Service (NRCS) Rating

The 1972 Land Capability Grouping by the NRCS groups soils primarily based on their capability to produce common cultivated crops and pasture plants without deteriorating over a long period of time. The capability class is the broadest category in the classification system and contains eight levels, ranging from the highest classification level "Class I", which indicates soils have slight limitations, to the lowest level "Class VIII", which are soils that have limitations that preclude their use for commercial plant production. The capability subclass is the second category in the land classification system that contains class codes "e", "w", "s", and "c".



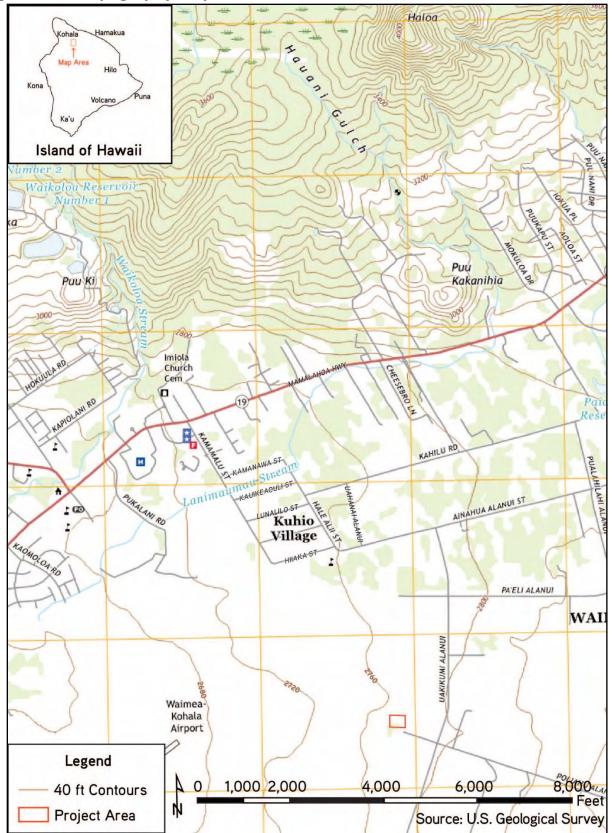
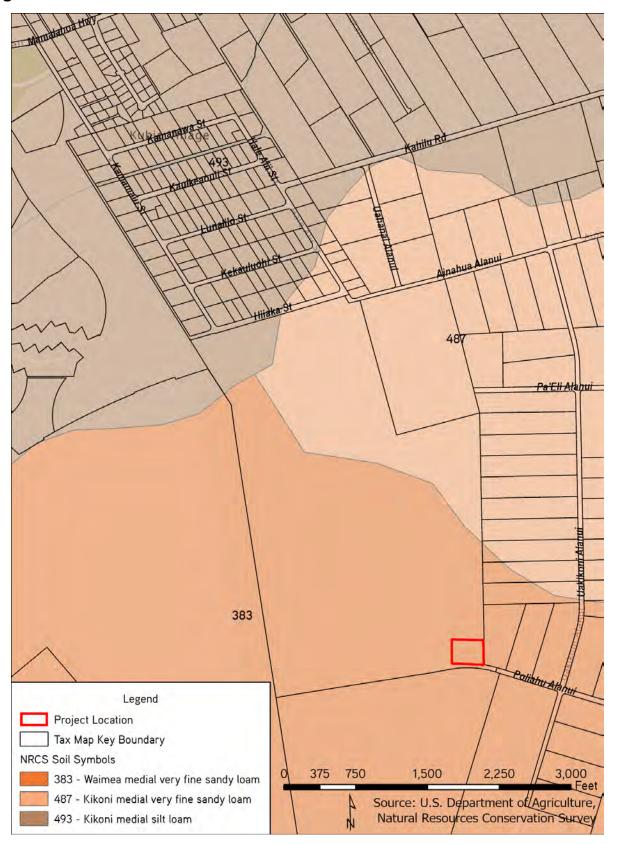




Figure 4: NRCS Soils



The Waimea medial very fine sandy loam and the Kikoni medial very fine sandy loam fall within Class IIe, while the Kikoni medial silt loam falls within Class I (when irrigated) and Class IIc (non-irrigated). Class I soils have few limitations that restrict their use, while Class II soils have moderate limitations that reduce the choice of plants or require moderate conservation practices. Subclass "c" soils shows that the primary limitation is climate that is very cold or very dry.

### Agricultural Lands of Importance in the State of Hawai'i (ALISH)

The State of Hawai'i, Department of Agriculture, with the assistance of the Soil Conservation Service, USDA, and the University of Hawai'i College of Tropical Agriculture and Human Resources, established a classification system to identify Agricultural Lands of Importance to the State of Hawai'i (ALISH) that is primarily, but not exclusively, based on soil characteristics in an effort to inventory important farmlands. The classification system identifies three classes of ALISH: "prime", "unique", and "other". The proposed project site would be located on land classified as ALISH "other", which is defined as land that is non-prime and non-unique agricultural land that is important to the production of crops (see Figure 5).

### Overall Productivity Rating, University of Hawai'i Land Study Bureau (LSB)

The University of Hawai'i's Land Study Bureau (LSB) established a five-class soil productivity rating system from "A" to "E", with "A" representing the class of highest productivity and "E" as the lowest. The rating system is based on soil properties such as drainage, texture, stoniness, structure, slope, rainfall, material, and depth/penetration of roots. The project is located on land with soils classified as "C" (see Figure 6).

### Potential Impacts and Mitigation Measures

Paving in the project area will minimally reduce permeability and increase runoff velocity in selected areas (i.e. parking lot). The proposed drainage improvements would be designed in compliance with the County's Storm Drainage Standard. Pre-development flow patterns and rates will generally remain in post-development conditions, with runoff remediated on-site.

All grading operations would be conducted in compliance with Hawai'i County Code, Chapter 10 – Erosion and Sedimentation Control. BMPs such as sediment basins, filter fences, diversion swales, and bio-filtration swales may be considered in the site design to minimize the amount of erosion and transport of sediment. Temporary impacts from construction activities would be mitigated by implementation of erosion and dust control measures.

Any landscape management on the project site would include proper management of fertilizers and pesticides. Increased surface runoff from newly paved parking and pedestrian areas would be minimized through these methods.



Figure 5: Agricultural Lands of Importance to the State of Hawai'i

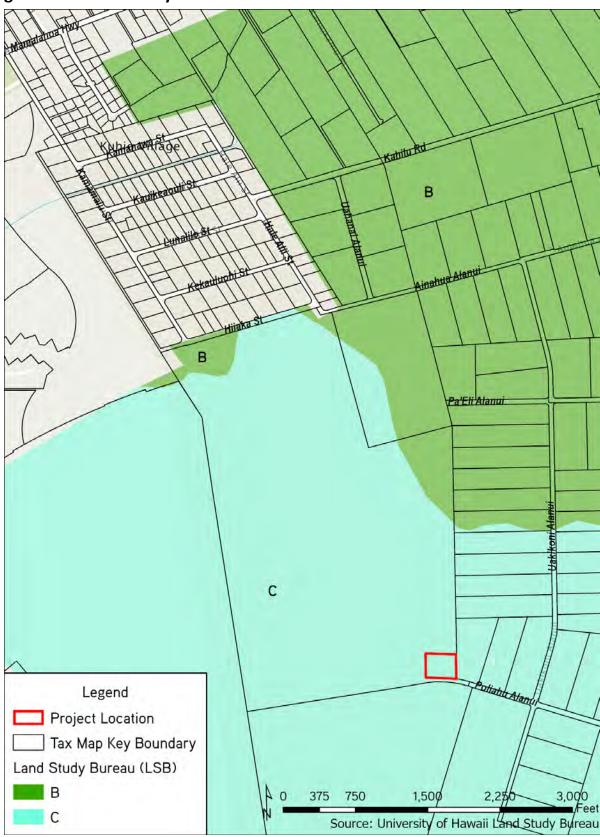



Figure 6: Land Study Bureau

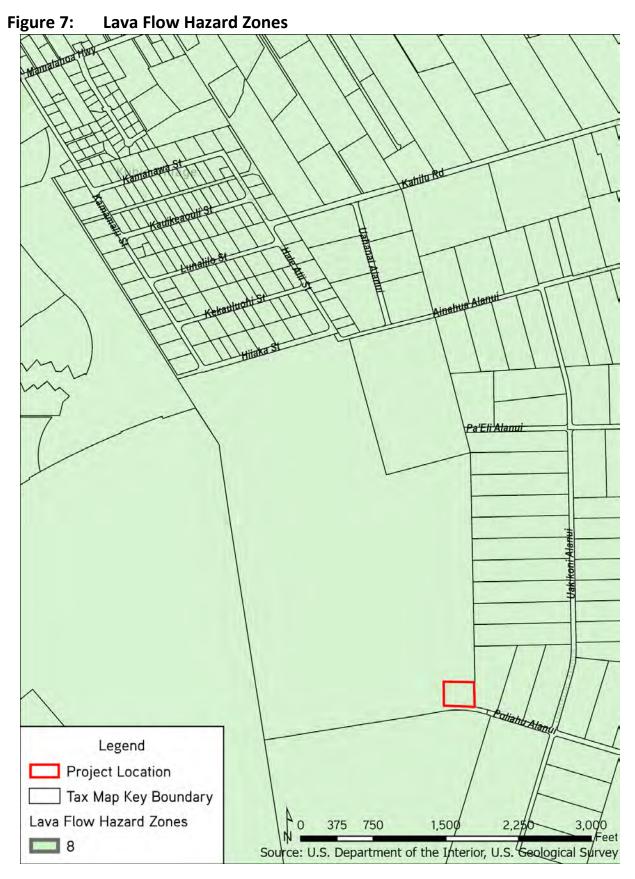
Although the project site is located on agricultural land and is not considered an agricultural use, the project would be part of a larger community plan, as identified in the 2015 FEA-FONSI for the WNR-CDI, which includes agricultural uses. In addition, the use of agricultural land for the project site would not limit or substantially reduce the availability of land for agricultural uses in the Waimea region.

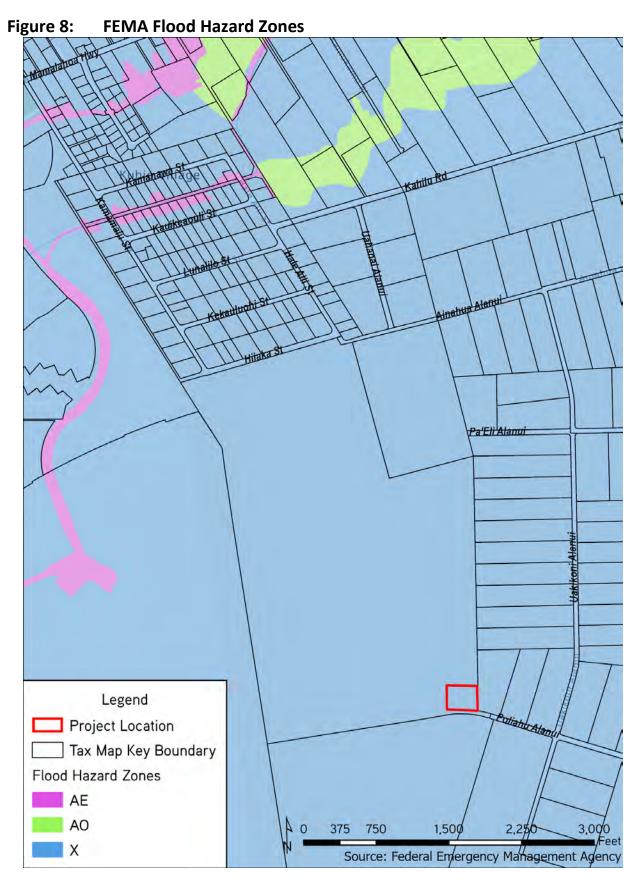
#### 3.4 Surface and Marine Waters

There are no existing sources of surface water located on the project site. The nearest surface water source is the Lanimaumau Stream, which is located approximately a half mile northwest of the site. There is no existing drainage system on the site.

The project site is not within or in near proximity to any marine or coastal waters.

### Potential Impacts and Mitigation Measures


Construction of the KOKO Clinic and parking areas may slightly alter the velocities, directions, and quantities of natural drainage patterns in the project area, however, the project will be designed to direct water flow to the proposed drainage system. The proposed drainage system will be designed in compliance with the County's Storm Drainage Standard. Pre-development flow patterns and rates will generally remain in post-development conditions with runoff remediated on-site.


### 3.5 Natural Hazards

The entire island of Hawai'i is subject to geologic hazards due to volcanic action. The project site is located near the boundary of the extinct Kohala volcano and the dormant Mauna Kea volcano, which results in a low risk level. The site is within the Lava Flow Hazard Zone 8, on a scale of ascending risk from Zone 9 to Zone 1 (see Figure 7). Zone 8 areas are within "the remaining part of Mauna Kea. Only a few percent of this area has been covered by lava in the last 10,000 years." (USGS, 1991).

The project site is within the Federal Emergency Management Agency's (FEMA) Flood Zone X according to FEMA's Flood Insurance Rate Map (see Figure 8). Flood Zone X corresponds to areas outside the 1-percent annual chance floodplain that are subject to minimal hazard from the principal source of flood in the area. Flood Zone X is not a special flood hazard zone, thus there are no regulations for development.

The proposed KOKO Clinic site is within the former Waikoloa Maneuver Area (WMA), which is a Formerly Used Defense Site (FUDS) as identified by the U.S. Army Corps of Engineers, Honolulu District (see Figure 9). The U.S. Marine Corps, through a verbal agreement with Richard Smart of Parker Ranch, acquired over 220,000 acres in South Kohala in December 1943 (USACE, 2019).





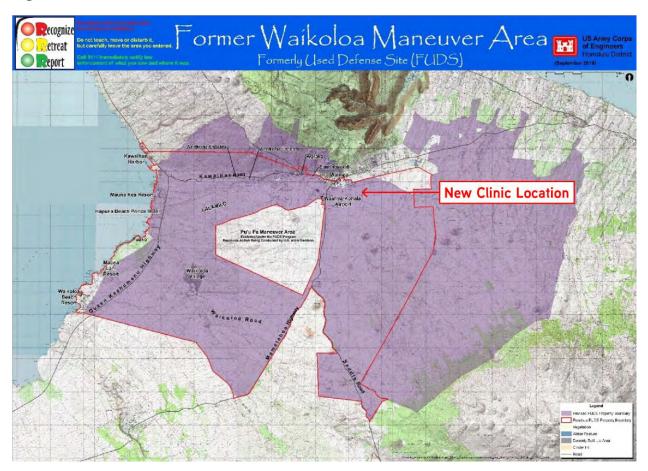



Figure 9: Waikoloa Maneuver Area

**Source: USACE** 

Portions of the land were used as an artillery firing range on which live ammunition and other explosives were employed, while the remaining acreage was utilized for troop maneuvers and Camp Tarawa.

The military has conducted multiple munitions clearance efforts within the area, including in 1946 and 1954. Since 2009 to the present, focused Remedial Investigation/Feasibility Studies (RI/FS) have been conducted at individual munitions response sites within the WMA to identify the nature and extent of munitions and explosives of concern (MEC) (USACE, 2019). USACE, in conjunction with DHHL, have held community meetings in Pu'ukapu to raise awareness regarding the potential for unexploded ordnance (UXO) contamination.

In the USACE's Comprehensive Strategic Plan for Fiscal Year (FY) 2021 – FY 2022 for the Former Waikoloa Maneuver Area published in 2021, the WMA is divided into sectors based on type, quantity, location, and depth of UXO and munitions debris recovered; documented records of previous MEC finds; past, current and reasonably anticipated future land use; and input from local agencies, stakeholders, and the community. The project site is located within Sector 15 (see Figure 10). Based on the strategic plan, Sector 15 is classified as a "5" under Munitions

Response Site Prioritization Protocol and "3" under the State Management Action Plan Priority. Section 15 is one of eight sectors currently in the RI/FS stage.

### <u>Potential Impacts and Mitigation Measures</u>

In general, geologic and flood conditions do not impost any major constraints on the project. The KOKO Clinic would be constructed in compliance with regulatory controls to meet County Building Code requirements.

Based on the 2015 FEA-FONSI for the WNR-CDI, project construction was proposed to follow safety procedures articulated by USACE, and a certified UXO removal technician was proposed to be utilized during project construction if it was deemed necessary after further consultation with USACE. As construction activities for the WNR-CDI have not been initiated at time of publication of this Draft EA, it is recommended that USACE be consulted prior to the development of the KOKO Clinic site.

### 3.6 Flora and Fauna

#### 3.6.1 Flora

A Botanical Survey was conducted by AECOS in support of the 2015 FEA-FONSI for the WNR-CDI during November 2014; the project site is within the same boundary of the surveyed area for the 2015 FEA-FONSI. The survey found that the current vegetation of the site consists of pasture grasses and a limited number of herbaceous plants. All plants found during the site survey were non-native species, and no federally listed endangered or threatened species were found.

#### 3.6.2 Fauna

Avian and mammalian surveys were conducted by AECOS in support of the 2015 FEA-FONSI for the WNR-CDI during November 2014; the project site is within the same boundary of the surveyed area for the 2015 FEA-FONSI. Based on the survey, the site is mainly vacant of mammalian species with the exception of domestic cattle (*Bos taurus*) found on the site and adjoining pastures, along with mice (*Mus musculus domesticus*) and wild pigs (*Sus scrofa*). No Hawaiian hoary bats were detected during the survey given the lack of suitable roosting trees.

A total of 15 different bird species were recorded during station counts in 2014. One of the species detected, the Pacific Golden-Plover (*Pluvialis fulva*), is an indigenous migratory shorebird species that are found to return to Hawai'i and the Pacific during the fall and winter months. The remainder of avian species recorded were considered to be alien to Hawai'i; none of the species were listed as endangered, threatened or proposed for listing under the Federal or State endangered species programs. The list of bird species recorded during the survey are included in Table 1.

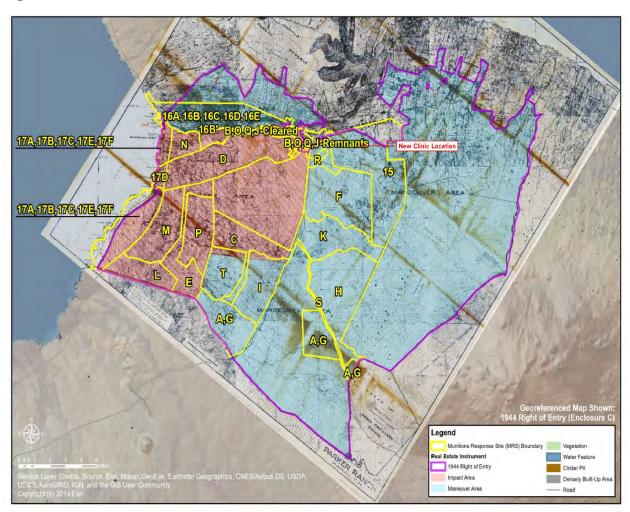



Figure 10: Waikoloa Maneuver Area Sectors

**Source: USACE** 

**Table 2:** Faunal Species Observed Within and Surrounding the Project Site

| Species                   | Common Name          | Status       |
|---------------------------|----------------------|--------------|
| Francolinus pondicerianus | Gray francolin       | Alien        |
| Coturnix japonica         | Japanese quail       | Alien        |
| Gallus sp.                | Domestic chicken     | Domesticated |
| Phasianus colchicus       | Ring-necked pheasant | Alien        |

| Bubulcus ibis          | Cattle egret          | Alien                |
|------------------------|-----------------------|----------------------|
| Pluvialis fulva        | Pacific golden-plover | Indigenous Migratory |
| Columba livia          | Rock pigeon           | Alien                |
| Streptopelia chinensis | Spotted dove          | Alien                |
| Geopelia striata       | Zebra dove            | Alien                |
| Zenaida macroura       | Mourning dove         | Alien                |
| Alauda arvensis        | Sky lark              | Alien                |
| Acridotheres tristis   | Common myna           | Alien                |
| Passer domesticus      | House sparrow         | Alien                |
| Euodice cantans        | African silverbill    | Alien                |
| Lonchura oryzivora     | Java sparrow          | Alien                |

Although it was not detected during the 2014 survey, it is possible that the endangered endemic Hawaiian Petrel (*Pterodroma sandwichnesis*), and the threatened Newell's Shearwater (*Puffinus auricularis newelli*) may fly over the project area between the months of April to December. The Hawaiian goose (*branta sandvicensis*) may also be present in the vicinity of the proposed project area at any time of the year, although it was not observed during the survey.

### U.S. Fish and Wildlife Service Information for Planning and Consultation (IPaC)

In an email dated July 13, 2022, the U.S. Fish and Wildlife Service (USFWS) provided a pre-assessment consultation comment for the project recommending the use of their online Information for Planning and Consultation (IPaC) system to obtain a species list and recommended avoidance and minimization measures to avoid adverse effects and take of federally listed species that may potentially be present within the project area (see Appendix A for a copy of the email). Based on the resource list generated for the project site, the following species listed in Table 3 are potentially affected by project activities in this location. It should be noted that this list is <u>not</u> an official species list from the USFWS and is only used as a resource per recommendation by the USFWS.

Table 3: USFWS IPaC Species List

| Species                          | Common Name                       | Status     |  |  |
|----------------------------------|-----------------------------------|------------|--|--|
| Bird Species                     |                                   |            |  |  |
| Oceanodroma castro               | Band-rumped Storm-petrel          | Endangered |  |  |
| Loxops coccineus                 | Hawaiʻi Akepa                     | Endangered |  |  |
| Anas wyvilliana                  | Hawaiian Duck                     | Endangered |  |  |
| Fulica americana alai            | Hawaiian Coot                     | Endangered |  |  |
| Branta sandvicensis              | Hawaiian Goose                    | Threatened |  |  |
| Pterodrom sandwichensis          | Hawaiian Petrel                   | Endangered |  |  |
| Himantopus mexicanus<br>knudseni | Hawaiian Stilt                    | Endangered |  |  |
| Puffinus auricularis newelli     | Newell's Townsend's<br>Shearwater | Threatened |  |  |
| Insects                          |                                   |            |  |  |
| Manduca blackburni               | Blackburn's Sphinx Moth           | Endangered |  |  |
| Flowering Plants                 |                                   |            |  |  |
| Pleomele hawaiiensis             | Hala Pepe                         | Endangered |  |  |
| Ochrosia haleakalae              | Holei                             | Endangered |  |  |
| Ochrosia kilaueansis             | Holei                             | Endangered |  |  |

| Haplostachys haplostachya                        | Honohono      | Endangered |  |
|--------------------------------------------------|---------------|------------|--|
| Portulaca villosa                                | Ihi           | Endangered |  |
| Lipochaeta venosa                                | Nehe          | Endangered |  |
| Portulaca sclerocarpa                            | Poe           | Endangered |  |
| Solanum incompletum                              | Popolo Kū Mai | Endangered |  |
| Silene hawaiiensis                               |               | Threatened |  |
| Stenogyne angustifolia var.<br>angustifolia      |               | Endangered |  |
| Tetramolopium arenarium                          |               | Endangered |  |
| Mezoneuron kavaiense                             | Uhi Uhi       | Endangered |  |
| Vigna o-wahuensis                                |               | Endangered |  |
| Ferns and Allies                                 |               |            |  |
| Microlepia strigose var.<br>mauiensis            |               | Endangered |  |
| Critical Habitats                                |               |            |  |
| There are no critical habitats at this location. |               |            |  |

### <u>Potential Impacts and Mitigation Measures</u>

The construction and operation of the KOKO Clinic is not anticipated to result in an adverse impact to native birds or the Hawaiian hoary bat. No plant, avian, or mammalian species that are protected or proposed for protection under the Federal or State of Hawai'i endangered species programs were detected during the 2014 surveys.

Per the State Department of Land and Natural Resources (DLNR), Division of Forestry and Wildlife (DOFAW) pre-assessment consultation letter dated July 27, 2022, it is recommended to use native plant species for landscaping that are appropriate for the area. In addition, DOFAW recommended consultation with the Big Island Invasive Species Committee during the design and construction of the project to help minimize the risk of spreading invasive species.

However, to minimize the potential for any impacts, construction activities would implement the following avoidance, minimization, and conservation measures, as provided by the USFWS IPaC system's General Project Design Guidelines (see Appendix B) and DOFAW:

### Minimization Measures for Plant Species

- Minimizing disturbance outside of proposed development
- Use of native plants, as appropriate and whenever possible, for landscaping purposes.
- Ensure all construction equipment, personnel, and supplies are properly checked and are free of contamination (weed seeds, organic matter, or other contaminants) before entering the project area.

### Minimization Measures for Hawaiian Waterbirds

- In areas where waterbirds are known to be present, post and enforce reduced speed limits, and inform project personnel and contractors about the presence of endangered species on-site.
- Incorporate the Service's Best Management Practices for Work in Aquatic Environments into the project design.
- If a nest or active brood is found:
  - o Contact the Service within 48 hours for further guidance.
  - Establish and maintain a 100-foot buffer around all active nests and/or broods until the chicks/ducklings have fledged. Do not conduct potentially disruptive activities or habitat alteration within this buffer.
  - Have a biological monitor that is familiar with the species' biology present on the project site during all construction or earth moving activities until the chicks/ducklings fledge to ensure that Hawaiian waterbirds and nests are not adversely impacted.

### Minimization Measures for Hawaiian Goose or nene

- Do not approach, feed, or disturb nene.
- If nene are observed loafing or foraging within the project area during the breeding season (September through April), have a biologist familiar with nene nesting behavior

survey for nests in and around the project area prior to the resumption of any work. Repeat surveys after any subsequent delay of work of 3 or more days (during which the birds may attempt to nest).

- Cease all work immediately and contact the Service for further guidance if a nest is discovered within a radius of 150 feet of proposed project, or a previously undiscovered nest is found within the 150-foot radius after work begins.
- In areas where nene are known to be present, post and implement reduced speed limits, and inform project personnel and contractors about the presence of endangered species on-site.

Minimization Measures for Hawaiian Petrel, Newell's Shearwater, and Hawai'i Distinct Population Segment of the Band-Rumped Storm-Petrel

- Fully shield all outdoor lights so the bulb can only be seen from below.
- Install automatic motion sensor switches and controls on all outdoor lights or turn off lights when human activity is not occurring in the lighted area.
- Avoid nighttime construction during the seabird fledging period, September 15 through December 15.

Minimization Measures for Hawaiian Hoary Bat

- Do not disturb, remove, or trim woody plants greater than 15 feet tall during the bat birthing and pup rearing season (June 1 through September 15).
- Do not use barbed wire for fencing.

Minimization Measures for Blackburn's Sphinx Moth

- Consult with the DOFAW Hawai'i Island Branch for further information about where the blackburn's sphinx moth may be present and whether a vegetation survey should be conducted to determine the presence of plants preferred by the moth.
- Remove any tree tobacco less than 3 feet tall during the dry time of year to avoid harm to the moth.
- Monitor the site every 4-6 weeks for new tree tobacco growth before, during, and after the proposed ground-disturbing activity. This monitoring for can be completed by any staff, such as groundskeeper or regular maintenance crew, if they are provided with picture placards of tree tobacco at different life stages.

Minimization Measures for Hawaiian Hawk or 'Io (Buteo solitarius)

 Survey surrounding area to ensure no Hawaiian Hawk nests are present, if trees are to be cut  Hawaiian Hawk nests may be present during the breeding season from March to September.

## 3.7 Air Quality

The State of Hawai'i, Department of Health (DOH) operates air quality monitoring stations around the state. The nearest air quality monitoring station to the project site is the Waikoloa Station, which is approximately 16 miles southwest of the site. The Waikoloa Station measures for volcanic emissions. In the State, both Federal and State environmental health standards pertaining to outdoor air quality are generally met due to prevalent trade winds and the absence of major stationary sources of pollutant emissions.

Volcanic emissions of sulfur dioxide from the Kīlauea Volcano convert into particulate sulfate forming a volcanic haze, locally called "vog". South Kohala receives small quantities of vog from winds blowing north from Kona, although in general it is kept away by dominant trade winds.

## Potential Impacts and Mitigation Measures

The proposed project is not anticipated to have a long-term impact on air quality. There would be short-term impacts associated with construction activities, including exhaust from increased traffic and fugitive dust from construction.

A dust control management plan would be developed, which would identify and address activities that have a potential to generate fugitive dust. Fugitive dust control can be accomplished by the establishment of a frequent watering program to keep bare dirt surfaces in construction areas from becoming significant sources of dust. In dust prone or dust sensitive areas, other control measures such as limiting the area that can be disturbed at any given time, applying chemical soil stabilizers, mulching and/or using wind screens may be necessary. Onsite mobile and stationary construction equipment also would emit air pollutants from engine exhausts, but no sensitive receptors are present. The contractor will be required to prepare a dust control plan during construction compliant with provisions of HAR, Chapter 11-60.1 Air Pollution Control and Section 11-60.1-33 Fugitive Dust.

Operations at the KOKO Clinic are not anticipated to be a source of greenhouse gas or other air pollutant emissions that would adversely impact the air quality of the surrounding environment.

The proposed project would comply with the DOH Administrative Rules §11-39 Air Conditioning & Ventilating for the installation of the air conditioning system at the new KOKO Clinic, which would require a permit for installation and operation of an air conditioning or ventilating unit.

# 3.8 Historic and Archaeological Resources

An Archaeological Inventory Survey (AIS) was conducted in support of the 2015 FEA-FONSI for the WNR-CDI by Keala Pono Archaeological Consulting, LLC (KPAC). The AIS was conducted to determine the presence, nature, and extent of archaeological resources in the project area.

A surface survey was conducted by KPAC by walking 16 - 26 feet transects throughout the project area. Results of the surface survey revealed one archaeological site, which was then mapped, documented, and excavated. Controlled test units were excavated by hand at the site. A total of 10 trenches in arbitrary locations were mechanically excavated for the purpose of sampling the subsurface conditions (see Figure 11). No cultural remains, either prehistoric or historic, were encountered in any of the trenches. Stratigraphy consisted entirely of natural deposits with bedrock below.

The results of the AIS indicated that the WNR-CDI project area consisted of one site (Site 30195). This site is not within the KOKO Clinic project area.

## <u>Potential Impacts and Mitigation Measures</u>

Based on the findings of the AIS conducted for the 2015 FEA-FONSI for the WNR-CDI, the proposed KOKO Clinic is not anticipated to adversely impact any known or found archaeological sites. Subsurface properties associated with former traditional Hawaiian activities, such as artifacts, cultural layers, and burials may be present despite the historical pasture use in the area. For this reason, personnel involved in the project should be informed of the possibility of inadvertent cultural finds and should be made aware of the appropriate notification measures to follow. If any previously unidentified sites or remains are encountered during site work and construction, work in the immediate area shall cease. An archaeologist from SHPD shall be notified and work in the area would be suspended until further recommendations are made.

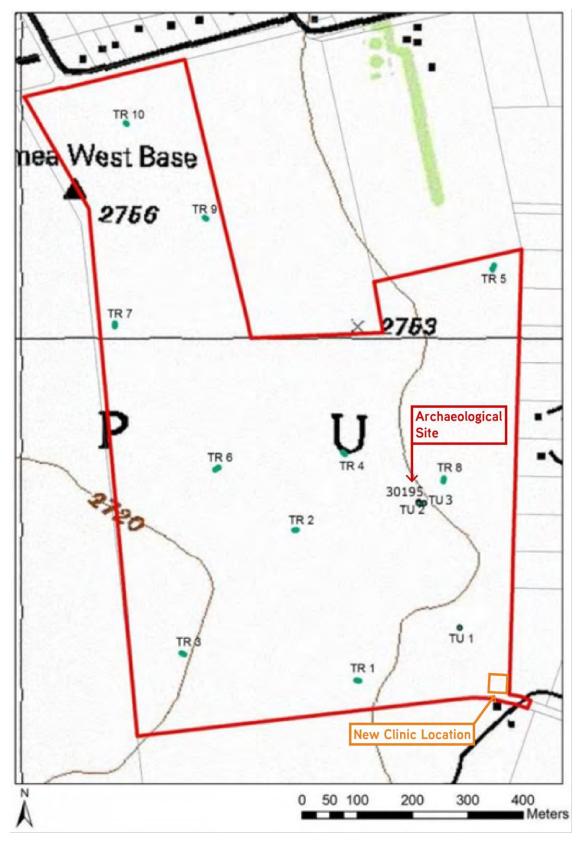



Figure 11: Location of Trench Sites

## 3.9 Cultural Resources

A Cultural Impact Assessment (CIA) was conducted in support of the 2015 FEA-FONSI for the WNR-CDI by KPAC, which consisted of background research and oral interviews.

The project site is located in the 'ili (land section or subdivision of an ahupua'a) of Pu'ukapu, in the ahupua'a of Waimea. Pu'ukapu means "sacred hill", and Waimea means "reddish water". Through recent history, this area of Waimea has been a part of the grazing lands of Parker Ranch.

## **Traditional Hawaiian Background**

Waimea is known to be a place where famous historical battles over the governance of land were fought. Prior to Western contact in the early 18<sup>th</sup> century, Ali'inui Alapa'inui ruled all of Hawai'i island. Internal conflicts led to the division of the island, leaving Alapa'inui to rule the northern districts. Following his death, his son Keawe'ōpala inherited his seat, and was challenged by Kalani'ōpu'u, who ruled the southern lands, for control of the northern lands. Kalani'ōpu'u won and assumed control of all of Hawai'i island. After Kalani'ōpu'u's death, his son Kiwalao governed the land until he was challenged by and lost to Kamehameha. Following that battle, the governance of Hawai'i Island was divided into three parts; Kona, Hilo, and the districts of Ka'u and Puna.

#### Traditional and Historic Land Tenure and Use

The Waimea environment was naturally suited for intensive upland farming, which supported a sizable village population. At the time of Captain Cook's arrival in 1778, there were an estimated 23,000 or more natives living in the Kohala district. The area is noted for having cultivated 'uala and dryland taro.

After the arrival of foreigners to Hawai'i, Waimea underwent rapid transformation with the presence of ranchers, whalers, missionaries, sandalwood traders, and other agricultural businessmen. Waimea's rich ranching history stems from the late 18<sup>th</sup> century when Captain George Vancouver arrived on Hawai'i Island. Captain Vancouver brought gifts of cattle, goats, and sheep for Kamehameha I, who placed a restriction on the livestock; anyone caught harming the animals could be persecuted by death. As a result, the population of cattle, goats, and sheep multiplied across Waimea and the rest of Northern Hawai'i Island.

After the restriction on cattle was lifted in 1815, Kamehameha appointed John Palmer Parker to be his authorized cattle hunter. The hunting of animals and processing and production of beef products became a rising industry. In 1832, the first of numerous Mexican cowboys arrived in Hawai'i to lend their expertise and skills in handling cattle. In 1847, the Parker Ranch was established, with the lands in Waimea, Kawaihae, and South Kohala becoming centers of the cattle industry.

Overlapping with the arrival of foreign sailors, whalers, and cowboys were the arrival of Christian missionaries. One of the early missionaries was Lorenzo Lyons who arrived in the

islands in 1832, and later erected his church in Waimea. His description of the natural environment of Waimea match other oral accounts of the area, which describe Waimea has being filled with wind, rain, and running water. Reverend William Ellis offered another historical account of Waimea, documenting the agricultural abundance and the fertile characteristic of the soil and access to water.

The proposed project site is within the lands known as Pu'ukapu, which are owned by DHHL. DHHL was established through the Hawaiian Homes Commission Act of 1920, championed by Prince Jonah Kūhiō Kalaniana'ole with the primary goal of providing for the rehabilitation of the Native Hawai'i people through a homestead program. The Pu'ukapu Homestead tract is the largest subdivision on Hawai'i Island with over 11,000 acres.

By 1943, the U.S. military opened Camp Tarawa in Waimea through a lease from Parker Ranch. Approximately 91,000 acres was used for military training. The camp hosted 50,000 troops between 1943 to 1945, and was abandoned after the end of World War II in 1946. The infrastructure deteriorated and the lands were reabsorbed by Parker Ranch until the lease expired and the land was turned over to DHHL. Surface clearing of UXO was conducted in 1946 and 1954 for Camp Tarawa and other areas in the WMA.

## <u>Potential Impacts and Mitigation Measures</u>

Based on research conducted by KPAC, no previously identified historic properties exist in the WNR-CDI project site, which also encompasses the KOKO Clinic site. Although the land was part of a contiguous landscape impacted by the historical land tenure transitions, there does not appear to be any specific or known cultural practices being actively conducted within or near vicinity to the project area. It is anticipated that the proposed project would not have an adverse impact on significant cultural resources.

## 3.10 Socio-Economic Conditions

According to the 2021 State of Hawai'i Data Book produced by the State Department of Business, Economic Development and Tourism (DBEDT), the population in South Kohala as of 2020 is 19,310. Within the census designated place of Waimea, the population is 10,969, and within the Pu'ukapu Homestead the population is 936.

Businesses in the South Kohala district range from service industries, wholesale and retail trade, government, ranching, diversified agriculture, manufacturing, and construction. Waimea exhibits a higher proportion of service occupations, particularly within the food, accommodation, and entertainment industries, reflecting the importance of tourism for the area.

#### <u>Potential Impacts and Mitigation Measures</u>

The project would create short-term benefits as a result of design and construction employment and would create jobs for local construction personnel. Local material suppliers

and retail businesses may also be expected to benefit through the proposed project's construction activities.

The operations of the KOKO Clinic would expand to increase their patient capacity, which is anticipated to result in an additional five full-time positions. The clinic's increase in capacity would benefit the Pu'ukapu homestead community and the residents of Waimea by providing additional medical services. The KOKO Clinic's Ulu Laukahi Program would be a primary focus of expansion, which would focus on addressing chronic disease care management. The socioeconomic impacts of the proposed project would be positive for the local community, homestead beneficiaries, as well as the County of Hawai'i and the State.

## 3.11 Viewplanes

The project site is located on the edge of a developed urban residential neighborhood on vacant and undeveloped agricultural land. Existing views from the site consist of the surrounding open space, the KOKA Charter School, the Kohala mountains, and the slopes of Mauna Kea.

Section 7.5.6 of the 2005 County of Hawai'i General Plan identifies sites and view planes of natural landforms, and describes the scenic views of the Waimea region: "The Kohala Mountains provide a backdrop of rolling hills and volcanic cones covered with pastures kept green by fog, fine mist, and rain. Mauna Kea provides a distant but dramatic mass as it rises steeply above the plateau. Viewed at a distance, Waimea town lies nestled at the base of the Kohala Mountains...The pastures and puu immediately above Waimea Town have been identified as a vista of exceptional natural beauty."

#### Potential Impacts and Mitigation Measures

The proposed project is not anticipated to significantly impact the views in the area. The views of the open pastoral landscape would be minimally affected by the new project elements, however, the new clinic would maintain the same character, mass and height as surrounding buildings in the area. Design details and landscaping would be utilized to maintain the visual character of the project site.

#### 3.12 Infrastructure

In support of the 2015 FEA-FONSI for the WNR-CDI, a Preliminary Engineering Report was completed by Group 70 International which assessed the anticipated infrastructure needs for the development.

#### 3.12.1 Water

There is currently no water system servicing the site. Potable water service in the general area is provided by the County Department of Water Supply's (DWS) 4.0 million gallons (MG) water reservoir at the water treatment plant with a spillway elevation of 3,052 feet above mean sea

level (msl). Based on the DWS' pre-assessment consultation letter dated July 13, 2022 (see Appendix A), the project parcel is currently serviced by a combination 8-inch by 4-inch meter, which is allocated 25 units of water, or 10,000 gallons per day. DWS indicated that additional water is unavailable at this time.

## Potential Impacts and Mitigation Measures

DWS has indicated that the project parcel does not have additional water capacity at this time. To service the project site, extensive improvements and additions would be required, which may include, but not be limited to, source, storage, booster pumps, transmission, and distribution facilities. DWS also indicated that the project may enter into a Water Development Agreement with the Water Board, in accordance with Rule 5 of the Department's Rules and Regulations, to obtain a water commitment from the Department for the proposed development. The Agreement would establish, amongst other things, the scope of the necessary water system improvements, facilities charges to be paid, and a timeline for construction.

In the 2015 FEA-FONSI, it was proposed that the WNR-CDI development use agriculture water from the Waimea Irrigation System, which is managed by the State Department of Agriculture (DOA), to be treated and distributed on-site for potable use. The system would be certified through the DOH as a public water system. As the Waimea Irrigation System experiences low pressure during peak flows, a tank farm was proposed to be constructed so that water from the system would fill on-site tanks during off-peak hours to meet potable and non-potable water demands without adversely affecting the irrigation system. As the KOKO Clinic would be relocated to the WNR-CDI's site, it is anticipated that it would be serviced by the same water system. It should be noted that the water system and proposed developments indicated in the 2015 FEA-FONSI have not been developed as of the date of publication of this Draft EA.

Further coordination with the DWS and DOA is required to determine the best possible solution to provide potable water to the project site.

In addition to establishing a potable water system, the project would be required to comply with Chapter 18 of the 2018 Hawai'i State Fire Code and Chapter 26 of the Hawai'i County Code to provide for the COH Fire Department access and water. Water efficient fixtures would be installed, and water efficient practices implemented throughout the KOKO Clinic to reduce the increased demand on freshwater resources. Landscape irrigation conservation BMPs endorsed by the Landscape Industry Council of Hawai'i would also be used as applicable to the project.

## 3.12.2 Wastewater System

The majority of Waimea relies on Individual Wastewater Systems (IWS) or a Wastewater Treatment Works. There are no existing municipal sewer systems near the project site.

## Potential Impacts and Mitigation Measures

As the KOKO Clinic would be relocated to the development proposed by the WNR-CDI, the wastewater system proposed in the 2015 FEA-FONSI is anticipated to service the project site. Wastewater flows produced from the WNR-CDI development would be handled through a Wastewater Treatment Works, as this would be considered to comply with the Federal Aviation Administration (FAA) Advisory Circular 150/5200-33B, which regulates developments within the proximity of airports. The project site is located near the Waimea-Kohala Area of Operations delineation where new wastewater facilities are typically not permissible due to concerns that such facilities could attract wildlife to the area. However, an enclosed underground system can be designed whereby treated effluent for reuse purposes such as irrigation could be distributed evenly through the project area as to not create ponding areas.

All wastewater collection and treatment components would be designed in compliance with HAR Section 11-62 relating to Wastewater Systems. Wastewater re-use is the most viable option for the proposed project, and can be utilized if designed in accordance with DOH Guidelines for the Treatment and Use of Recycled Water.

## 3.12.3 Drainage

The County's storm drainage system serving the Waimea area consists of a network of storm drainage pipes and culverts. Storm runoff collected by these pipes and culverts is either disposed of in sumps, drywells, or injection wells. The existing site is unoccupied and has no drainage system.

## Potential Impacts and Mitigation Measures

Construction of the KOKO Clinic and parking lot would change the velocities, directions and quantities of the water drainage. The flow pattern of excess rain runoff would need to be controlled to prevent flood damage. The project would incorporate efficient design to moderate stormwater runoff such as increased pervious surfaces, use of pavers, and landscaping to absorb water runoff.

## 3.12.4 Electrical and Communications

Electrical power on Hawai'i Island is provided by Hawaiian Electric Light Company. Hawai'i Telecom and Sandwich Isles Communications, Inc. provide telephone and telecommunications services in the area.

## <u>Potential Impacts and Mitigation Measures</u>

The 2015 FEA-FONSI for the WNR-CDI proposed that electricity would be provided on-site by the anaerobic biodigester. The biodigester will use waste from agricultural uses, municipal solid waste, and wastewater to fuel the anaerobic digestion process. During the process, a solid output, called digestate, can be produced and used in soil or as fertilizer. Anaerobic microbes used in the digestion process also produce large quantities of biogas, which contains methane

and carbon dioxide, that can be used as a renewable biofuel to produce electricity. It was estimated that the digester could provide sufficient fuel for 12 hours per day of 450 kilowatthour (kwh) generation and 12 hours per day of 225 kwh production, enabling the generation facility to provide 450 kwh during peak power demand periods. Energy produced by the biodigester would be fed and regulated at a distribution hub located in the central portion of the WNR-CDI development. In the event that the biodigester is out of service for an extended period of time, backup storage of propane as well as provisions to hook up to a propane truck would be available at the biodigester facility for continuous electricity generation. It is anticipated that the KOKO Clinic would connect to the same electrical system and service being provided by the WNR-CDI's biodigester.

## **3.12.5** Traffic

As part of the 2015 FEA-FONSI for the WNR-CDI, a Traffic Impact Analysis Report (TIAR) was completed by Traffic Management Consultant, Inc. in 2014. For this Draft EA, an update to the 2014 TIAR was conducted by SSFM International, Inc. to account for the addition of the KOKO Clinic (see Appendix C). The 2022 TIAR supplements the previous 2014 TIAR and assessed the impacts of the proposed KOKO Clinic relocation on Future With Project analysis; the "Future Without Project" analysis will include the project-related trips from the 2014 TIAR using updated background growth rates and intersection turning movement counts taken in September 2021. In compliance with Hawai'i County Code Chapter 25, Section 25-2-46 Concurrency Requirements, traffic impacts were analyzed for the years 2026, 2031 and 2041, which are future five, ten, and 20 year timelines from the existing year of analysis (2021).

The existing roadways analyzed in the 2022 TIAR include Māmalahoa Highway, Kamamalu Street, Hiiaka Street, Ainahua Lanaui Street, Mana Road, Uakikoni Alanui, and Poliahu Alanui. Four existing study intersections were identified and analyzed to consider the impacts from the proposed project (see Figure 12); Māmalahoa Highway at Kamamalu Street, Hiiaka Street at KOKA Charter School Main Driveway, Ainahua Alanui Street at KOKA Charter School Eastern Driveway, and Māmalahoa Highway at Mana Road.

## Potential Impacts and Mitigation Measures

As proposed in the 2015 WNR-CDI TIAR, a new road would be constructed that branches south off of Hiiaka Street to serve as the primary access to the WNR-CDI development. The intersection of Hiiaka Street and the new road is proposed to be an unsignalized three-way intersection; the new road would have two lanes.

An access point through the west end of Poliahu Alanui road, west of the intersection with Uakikoni Alanui road, will be used in the interim as temporary access. When the new road is constructed, the temporary access point will become the secondary access point. The KOKO Clinic is anticipated to generate 30 to 37 trips in the AM and PM peak hours, respectively. The low number of trips are not expected to have a significant impact on the surrounding roadway network, therefore a separate analysis of the secondary access was not conducted.

The overall size and traffic impact of the KOKO Clinic is minimal compared to the other land uses proposed in the 2015 WNR-CDI TIAR. At the intersection of Māmalahoa Highway and Mana Road, the northbound right approach will worsen to level of service (LOS) E in the Future With Project analyzed year of 2026, and further to LOS F in Future With Project year 2041. The northbound left turn also operates at LOS E during the Future With Project year 2041. Due to the worsening LOS, this intersection satisfied the Peak Hour Traffic Signal Warrant to install a traffic signal by the Future With Project year 2026. However, even with the installation of a traffic signal, the eastbound approach in the PM peak hour operates near capacity in 2041 with or without the proposed project, which is likely due to the forecasted regional growth. It is therefore recommended that this intersection be studied in the future in collaboration with HDOT to assess the need for a traffic signal.

At the intersection of Māmalahoa Highway and Kamamalu Street, the northbound left turn worsens to LOS E during the PM peak hours in 2041 with or without the proposed project. Based on the future projected volumes, it is anticipated that up to nine vehicles per cycle would be queued at this approach to the intersection. It is recommended that the signal timing at the intersection be monitored and adjusted if needed.

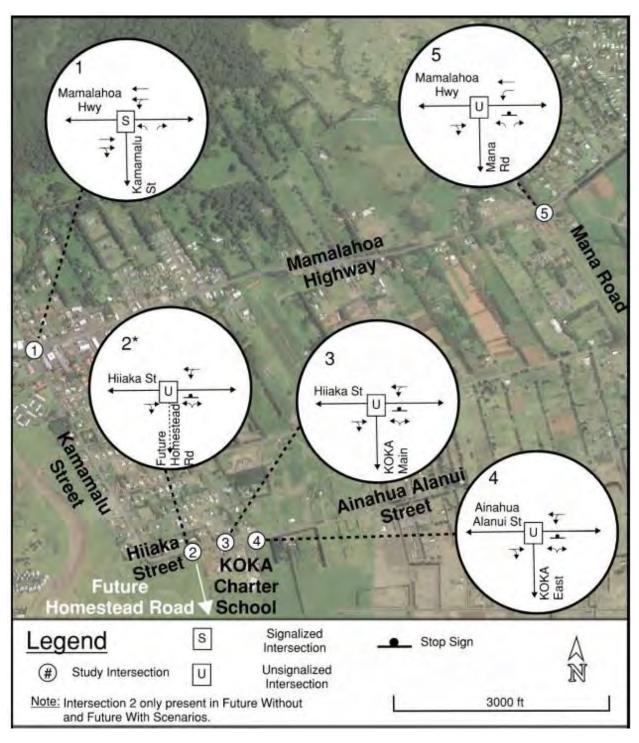



Figure 12: Existing Study Intersections and Lane Configurations

**Source: SSFM International** 

# 3.13 Airport Easement

Based on the 2015 FEA-FONSI for the WNR-CDI, the project site is not within the aviation easement for the Waimea-Kohala Airport (see Figure 13). Building height limitations in the aviation easement are dependent upon the site location in relation to the distance from the runway. Per HAR §19-12-7, building height limitations within the aviation easement would be limited to a range of 13 to 51 feet dependent on the specific area elevations and distance from the runway.

## Potential Impacts and Mitigation Measures

The proposed KOKO Clinic will be one-story tall and would fall within the range for building height limitations. As identified in Table 1, a FAA Form 7460-1 Notice of Proposed Construction or Alteration would be required for the project.

## **3.14** Noise

Primary noise sources surrounding the project site are related to traffic and adjacent residential and airport activities. Noise primarily comes from the Māmalahoa Highway and the Waimea-Kohala airport. The project site is generally quiet due to the surrounding rural uses for residential and agricultural activities.

The primary noise receptors in the surrounding environment are farm dwellings and residences in DHHL's Pu'ukapu Tract, residences located north of the project site, and the KOKA Charter School. The KOKA Charter School is located closest to the site approximately 0.15 miles away.

## <u>Potential Impacts and Mitigation Measures</u>

Short-term impacts to the ambient noise levels of the surrounding environment are anticipated from construction activities. However, these impacts would be temporary and would occur during the day. Mitigation measures and best management practices (BMPs) to minimize construction noise would include, but not be limited to, using mufflers on diesel and gasoline engines, using properly tuned and balanced machines, etc. A noise permit application would be submitted to DOH, and all construction activities would comply with HAR §11-46 Community Noise Control.

The KOKO Clinic is not anticipated to substantially increase the ambient noise levels within the surrounding environment. Noise anticipated to be generated by the clinic would be related to incoming/outgoing vehicular traffic and the building's mechanical equipment (i.e. air conditioning and ventilation equipment). These noise emissions are not anticipated to be readily perceptible by the nearby KOKA Charter School.



Figure 13: Aviation Easement

Source: Group 70 International

# 3.15 Public Facilities and Services

## 3.15.1 Hospitals, Clinics, and Urgent Care

The North Hawai'i Community Hospital operated by Queen's Health Systems is the only hospital in the Waimea region, and is one of six hospitals on the island of Hawai'i. Within proximity to the project site are two clinics and one urgent care facility; the Queen's Medical Center Primary Care Clinic, Kaiser Permanente Waimea Clinic, and the Waimea Urgent Care. Of the two clinics located within proximity to the project site, the Queen's Medical Center Primary Care Clinic is the only clinic that also offers Native Hawaiian Health services, which includes customized care for patients managing chronic diseases and individual and group therapy.

#### 3.15.2 Police

The COH Police Department's Waimea Station is located approximately 0.7 miles away from the project site on Kamamalu Street. The Waimea Station services the South Kohala District, which is approximately 688 square miles, and is within the Police Department's Area II – West Hawai'i. During FY 2020 – 2021, the South Kohala Patrol Division were assigned a total of 2,491 criminal calls for service, and 5,652 non-criminal calls for service. As four major State highways and numerous County thoroughfares traverse the South Kohala District, the Waimea Station's primary task is traffic enforcement.

## 3.15.3 Fire

The COH Fire Department's Waimea Station is located near the Police Department's Waimea Station on Kamamalu Street, approximately 0.7 miles away from the project site.

#### **3.15.4** Schools

The State of Hawai'i, Department of Education (DOE) operates the State's public school system. The proposed project is within the DOE's Hawai'i District, Honoka'a-Kealakehe-Kohala-Konawaena Complex Area, within the Honoka'a Complex specifically. The DOE's Waimea Elementary School is within proximity to the project site (see Figure 14).

The State Public Charter School Commission is the State's charter school authorizer. The Commission is made up of nine members that are appointed by the State's Board of Education (BOE). The Waimea Middle Public Conversion Charter School and the KOKA Charter School are within proximity to the project site (see Figure 14).

Two independent schools are also located near the project site. Parker School is a non-profit, independent, co-educational day school that serves grades kindergarten to 12<sup>th</sup> grade. The Waimea Country School is an independent elementary day school that serves children ages four to twelve.

#### 3.15.5 Parks and Recreation

The Waimea Civic Center Park, located near the South Kohala District Court on Māmalahoa Highway, is the closest park/recreational facility to the project site. Other parks and recreational facilities within proximity to the project site are the Waimea District Park, Waimea Park and Community Center, Ulu La'au (Waimea Nature Park), Anuenue Playground, and the Waimea Skatepark.

## <u>Potential Impacts and Mitigation Measures</u>

The proposed project is not anticipated to adversely impact public facilities and services in the area. The proposed KOKO Clinic is anticipated to have a positive impact for residents in the Waimea district as well as Pu'ukapu Homestead beneficiaries as it would provide an increase in medical service capacity. This benefit would result in added convenience and access to medical services for the beneficiaries of Hawaiian Home Lands and Waimea residents.

## 3.16 Potential Cumulative and Secondary Impacts

Cumulative impacts are impacts which result from the incremental effects of an activity when added to other past, present, and reasonably foreseeable future actions, regardless of what agency or person undertake such actions. The proposed KOKO Clinic is not anticipated to generate substantial cumulative impacts. The KOKO Clinic is proposed to be located in the planned development of the WNR-CDI; the land uses and potential impacts of the WNR-CDI have been assessed in the 2015 FEA, which declared a FONSI determination. In addition, the

proposed KOKO Clinic is not substantially greater in size or operations in comparison to the clinic's existing operations.

The KOKO Clinic's relocation and upgrade in facility size and capacity would better prepare the Waimea region for anticipated growth as more homestead lots are awarded. The KOKO Clinic envisions serving up to 800 patients in anticipation of the future growth from awarded homestead lots.

In addition, the proposed project would support Hawaiian Homes Commission Act beneficiaries by creating jobs for current and future beneficiaries, as well as providing additional capacity to provide medical services to the larger region of North Hawai'i. The relocation and upgrade of the KOKO Clinic would also allow for the expansion of the clinic's Ulu Laukahi Program, which was created to help Native Hawaiians achieve a longer and healthier lifestyle by providing the necessary tools and lifestyle changes needed to mitigate the factors that contribute to the need for emergency interventions. Expanding the Ulu Laukahi Program would allow the clinic to provide more services and treat more Native Hawaiians in the North Hawai'i region.

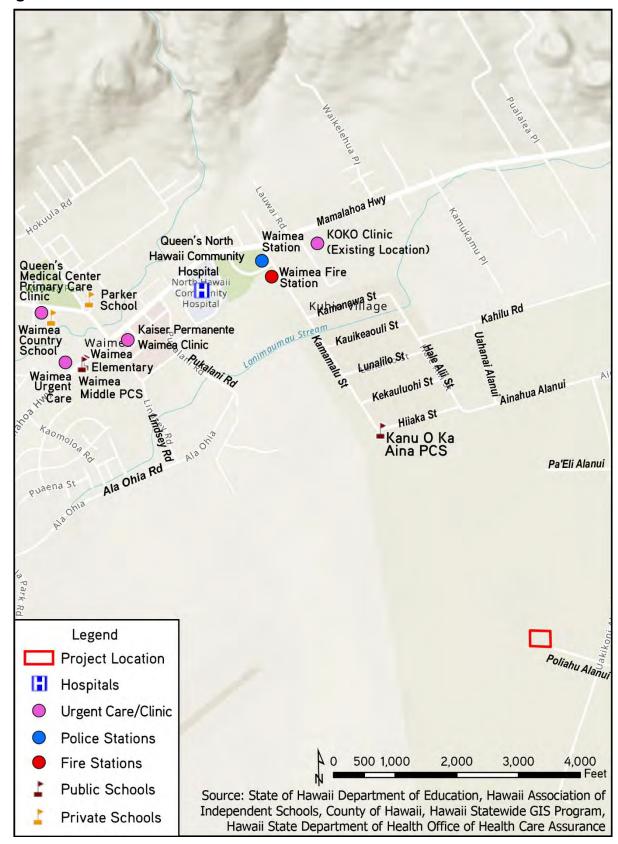



Figure 14: Public Facilities and Services

# 4.0 RELATIONSHIP TO PLANS AND POLICIES

## 4.1 Federal Aviation Administration

The Federal Aviation Administration (FAA) administers standards and criteria to ensure safe, efficient use and preservation of the navigable airspace surrounding airports. Any construction or alteration to a structure that is more than 200-ft above ground level, or "exceeds an imaginary surface extending outward and upward" at a slope of "50 to 1 for a horizontal distance of 10,000-ft from the nearest point of the nearest runway" of an airport, requires the filing and submittal of FAA Form 7460-1 Notice of Proposed Construction or Alteration. The project site is located approximately 4,500 ft. northeast of the Waimea-Kohala Airport runway. To ensure compliance with the FAA rules and regulations, the FAA Form 7460-1 will be filed for FAA review and determination.

In addition, the FAA has published criteria under 14 Code of Federal Regulations (CFR), Part 150 to assess land use compatibility in and around the vicinity of airports. The Waimea-Kohala Airport (MUE) Noise Compatibility Program (NCP), describes current and future noncompatible land uses based upon the parameters established in Federal Aviation Regulation (FAR) Part 150, Airport Noise Compatibility Planning (November 1998, rev. December 1999, August 2000). The NCP recommends a total of seven measures to prevent the introduction of additional noncompatible land uses and to reduce the effect of the noise generated at the airport. The following measures were identified to be applicable to the proposed project:

## 1. Comprehensive Planning and Zoning (Page 7-2, Sec. 7.2.2)

<u>Description of element:</u> Use comprehensive planning and zoning to maintain compatible land use. Prohibit zoning changes which will change a compatible land use into an incompatible land use. However, if the community determines that there is a need for new housing in an area exposed to noise levels of 60 to 65 Yearly Day-Night Average Sound Levels (DNL), then the County of Hawai'i, and the State of Hawai'i-Land Use Commission, should require an avigation easement to State Department of Transportation, Airports Division (DOTA) and acoustical treatment to maintain an interior value of 45 DNL. DOTA should request that new residential developments have lesser densities (i.e. larger size lots), since visual flight rules (VFR) aircraft flight tracks can vary greatly and overflights may be more common. In addition, the DOTA should pursue an "Airport zone" within the airport environs to address height restrictions, noise and other DOTA and FAA concerns.

<u>FAA Action: APPROVED:</u> This measure is considered to be within the authority of the State of Hawai'i and the County of Hawai'i. FAA prefers that no noncompatible development take place within the noise exposure map contours. Remedial noise mitigation for new construction that takes place after October 1, 1998, would not be approved under Part 150.

## 2. Avigation Easements (Page 7-3, Sec. 7.2.2)

<u>Description of element:</u> Acquiring avigation easements from landowners that presently have compatible land but may become incompatible due to future development. The acquisition of avigation easements will maintain the operational characteristics of the Airport. The key areas are those lands directly under the aircraft flight tracks.

<u>FAA Action: APPROVED.</u> This approval does not constitute a commitment by the FAA to provide federal financial assistance for this project. FAA prefers that no noncompatible development take place within the noise exposure map contours.

**Discussion:** The proposed project may fall within the 55 DNL Contour, as depicted in the 2015 FEA-FONSI for the WNR-CDI (see Figure 13). Per the NCP, the Comprehensive Planning and Zoning noise mitigation element is within the authority of the State and County. The proposed project will ensure compliance with State and County noise regulations that may apply to this project.

## 4.2 State of Hawai'i Policies

#### 4.2.1 Hawai'i State Plan

The Hawai'i State Plan was set forth by the Hawai'i State Planning Act, which was signed into law in 1978 and codified under HRS Chapter 226. The plan is a long-range comprehensive plan that identifies goals, objectives, policies, and priorities for the State. The plan is divided into three parts, in which the first part identifies the overall theme, goals, objectives, and policies of the State. The listing in the following table identifies the objectives and policies that are met by the proposed project.

**Table 4:** Hawai'i State Planning Act Objectives and Policies

| HRS Chapter 226 Hawai'i State Planning Act                                                                | Applicability to |
|-----------------------------------------------------------------------------------------------------------|------------------|
| Part I. Overall Theme, Goals, Objectives and Policies                                                     | Project          |
| §226-5 Objective and policies for population                                                              | Applicable       |
| §226-6 Objectives and policies for the economyin general                                                  | Not applicable   |
| §226-7 Objectives and policies for the economy agriculture                                                | Not applicable   |
| §226-8 Objective and policies for the economyvisitor industry                                             | Not applicable   |
| §226-9 Objective and policies for the economyfederal expenditures                                         | Not applicable   |
| §226-10 Objective and policies for the economypotential growth and innovative activities                  | Not applicable   |
| §226-10.5 Objectives and policies for the economyinformation industry                                     | Not applicable   |
| §226-11 Objectives and policies for the physical environmentland-based, shoreline, and marine resources   | Not applicable   |
| §226-12 Objective and policies for the physical environmentscenic, natural beauty, and historic resources | Not applicable   |
| §226-13 Objectives and policies for the physical environmentland, air, and water quality                  | Not applicable   |

| HRS Chapter 226 Hawai'i State Planning Act                                     | Applicability to |
|--------------------------------------------------------------------------------|------------------|
| Part I. Overall Theme, Goals, Objectives and Policies                          | Project          |
| §226-14 Objective and policies for facility systemsin general                  | Not applicable   |
| §226-15 Objectives and policies for facility systemssolid and liquid wastes    | Not applicable   |
| §226-16 Objective and policies for facility systemswater                       | Applicable       |
| §226-17 Objectives and policies for facility systemstransportation             | Not applicable   |
| §226-18 Objectives and policies for facility systemsenergy                     | Not applicable   |
| §226-18.5 Objectives and policies for facility systemstelecommunications       | Not applicable   |
| §226-19 Objectives and policies for socio-cultural advancementhousing          | Not applicable   |
| §226-20 Objectives and policies for socio-cultural advancementhealth           | Applicable       |
| §226-21 Objective and policies for socio-cultural advancementeducation         | Not applicable   |
| §226-22 Objective and policies for socio-cultural advancementsocial services   | Not applicable   |
| §226-23 Objective and policies for socio-cultural advancementleisure           | Not applicable   |
| §226-24 Objective and policies for socio-cultural advancementindividual rights | Not applicable   |
| and personal well-being                                                        |                  |
| §226-25 Objective and policies for socio-cultural advancementculture           | Applicable       |
| §226-26 Objective and policies for socio-cultural advancementpublic safety     | Not applicable   |
| §226-27 Objective and policies for socio-cultural advancementgovernment        | Not applicable   |

§**226-5 Objective and policies for population.** (a) It shall be the objective in planning for the State's population to guide population growth to be consistent with the achievement of physical, economic, and social objectives contained in this chapter.

- (b) To achieve the population objective, it shall be the policy of this State to:
  - (1) Manage population growth statewide in a manner that provides increased opportunities for Hawaii's people to pursue their physical, social, and economic aspirations while recognizing the unique needs of each county.
  - (2) Encourage an increase in economic activities and employment opportunities on the neighbor islands consistent with community needs and desires.
  - (3) Promote increased opportunities for Hawaii's people to pursue their socio-economic aspirations throughout the islands.
  - (4) Encourage research activities and public awareness programs to foster an understanding of Hawaii's limited capacity to accommodate population needs and to address concerns resulting from an increase in Hawaii's population.
  - (5) Encourage federal actions and coordination among major governmental agencies to promote a more balanced distribution of immigrants among the states, provided that such actions do not prevent the reunion of immediate family members.
  - (6) Pursue an increase in federal assistance for states with a greater proportion of foreign immigrants relative to their state's population.

(7) Plan the development and availability of land and water resources in a coordinated manner so as to provide for the desired levels of growth in each geographic area. [L 1978, c 100, pt of §2; am L 1986, c 276, §4; am L 1988, c 70, §3; am L 1993, c 213, §3]

**Discussion:** The proposed project supports the State's objectives and policies in planning for population growth, as one of the purposes for the project is to support the anticipated growth of the Pu'ukapu Homestead. The KOKO Clinic's relocation and upgrade in facility size and capacity would better prepare the Waimea region for anticipated growth as more homestead lots are awarded. The KOKO Clinic envisions serving up to 800 patients in anticipation of the future growth from awarded homestead lots.

The proposed project would support Hawaiian Homes Commission Act beneficiaries by creating jobs for current and future beneficiaries, as well as providing additional capacity to provide medical services to the larger region of North Hawai'i.

**§226-20 Objectives and policies for socio-cultural advancement--health.** (a) Planning for the State's socio-cultural advancement with regard to health shall be directed towards achievement of the following objectives:

- (1) Fulfillment of basic individual health needs of the general public.
- (2) Maintenance of sanitary and environmentally healthful conditions in Hawaii's communities.
- (3) Elimination of health disparities by identifying and addressing social determinants of health.
- (b) To achieve the health objectives, it shall be the policy of this State to:
  - (1) Provide adequate and accessible services and facilities for prevention and treatment of physical and mental health problems, including substance abuse.
  - (2) Encourage improved cooperation among public and private sectors in the provision of health care to accommodate the total health needs of individuals throughout the State.
  - (3) Encourage public and private efforts to develop and promote statewide and local strategies to reduce health care and related insurance costs.
  - (4) Foster an awareness of the need for personal health maintenance and preventive health care through education and other measures.
  - (5) Provide programs, services, and activities that ensure environmentally healthful and sanitary conditions.
  - (6) Improve the State's capabilities in preventing contamination by pesticides and other potentially hazardous substances through increased coordination, education, monitoring, and enforcement.

(7) Prioritize programs, services, interventions, and activities that address identified social determinants of health to improve native Hawaiian health and well-being consistent with the United States Congress' declaration of policy as codified in title 42 United States Code section 11702, and to reduce health disparities of disproportionately affected demographics, including native Hawaiians, other Pacific Islanders, and Filipinos. The prioritization of affected demographic groups other than native Hawaiians may be reviewed every ten years and revised based on the best available epidemiological and public health data. [L 1978, c 100, pt of §2; am L 1986, c 276, §19; am L 2014, c 155, §2]

**Discussion:** The proposed project supports the State's objectives and policies in planning for the socio-cultural advancement with regard to health. The KOKO Clinic provides broad services such as primary care services (including pediatric services), women's health services, individual, couple, and family psychotherapy services, acupuncture/lomilomi massage, and psychoeducation trainings for community and organizations. In addition, the clinic created the Ulu Laukahi Program, which focuses on providing prevention/intervention services to treat chronic diseases such as diabetes, hypertension, obesity, and mental health concerns (i.e. depression and anxiety). The program is a free, year-long health program for Native Hawaiians that consists of quarterly health screenings, individualized health plans, nutrition and fitness support, and connection to community support and health coaches. The goal of this program is to help Native Hawaiians achieve a longer and healthier lifestyle by providing the necessary tools and lifestyle changes needed to mitigate the factors that contribute to the need for emergency interventions. The relocation and upgrade in facility size and capacity would better prepare the Waimea region for anticipated growth as more homestead lots are awarded, and would also allow the clinic to expand their Ulu Laukahi Program to provide more services and treat more Native Hawaiians.

**§226-25 Objective and policies for socio-cultural advancement--culture.** (a) Planning for the State's socio-cultural advancement with regard to culture shall be directed toward the achievement of the objective of enhancement of cultural identities, traditions, values, customs, and arts of Hawaii's people.

- (b) To achieve the culture objective, it shall be the policy of this State to:
  - (1) Foster increased knowledge and understanding of Hawaii's ethnic and cultural heritages and the history of Hawaii.
  - (2) Support activities and conditions that promote cultural values, customs, and arts that enrich the lifestyles of Hawaii's people and which are sensitive and responsive to family and community needs.
  - (3) Encourage increased awareness of the effects of proposed public and private actions on the integrity and quality of cultural and community lifestyles in Hawaii.

(4) Encourage the essence of the aloha spirit in people's daily activities to promote harmonious relationships among Hawaii's people and visitors. [L 1978, c 100, pt of §2; am L 1986, c 276, §24]

**Discussion:** The proposed project supports the State's objectives and policies in planning for socio-cultural advancement with regard to culture. The KOKO Clinic's mission and value statement is rooted in fostering Hawaiian cultural, spiritual, and medical practices to treat patients.

The KOKO Clinic Mission Statement reads as follows:

"KOKO provides cultural, spiritual, medical, and psychological services to all residents of North Hawai'i with a special emphasis for the Kānaka Maoli. This mission is our kuleana.

KOKO provides culturally-informed direct services, actively collaborates with hawaiian agencies and associations in order to meet their members' needs, and is led by the community it serves."

The KOKO Clinic Values Statement reads as follows:

- ha'aha'a (humility) we will endeavor to be humble servants of the community we serve.
- **ho'omana** (to empower) we will respect, honor, and give determination to the Kanaka Maoli host culture so that their aspirations for optimal wellness are realized.
- **lāhui** (united people) we will build and honor local capacity by selecting staff & strategic partners from those who consider this 'aina (land/place) their home, who are culturally-fluent, and who have a deep resonance with the vision and mission of KOKO.
- 'ohana (family) we will conduct our organizational life as a family infused with Kanaka Maoli values and perspectives and will serve the 'ohana of North Hawai'i.

#### 4.2.2 State Land Use Classification

The Hawai'i State Land Use Law, HRS Chapter 205, State Land Use Commission (SLUC), was adopted in 1961. The purpose of the law is to establish a framework of land use management and regulation in which all lands in the State are classified into one of four state land use districts: Urban, Rural, Agricultural or Conservation.

The proposed project is located in the State Land Use Agricultural District (see Figure 15). As the project is within DHHL lands, it is not subject to statutes controlling land use, per Section 206 of the Hawai'i Homes Commission Act, which stipulates "The powers and duties of the governor and the board of land and natural resources, in respect to lands of the State, shall not extend to lands having the status of Hawaiian home lands, except as specifically provided in this title." Therefore, the Hawaiian Homes Commission is the authority that determines its land use designations and governs the allowable use and activities within the parcel.

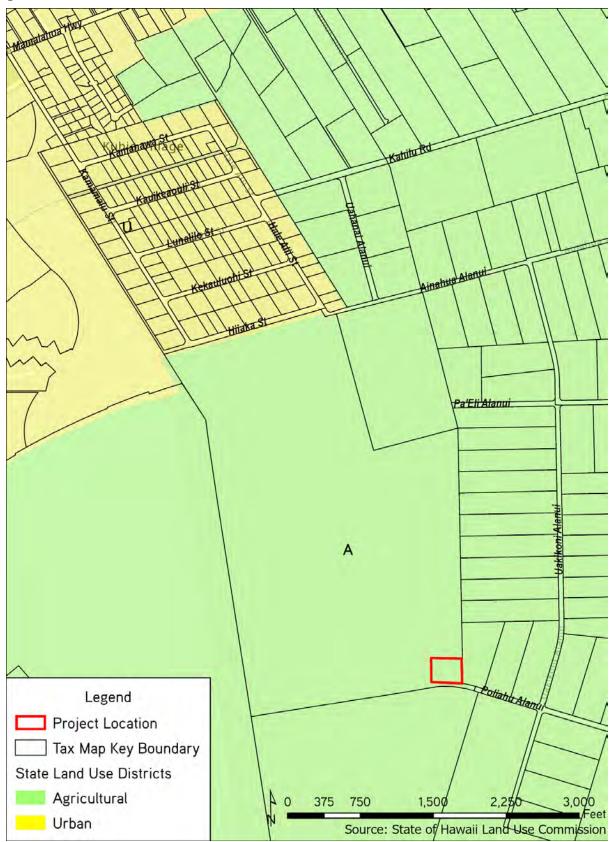



Figure 15: State Land Use Districts

## 4.2.3 Coastal Zone Management Program, HRS Chapter 205A

The State Coastal Zone Management (CZM) Program, as formalized in HRS Chapter 205A, establishes objectives and policies to "provide for the effective management, beneficial use, protection, and development of the coastal zone." The following are the objectives and policies of the CZM, and the relationship of the proposed project to the applicable considerations:

- 1) Recreational Resources Objective: Provide coastal recreational opportunities accessible to the public.
  - a) Improve coordination and funding of coastal recreational planning and management; and
  - b) Provide adequate, accessible, and diverse recreational opportunities in the coastal zone management area by:
    - i) Protecting coastal resources uniquely suited for recreational activities that cannot be provided in other areas;
    - ii) Requiring replacement of coastal resources having significant recreational value including, but not limited to, surfing sites, fishponds, and sand beaches, when such resources will be unavoidably damaged by development; or requiring reasonable monetary compensation to the State for recreation when replacement is not feasible or desirable;
    - iii) Providing and managing adequate public access, consistent with conservation of natural resources, to and along shorelines with recreational value;
    - iv) Providing an adequate supply of shoreline parks and other recreational facilities suitable for public recreation;
    - v) Ensuring public recreational uses of county, state, and federally owned or controlled shoreline lands and waters having recreational value consistent with public safety standards and conservation of natural resources;
    - vi) Adopting water quality standards and regulating point and nonpoint sources of pollution to protect, and where feasible, restore the recreational value of coastal waters;
    - vii) Developing new shoreline recreational opportunities, where appropriate, such as artificial lagoons, artificial beaches, and artificial reefs for surfing and fishing; and
    - viii) Encouraging reasonable dedication of shoreline areas with recreational value for public use as part of discretionary approvals or permits by the land use commission, board of land and natural resources, and county authorities; and crediting such dedication against the requirements of section 46-6.

**Discussion:** The proposed project site is not located near coastal areas, as the nearest coastline is approximately 10 miles away. Coastal recreational resources are not anticipated to be impacted by the project.

- 2) Historic Resources Objective: Protect, preserve, and, where desirable, restore those natural and manmade historic and prehistoric resources in the coastal zone management area that are significant in Hawaiian and American history and culture.
  - a) Identify and analyze significant archaeological resources
  - b) Maximize information retention through preservation of remains and artifacts or salvage operations; and
  - c) Support state goals for protection, restoration, interpretation, and display of historic resources

**Discussion:** Based on the findings of the AIS conducted for the 2015 FEA-FONSI for the WNR-CDI, the proposed KOKO Clinic is not anticipated to adversely impact any known or found archaeological sites. Personnel involved in the project would be informed of the possibility of inadvertent cultural finds and would be made aware of the appropriate notification measures to follow. If any previously unidentified sites or remains are encountered during site work and construction, work in the immediate area shall cease. An archaeologist from SHPD shall be notified and work in the area would be suspended until further recommendations are made.

- 3) Scenic and Open Space Resources Objective: Protect, preserve, and, where desirable, restore or improve the quality of coastal scenic and open space resources.
  - a) Identify valued scenic resources in the coastal zone management area;
  - b) Ensure that new developments are compatible with their visual environment by designing and locating such developments to minimize the alteration of natural landforms and existing public views to and along the shoreline;
  - c) Preserve, maintain, and, where desirable, improve and restore shoreline open space and scenic resources; and
  - d) Encourage those developments that are not coastal dependent to locate in inland areas.

**Discussion:** The project is not proposed to be located along the coastline and would not impact any shoreline open space and/or scenic resources. The project's inland location would support the CZM Program in preserving the shoreline open space and scenic resources.

- 4) Coastal Ecosystems Objective: Protect valuable coastal ecosystems, including reefs, from disruption and minimize adverse impacts on all coastal ecosystems.
  - a) Exercise an overall conservation ethic, and practice stewardship in the protection, use, and development of marine and coastal resources;
  - b) Improve the technical basis for natural resource management;

- c) Preserve valuable coastal ecosystems, including reefs, of significant biological or economic importance;
- d) Minimize disruption or degradation of coastal water ecosystems by effective regulation of stream diversions, channelization, and similar land and water uses, recognizing competing water needs; and
- e) Promote water quantity and quality planning and management practices that reflect the tolerance of fresh water and marine ecosystems and maintain and enhance water quality through the development and implementation of point and nonpoint source water pollution control measures.

**Discussion:** The proposed project will not impact coastal ecosystems as it is not located along a coastal area.

- 5) Economic Uses Objective: Provide public or private facilities and improvements important to the State's economy in suitable locations.
  - a) Concentrate coastal dependent development in appropriate areas;
  - b) Ensure that coastal dependent development such as harbors and ports, and coastal related development such as visitor industry facilities and energy generating facilities, are located, designed, and constructed to minimize adverse social, visual, and environmental impacts in the coastal zone management area; and
  - c) Direct the location and expansion of coastal dependent developments to areas presently designated and used for such developments and permit reasonable long-term growth at such areas, and permit coastal dependent development outside of presently designated areas when:
    - i) Use of presently designated locations is not feasible;
    - ii) Adverse environmental effects are minimized; and
    - iii) The development is important to the State's economy.

**Discussion:** The proposed project will not be located near coastal areas and would not affect coastal development areas of importance to the State's economy or the County of Hawaii.

- 6) Coastal Hazards Objective: Reduce hazard to life and property from tsunami, storm waves, stream flooding, erosion, subsidence, and pollution.
  - a) Develop and communicate adequate information about storm wave, tsunami, flood, erosion, subsidence, and point and nonpoint source pollution hazards;
  - b) Control development in areas subject to storm wave, tsunami, flood, erosion, hurricane, wind, subsidence, and point and nonpoint source pollution hazards;
  - c) Ensure that developments comply with requirements of the Federal Flood Insurance Program; and
  - d) Prevent coastal flooding from inland projects.

**Discussion:** The proposed project's inland location would support this objective, as it would be located away from coastal areas that are vulnerable to tsunamis, storm waves, stream flooding, erosion, subsidence, and pollution. The KOKO Clinic would be located approximately 10 miles away from the nearest shoreline, thus it would be outside the tsunami inundation zone and the 3.2 ft sea level rise exposure area. In addition, the project location is within FEMA's Flood Zone X, which is outside of the 1-percent annual chance floodplain.

- 7) Managing Development Objective: Improve the development review process, communication, and public participation in the management of coastal resources and hazards.
  - a) Use, implement, and enforce existing law effectively to the maximum extent possible in managing present and future coastal zone development;
  - b) Facilitate timely processing of applications for development permits and resolve overlapping or conflicting permit requirements; and
  - c) Communicate the potential short and long-term impacts of proposed significant coastal developments early in their life cycle and in terms understandable to the public to facilitate public participation in the planning and review process.

**Discussion:** The proposed project would conform to all applicable State regulations; a list of potential permits and approvals required for the project is provided in Section 2.4. In addition, the project is not located within the coastal zone and would not impact any coastal resources.

- 8) Public Participation Objective: Stimulate public awareness, education, and participation in coastal management.
  - a) Promote public involvement in coastal zone management processes;
  - b) Disseminate information on coastal management issues by means of educational materials, published reports, staff contact, and public workshops for persons and organizations concerned with coastal issues, developments, and government activities; and
  - c) Organize workshops, policy dialogues, and site-specific mediations to respond to coastal issues and conflicts.

**Discussion:** The provision for public participation will be provided through the environmental review process as required in HRS, Chapter 343. Agencies and stakeholders consulted during the EA process for the 2015 FEA-FONSI WNR-CDI were contacted during the pre-assessment consultation for this Draft EA (see Section 7.0 and Appendix A).

- 9) Beach Protection Objective: Protect beaches for public use and recreation.
  - a) Locate new structures inland from the shoreline setback to conserve open space, minimize interference with natural shoreline processes, and minimize loss of improvements due to erosion;
  - b) Prohibit construction of private erosion-protection structures seaward of the shoreline, except when they result in improved aesthetic and engineering solutions to

erosion at the sites and do not interfere with existing recreational and waterline activities; and

c) Minimize the construction of public erosion-protection structures seaward of the shoreline.

**Discussion:** The proposed project would not affect any beaches, as the project site is located approximately 10 miles away from the nearest shoreline.

- 10) Marine Resources Objective: Promote the protection, use, and development of marine and coastal resources to assure their sustainability.
  - a) Ensure that the use and development of marine and coastal resources are ecologically and environmentally sound and economically beneficial;
  - b) Coordinate the management of marine and coastal resources and activities to improve effectiveness and efficiency;
  - c) Assert and articulate the interests of the State as a partner with federal agencies in the sound management of ocean resources within the United States exclusive economic zone;
  - d) Promote research, study, and understanding of ocean processes, marine life, and other ocean resources in order to acquire and inventory information necessary to understand how ocean development activities relate to and impact upon ocean and coastal resources; and
  - e) Encourage research and development of new, innovative technologies for exploring, using, or protecting marine and coastal resources.

**Discussion:** The proposed project does not involve the use or development of marine and coastal resources.

#### 4.2.4 State Historic Preservation

The State Historic Preservation Program, codified by HRS Chapter 6E, is administered by the DLNR SHPD. The program and DLNR SHPD work to provide leadership in preserving, restoring, and maintaining historic and cultural property. Per HRS §6E-08, prior to the commencement of any State agency project that may affect historic property, the agency shall allow the SHPD an opportunity for review of the effect of the proposed project on historic properties, aviation artifacts, or burial sites, especially those listed on the HRHP.

An AIS was prepared for the WNR-CDI during the 2015 FEA-FONSI, which covered the proposed project site. The findings documented in the AIS indicate either no historic properties or a low likelihood that historic properties exist within the proposed KOKO clinic project site. Nonetheless, the project will be reviewed by SHPD in accordance with HRS Chapter 6E. The AIS will be provided as supporting documentation for this review.

# 4.3 County of Hawai'i Plans and Polices

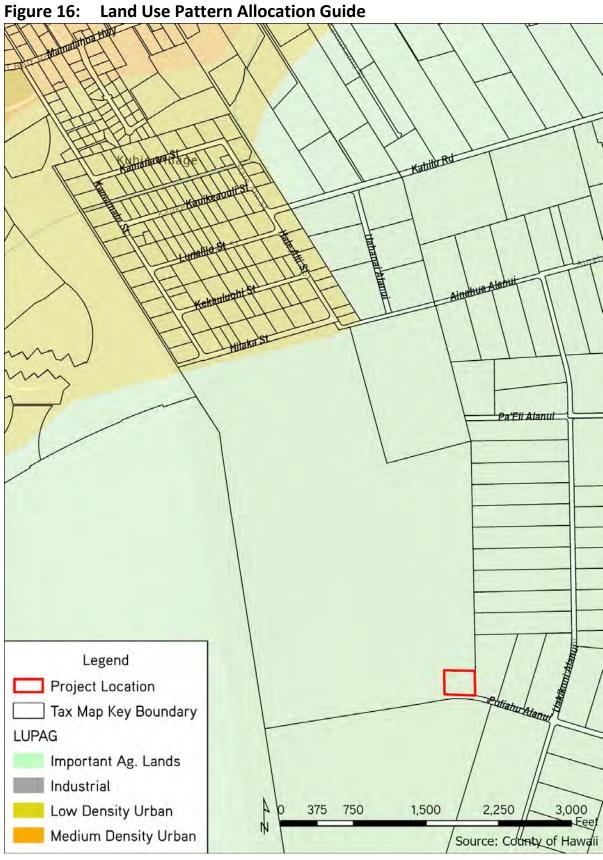
## 4.3.1 County of Hawai'i General Plan

The COH General Plan was adopted by Ordinance in 1989 and most recently amended in 2012. The County is currently engaged in a comprehensive review of the draft General Plan 2040. The General Plan for the COH sets forth long-range objectives for the general welfare and prosperity of the people of Hawai'i Island, and broad policies to attain those objectives. The General Plan provides policies and courses of action intended to guide and coordinate growth patterns through the designation and preservation of lands for specified uses.

The COH General Plan includes a Land Use Pattern Allocation Guide (LUPAG), which indicates the general location of various land uses in relation to each other. The LUPAG was created based on projections of future population based on economic and employment evaluations, existing land uses and zoned areas, determination of community facility needs, and transportation demands for the island of Hawai'i. As shown in Figure 16, the project site is designated as Important Agricultural Land according to the LUPAG.

Per the General Plan, Important Agricultural Lands were designated as those with better potential for sustained high agricultural yields because of soil type, climate, topography, or other factors.

The proposed project advocates the following goals and policies of the COH General Plan:


## **Public Facilities**

<u>Goal:</u> Encourage the provision of public facilities that effectively service community and visitor needs and seek ways of improving public service through better and more functional facilities in keeping with the environmental and aesthetic concerns of the community.

## <u>Policies for Public Facilities - Health and Sanitation:</u>

- a) Encourage the development of new health care facilities or the improvement of existing health care facilities to serve the needs of Hamakua, North and South Kohala, and North and South Kona.
- d) Encourage the establishment or expansion of community health centers and rural health clinics.

**Discussion:** The proposed project would support the COH General Plan's goal and policies for public facilities by providing additional capacity for medical services to serve the needs of the Pu'ukapu Homestead beneficiaries, the South Kohala district, and the North Hawai'i region. In addition, the KOKO Clinic is the first independent (not owned by a hospital, nursing home, or home health agency) rural health clinic in the State. The project proposes to expand the KOKO Clinic's current operations and capacity and its continued functions as a rural health clinic.



## **Land Use**

<u>Goal:</u> Designate and allocate land uses in appropriate proportions and mix and in keeping with the social, cultural, and physical environments of the County. (b) Protect and encourage the intensive and extensive utilization of the County's important agricultural lands. (c) Protect and preserve forest, water, natural and scientific reserves and open areas.

#### Policies:

- (c) Allocate appropriate requested zoning in accordance with the existing or projected needs of neighborhood, community, region and County.
- (f) Encourage the development and maintenance of communities meeting the needs of its residents in balance with the physical and social environment
- (j) Encourage urban development within existing zoned areas already served by basic infrastructure, or close to such areas, instead of scattered development.

**Discussion:** The project would be relocated to the planned development for the WNR-CDI, which is proposed to be a mixed-use development. This would support the COH General Plan's goal and policies to serve the community's needs, while being cognizant of the balance between the physical and social environment. The WNR-CDI development, in addition to the KOKO Clinic, would address a wide range of agricultural, economic, recreational, health and well-being, and cultural needs.

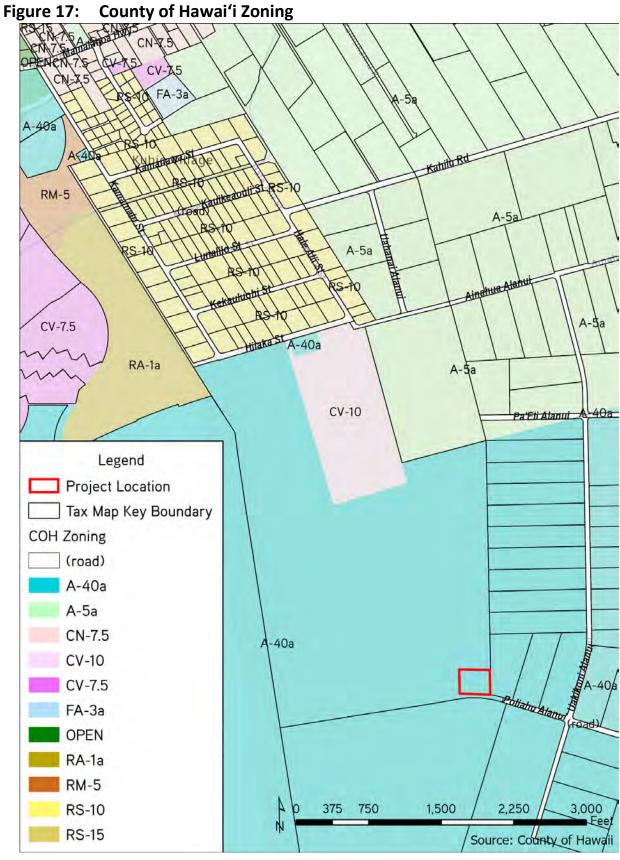
## 4.3.2 South Kohala Community Development Plan

The South Kohala Community Development Plan (SK-CDP) was adopted in 2008 and is one of seven community development plans for the COH. The SK-CDP encompasses the towns of Kawaihae, Puakō, Waikoloa, and Waimea. The plan was intended to identify the community's priority issues and develop appropriate policies and actions to address the issues and guide future land use for the district.

Within the SK-CDP, five policies were identified for the Waimea Community, which are based on input received from community meetings, focus group meetings, the South Kohala Steering Committee meetings, and planning studies conducted during that time. The proposed project supports the following policies for the Waimea Community:

1. **PRESERVATION OF WAIMEA'S SENSE OF PLACE** shall be the principal, overarching land use policy for Waimea. This policy shall be implemented through measures for responsible growth, and through the preservation and protection of important lands and resources, including important cultural and historic sites and structures, important agricultural lands, and visually and environmentally important open space areas in Waimea Town.

**Discussion:** The proposed project supports the Waimea Community's policy to preserve Waimea's sense of place. The project would not impact any known cultural and/or historic sites that were found during the AIS for the 2015 FEA-FONSI for the WNR-CDI. The KOKO Clinic's expansion exhibits responsible growth as the clinic is preparing for the future growth in population as more homestead lots are awarded within Waimea.


3. **ENVIRONMENTAL STEWARDSHIP** shall be an overarching land use policy for Waimea. Land use decisions shall be based on wise management practices for forests, watersheds, natural drainage ways and streams, native ecosystems, and important agricultural lands.

**Discussion:** The proposed project supports the Waimea Community's policy of environmental stewardship as the project would not impact any forests, watersheds, natural drainage ways and streams, native ecosystems, and/or important agricultural lands that are planned for future agricultural uses.

## 4.3.3 COH Comprehensive Zoning Ordinance

The COH's Zoning Code is codified under Hawai'i County Code, Chapter 25. The Zoning Code defines the permitted land uses within the State Land Use Urban and Agricultural Districts and provides the development standards and limitations for each zone. The proposed project is within the A-40a zone (see Figure 17), which is an agricultural zone that requires a minimum building site area of 40 acres. The project would be developed within a 2-acre portion of the TMK parcel lot, which is 191.71 acres in total.

In 2002, a Memorandum of Agreement (MOA) between DHHL and the COH was established to identify the respective roles, responsibilities, and obligations of the COH and DHHL relating to land use planning, infrastructure maintenance, enforcement of laws, and collection of taxes and other fees on Hawaiian home lands. As stated in the MOA, the Hawaiian Homes Commission is "responsible for determining land use on Hawaiian home lands. The County may not use its land use and zoning powers to prevent the Hawaiian Homes Commission from controlling the use of Hawaiian home lands." However, both the COH and DHHL share common goals in planning for the uses of Hawaiian home lands and are committed to the integration of planning by each entity. DHHL will work with the COH to ensure that the project is consistent with the surrounding land uses and environment.



# 4.4 Department of Hawaiian Home Lands Plans

#### 4.4.1 DHHL Hawai'i Island Plan

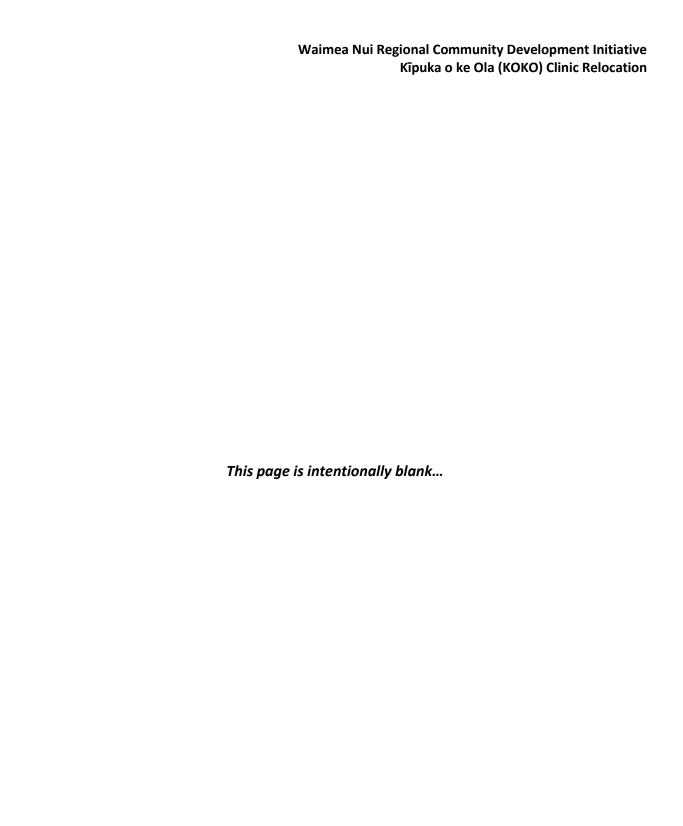
The DHHL's 2002 Hawai'i Island Plan evaluates the DHHL holdings on Hawai'i island and identifies land use plans developed to meet beneficiary needs. Island Plans are part of the second tier in DHHL's planning process that focuses on island-specific land use projections. The proposed project is within the Pu'ukapu Tract, which consists of primarily pastoral and supplemental agriculture DHHL land uses. Under the Hawai'i Island Plan, the proposed project area is designated for General Agricultural under DHHL's land use categories due to the favorable climate, soil, and slope.

The Pu'ukapu lots were identified as a non-priority site for development in the Hawai'i Island Plan. Based on the 2015 FEA-FONSI for the WNR-CDI, the plans for the WNR-CDI were conceptualized and vetted by the Homestead community and was considered a priority project for DHHL. As the KOKO Clinic proposes to be relocated to the WNR-CDI development, the proposed project would follow the development schedule for the WNR-CDI.

The 2015 FEA-FONSI for the WNR-CDI also identified the requirement of a Land Use Designation Amendment approval to DHHL's Hawai'i Island Plan from the Hawaiian Homes Commission after the FONSI determination. To ensure compliance with Department rules and regulations, the project would ensure that a Land Use Designation Amendment has been filed for the WNR-CDI and would seek to complete any other required amendments needed for the project to be included in the proposed WNR-CDI development.

## 4.4.2 DHHL Waimea Nui Regional Plan

DHHL regional plans and area development plans are part of the department's third tier in the departments planning system. These plans identify and address issues and opportunities relative to existing homestead communities and their future development. The proposed project is located within the Waimea Nui Regional Plan area. The Waimea Nui Regional Plan includes a list of proposed projects, including a proposed Community Complex in Pu'ukapu.


The proposed project would support the Waimea Nui Regional Plan through the expansion of the clinic, which would provide health benefits to the Pu'ukapu Homestead community and the general public. In addition, the relocation of the KOKO Clinic to the WNR-CDI planned development aligns with the goals and vision of the initiative to build a vibrant and self-sufficient community, and to move towards the intent of the Hawaiian Homes Commission Act of 1921 to enable "native Hawaiians to return to their lands in order to fully support self-sufficiency for native Hawaiians and the self-determination of native Hawaiians..."

# 5.0 ALTERNATIVE TO THE PROPOSED ACTION

The no action alternative would involve no effort to relocate and expand the KOKO Clinic's facility and operations. Under this alternative, environmental effects resulting from development activities would be averted and project costs would be spared. The existing land would instead be developed as an equestrian center complex as was previously planned.

However, the no action alternative would result in none of the community benefits mentioned that would be provided by the KOKO Clinic's relocation and expansion. The proposed project would service the existing and future homestead population that is anticipated to grow as more lots are awarded in the Pu'ukapu Tract. The KOKO Clinic anticipates that it's expansion could service up to 800 additional patients.

Through the no action alternative, the KOKO Clinic would not be able to expand its Ulu Laukahi Program, which provides free year-long health programs for Native Hawaiians. The no action alternative would not support the needs and goals of the homestead community, and would not provide the support services needed to combat the existing and future shortfalls facing the Native Hawaiian community in Waimea and the island of Hawai'i.



### 6.0 FINDINGS AND DETERMINATION

### 6.1 Determination

The KOKO Clinic Relocation project is determined to not result in a significant impact based on the criteria set forth in HAR §11-200.1-13. This Draft EA includes the discussion of potential environmental effects, which includes the sum of effects on the quality of the environment along with cumulative long-term effects.

As set forth in HAR §11-200.1-13, a prescribed set of 13 Significance Criteria is used to determine the project's impact on the environment. The project's relationship to each criterion is discussed in this section.

### 6.2 Significance Criteria Findings

To determine whether a proposed action may have a significant effect on the environment under HAR §11-200.1, the Proposing Agency needs to consider every phase of the action, the expected primary and secondary consequences, cumulative effect, and the short- and long-term effects. The Proposing Agency's review and evaluation of the proposed action's effect on the environment would result in a determination whether: 1) the action would have a significant effect on the environment, and an Environmental Impact Statement Preparation Notice should be issued, or 2) the action would not have a significant effect warranting a FONSI.

### 1. Irrevocably commit a natural, cultural, or historic resource;

The proposed project would not adversely impact any known or existing natural or cultural resource. The project site is proposed to be on undeveloped agricultural lands with no significant natural resources. As discussed in Section 3.8, no significant archaeological or historical sites are known to exist within the project site. Should any cultural or archaeological resources be found during construction, the SHPD will be immediately notified and the necessary protection measures would be administered.

### 2. Curtail the range of beneficial uses of the environment;

The proposed project would be developed on a 2 acre portion of a 191.71 acre lot that is currently undeveloped and zoned for agricultural use. The proposed project is part of the WNR-CDI master plan which includes agricultural uses such as a community agriculture park, agriculture resource center, post-harvest and co-op facilities, and a farmers market building. The project would not curtail the range of beneficial or agricultural uses of the surrounding environment as it would be part of a larger development that includes agricultural uses. In addition, there is a generous supply of agricultural land within the surrounding environment and the Waimea region.

### 3. Conflict with the State's environmental policies or long-term environmental goals established by law;

The proposed project does not conflict with the State's long-term environmental policies or goals. The project supports the intention of the environmental policies and goals relative to creating opportunities for residents to improve their health, well-being, and quality of life through health care services that are economically viable.

### 4. Have a substantial adverse effect on the economic welfare, social welfare, or cultural practices of the community and State;

The proposed project would not have a substantial adverse effect on the economic welfare, social welfare, or cultural practices of the community and State. Rather, the project would support the economic and social welfare, and cultural practices of the community and Native Hawaiians by providing affordable health services and programs that are rooted in traditional Hawaiian values and culture. In addition, the design, construction work, and expanded operations of the KOKO Clinic would provide employment opportunities for the surrounding community and island of Hawai'i.

### 5. Have a substantial adverse effect on public health;

The proposed project will not have a substantial adverse effect on public health. The project would provide long-term beneficial effects on public health through the expanded capacity of health services and programs that would be provided at the KOKO Clinic. Short-term effects to noise, air, and traffic that could result from construction activities would be limited to the construction phase and would be mitigated through BMPs and adherence to regulatory requirements.

### 6. Involve adverse secondary impacts, such as population changes or effects on public facilities;

The proposed project would not result in substantial secondary or cumulative impacts to the natural or built environment, or to the social and economic community. Future traffic conditions with or without the project would require traffic signal installation and/or improvements to improve the LOS at the intersections of Māmalahoa Highway and Mana Road and Māmalahoa Highway and Kamamalu Street. As proposed in the 2015 FEA-FONSI for the WNR-CDI, the impacts to water and wastewater generation would be mitigated through the use of available surface water that would be treated on-site as potable water. No impacts to the existing aviation easement restrictions are anticipated as the KOKO Clinic would be within the acceptable design parameters.

### 7. Involve a substantial degradation of environmental quality;

The proposed project will not involve substantial degradation of environmental quality. All project activities will be conducted in compliance with Federal, State, and COH rules and regulations governing environmental quality and public health.

### 8. Be individually limited but cumulatively have substantial adverse effect upon the environment or involves a commitment for larger actions;

The proposed project would have a limited and negligible impact on the natural and cultural environment while providing an overall general improvement to the health and well-being of the Pu'ukapu Homestead beneficiaries and Waimea residents. While the project is proposed to be relocated within the WNR-CDI development, the environmental impacts for the WNR-CDI have been previously analyzed and resulted in a FONSI determination. The addition of the KOKO Clinic in the WNR-CDI is not considered to be substantial compared to the overall development planned for the parcel, and would not result in a commitment for larger actions than what has already been assessed in the WNR-CDI FEA-FONSI.

### Have a substantial adverse effect on a rare, threatened, or endangered species, or its habitat;

The proposed project will not have a substantial adverse effect on rare, threatened, or endangered species or its habitat.

### 10. Have a substantial adverse effect on air or water quality or ambient noise levels;

The proposed project will not have a substantial adverse effect on air or water quality or ambient noise levels. Construction activities would result in short-term effects on air, water quality and ambient noise levels but would be mitigated by compliance with COH and DOH rules regulating construction-related activities.

During operations, the impacts on air and water quality would be minimal. Noise levels would be minimally increased with the addition of the new clinic within the project area, however it is not anticipated to be perceptible by the surrounding land uses.

### 11. Have a substantial adverse effect on or be likely to suffer damage by being located in an environmentally sensitive area such as a flood plain, tsunami zone, sea level rise exposure area, beach, erosion-prone area, geologically hazardous land, estuary, fresh water, or coastal waters;

The project site is not located in an environmentally sensitive area such as a flood plain, tsunami zone, sea level rise exposure area, beach, erosion-prone area, geologically hazardous land, estuary, fresh water, or coastal waters.

### 12. Have a substantial adverse effect on scenic vistas and viewplanes, during day or night, identified in county or state plans or studies; or

The project site is currently undeveloped, and the KOKO Clinic relocation would not deter from the overall appearance or aesthetics of the area. The KOKO Clinic is proposed to be one-story tall and would not constrain any view planes to Mauna Kea and the Kohala Mountains.

### 13. Require substantial energy consumption or emit substantial greenhouse gases.

The proposed project would not require substantial energy consumption. The KOKO Clinic's new facility would not require a substantially greater amount of energy consumption compared to the current consumption used for their existing operations.

### 7.0 AGENCIES AND ORGANIZATIONS CONSULTED

### 7.1 Consultation List

The following agencies and organizations listed in Table 5 were included in the pre-assessment consultation notification. The comment letters received by the participants were record and are included in Section 7.2; a copy of the comment letters are provided in Appendix A.

Table 5: Agency Consultation List

| Distribution                                                                                             | Pre-Assessment<br>Consultation<br>Recipient | Pre-Assessment<br>Comments<br>Received |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------|
| FEDERAL AGENCIES                                                                                         |                                             |                                        |
| U.S. Fish and Wildlife Service                                                                           | х                                           | х                                      |
| U.S. Department of Agriculture, Natural Resources Conservation Service (NRCS)                            | х                                           |                                        |
| U.S. Department of Agriculture, Hawai'i County Farm Service Agency                                       | х                                           |                                        |
| U.S. Department of Agriculture, Rural Development                                                        | х                                           | х                                      |
| U.S. Department of Transportation, Federal Aviation<br>Administration, Flight Standards District Offices | х                                           |                                        |
| U.S. Environmental Protection Agency                                                                     | х                                           |                                        |
| U.S. Army Corps of Engineers, Regulatory Office                                                          | х                                           |                                        |
| U.S. Geological Survey, Pacific Island Ecosystems<br>Research Center                                     | х                                           |                                        |

| Distribution                                                                                              | Pre-Assessment<br>Consultation<br>Recipient | Pre-Assessment<br>Comments<br>Received |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------|
| STATE OF HAWAI'I AGENCIES                                                                                 |                                             |                                        |
| State of Hawai'i, Department of Land and Natural<br>Resources, Commission on Water Resource<br>Management | Х                                           | Х                                      |
| State of Hawai'i, Department of Land and Natural<br>Resources, Division of Forestry and Wildlife          | х                                           | х                                      |
| State of Hawai'i, Department of Land and Natural<br>Resources, Division of Aquatic Resources              | х                                           |                                        |
| State of Hawai'i, Department of Land and Natural<br>Resources, Engineering Division                       | x                                           | х                                      |
| State of Hawai'i, Department of Land and Natural Resources, Land Division                                 | х                                           | х                                      |
| State of Hawai'i, Department of Land and Natural Resources, State Historic Preservation Division          | х                                           |                                        |
| State of Hawai'i, Department of Business, Economic Development & Tourism                                  | x                                           |                                        |
| State of Hawai'i, Department of Health, Environmental<br>Health Services Division                         | х                                           |                                        |
| State of Hawai'i, Department of Health, Indoor and Radiological Health Branch                             | х                                           | х                                      |
| State of Hawai'i, Department of Health, Clean Air<br>Branch                                               | х                                           |                                        |

| Distribution                                                                         | Pre-Assessment<br>Consultation<br>Recipient | Pre-Assessment<br>Comments<br>Received |
|--------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------|
| State of Hawai'i, Department of Health, Clean Water<br>Branch                        | х                                           |                                        |
| State of Hawai'i, Department of Health, Wastewater<br>Branch                         | х                                           |                                        |
| State of Hawai'i, Office of Planning and Sustainable Development                     | х                                           |                                        |
| State of Hawaii, Department of Education                                             | х                                           | х                                      |
| State of Hawai'i, Department of Transportation                                       | х                                           |                                        |
| State of Hawai'i, Department of Transportation, Airports Division                    | х                                           |                                        |
| State of Hawai'i, Department of Accounting and General Services                      | х                                           | х                                      |
| Hawai'i State Library, Hawai'i Documents Center                                      | х                                           |                                        |
| Hawai'i, State Public Library, Thelma Parker Memorial<br>Public Library              | х                                           |                                        |
| Office of Hawaiian Affairs                                                           | х                                           |                                        |
| State of Hawai'i, Department of Hawaiian Home Lands,<br>West Hawai'i District Office | Х                                           |                                        |

| Distribution                                              | Pre-Assessment<br>Consultation<br>Recipient | Pre-Assessment<br>Comments<br>Received |
|-----------------------------------------------------------|---------------------------------------------|----------------------------------------|
| COUNTY OF HAWAI'I                                         |                                             |                                        |
| County of Hawai'i, Department of Environmental Management | х                                           |                                        |
| County of Hawai'i, Department of Public Works             | х                                           |                                        |
| County of Hawai'i, Department of Water Supply             | х                                           | х                                      |
| County of Hawai'i, Planning Department                    | х                                           |                                        |
| County of Hawai'i, Department of Parks and Recreation     | х                                           |                                        |
| County of Hawai'i Fire Department                         | х                                           | х                                      |
| County of Hawai'i Police Department                       | х                                           | х                                      |
| ELECTED OFFICIALS                                         |                                             |                                        |
| Office of the Mayor                                       | х                                           |                                        |
| Senate District 4                                         | х                                           |                                        |
| House District 7                                          | х                                           |                                        |
| Hawai'i County Council District 9                         | х                                           |                                        |
| COMMUNITY GROUPS AND ASSOCIATIONS                         |                                             |                                        |
| Waimea Hawaiian Homesteaders' Association                 | х                                           |                                        |

| Distribution                                             | Pre-Assessment<br>Consultation<br>Recipient | Pre-Assessment<br>Comments<br>Received |
|----------------------------------------------------------|---------------------------------------------|----------------------------------------|
| Waimea Community Association                             | х                                           |                                        |
| Parker Ranch                                             | х                                           |                                        |
| South Kohala Community Development Plan Action Committee | х                                           |                                        |
| Hawai'i Island Economic Development Board                | х                                           |                                        |
| North Hawai'i Community Hospital                         | х                                           |                                        |

### 7.2 Summary of Comments

Table 6 provides a summary of the comments received during the pre-assessment consultation period, along with the associated responses and referenced sections in the Draft EA. A copy of the comment letters received are provided in Appendix A.

**Pre-Assessment Consultation Comments and Responses** Table 6:

| Date             | Agency/<br>Organization                                                                  | Sender                                                                         | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Response                                                                                                                                                                                                                                                                                                                                                                | Referenced<br>Section    |
|------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| July 5,<br>2022  | State of Hawai'i,<br>Department of<br>Health Indoor<br>and Radiological<br>Health Branch | Thomas Lileikis,<br>Program<br>Manager                                         | Project activities shall comply with the following Administrative Rules of the Department of Health: - Chapter 11-39 Air Conditioning & Ventilating - Chapter 11-41 Lead-based Paint Activities - Chapter 11-45 Radiation Control - Chapter 11-46 Community Noise Control - Chapter 11-504 Asbestos Requirements - Chapter 11-504 Asbestos Abatement Certification Program Information pertaining to other health and environmental issues may be addressed by other programs within our department. | The DHHL acknowledges the comment provided by the DOH Indoor and Radiological Health Branch that project activities shall comply with the listed Administrative Rules of the DOH. The Draft EA includes references to the applicable Administrative Rules of the DOH, including Chapter 11-39 Air Conditioning & Ventilating and Chapter 11-46 Community Noise Control. | Sections 2.4<br>and 3.14 |
| July 7,<br>2022  | State of Hawai'i,<br>Department of<br>Accounting and<br>General Services                 | Christine<br>Kinimaka,<br>Public Works<br>Administrator                        | Thank you for the opportunity to comment on the subject project. We have no comments to offer at this time as the proposed project does not impact any of the Department of Accounting and General Services' projects or existing facilities. However, as we serve many of the agencies to be located in the facility, we would like to be kept informed of the progress and may offer comments at a later date.                                                                                     | The DHHL acknowledges that the State<br>Department of Accounting and General<br>Services has no comments to offer at<br>this time.                                                                                                                                                                                                                                      | N/A                      |
| July 13,<br>2022 | United States Department of the Interior, Fish and Wildlife Service                      | Lindsey Asman,<br>Island Team<br>Manager for<br>Hawai'i Island<br>and Maui Nui | Thank you for reaching out to us for assistance. We received your request for preliminary comments on your preparation of a Draft EA and for our assistance identifying federally listed species that may be affected                                                                                                                                                                                                                                                                                | The DHHL acknowledges the comment provided by the U.S. Fish and Wildlife Service regarding species list being available on the online Information for Planning and Consultation (IPaC) system.                                                                                                                                                                          | Section 3.6.2            |

| Referenced<br>Section   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Section<br>3.12.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Response                | The species list for the proposed project area has been included in Section 3.6.2 of the Draft EA. The relevant minimization measures included in the "General project design guidelines" have also been included in Section 3.6.2.                                                                                                                                                                                                                                                                                                                                                                         | The DHHL acknowledges the comments provided by the County of Hawai', Department of Water Supply (DWS). Reference to the DWS' comment and the proposed water system included in the 2015 Final Environmental Assessment - Finding of No Significant Impact for the Waimea Nui Regional Community Development Initiative has been included in Section 3.12.1 of the Draft EA.  The DHHL acknowledges that further consultation and coordination with the DWS and DOA is required to determine the best possible solution to provide potable water to the project site.                                                                                                                                                 |
| Comment                 | by the proposed project. Species lists are now only available through our online IPaC system. I have attached instructions on how to acquire a species list for your project. We highly recommend paying particular attention to the avoidance and minimization measures in the species list called "General project design guidelines". Implementing these avoidance and minimization measures would avoid adverse effects and take of federally listed species that may be present within the action area. We recommend including all the relevant avoidance and minimization measures into the Draft EA. | Please be informed that the water availability in the area, which is subject to change without notice, allows for up to a maximum of 25 units of water per pre-existing lot of record. Each unit of water is equal to an average daily usage of 400 gallons. The subject parcel is currently serviced by a combination 8-inch x 4-inch meter, which is allocated 25 units of water or 10,000 gallons per day.  Therefore, the Department cannot provide additional water at this time. Extensive improvements and additions, which may include, but not be limited to, source, storage, booster pumps, transmission, and distribution facilities, would be required.  Currently, sufficient funding is not available |
| Sender                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Keith Okamoto,<br>P.E., Manager-<br>Chief Engineer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Agency/<br>Organization |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | County of<br>Hawai'i,<br>Department of<br>Water Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Date                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | July 13,<br>2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| 4                | Agency/                                                             | 3000                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Referenced        |
|------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                  | Organization                                                        |                                                                               | from the Department for such improvements and no time schedule is set.  The applicant of the subject parcel may proceed to enter into a Water Development Agreement with the Water Board, in accordance with Rule 5 of the Department's Rules and Regulations, to obtain a water commitment from the Department for the proposed development. The Agreement will establish, among other things, the scope of the necessary water system improvements, facilities charges to be paid, and a timeline for construction. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Section           |
| July 14,<br>2022 | United States<br>Department of<br>Agriculture, Rural<br>Development | Lennie Okano-<br>Kendrick, P.E.,<br>Engineer/Envir<br>onmental<br>Coordinator | This letter is in response to your preassessment consultation letter dated July 1, 2022, requesting comments, concerns, or regulatory requirements from the United States Department of Agricultural Rural Development (Agency). Shall the owner of the facility decide to apply for financial assistance from any of our Agency's programs, the applicant/owner and the project will need to comply with environmental requirements set forth in 7 CFR Part 1970 – Environmental Policies and Procedures.            | The DHHL acknowledges the U.S. Department of Agriculture (USDA), Rural Development Agency's comment regarding compliance with environmental requirements set forth in 7 CFR Part 1970 - Environmental Policies and Procedures should financial assistance from any of USDA's agency programs be applied for. The KOKO Clinic has received a Rural Business Development planning grant from the USDA for the design of the new clinic. Compliance with 7 CFR Part 1970 - Environmental Policies and Procedures has been listed in Table 1 of the Draft EA. | Section 2.4       |
| July 14,<br>2022 | County of<br>Hawai'i, Fire<br>Department                            | Clinton<br>Baybayan, Fire<br>Captain                                          | In regards to the above mentioned project,<br>Fire Department Access and Water Supply<br>shall comply with Chapter 18 of the 2018                                                                                                                                                                                                                                                                                                                                                                                     | The DHHL acknowledges the County of<br>Hawai'i Fire Department's comment<br>regarding compliance with Chapter 18 of                                                                                                                                                                                                                                                                                                                                                                                                                                       | Section<br>3.12.1 |

| Referenced<br>Section   |                                                                                                                                                                                                | N/A                                                                                                                                                                                                  | N/A                                                                                                                        | Section<br>3.12.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Response                | the 2018 Hawai'i State Fire Code and<br>Chapter 26 of the Hawai'i County Code.<br>The project's requirement to comply<br>with these codes has been noted in<br>Section 3.12.1 of the Draft EA. | The DHHL acknowledges the comment provided by the County of Hawai'i Police Department to reserve comments until completion of the Draft EA.                                                          | The DHHL acknowledges that the State Department of Land and Natural Resources, Land Division has no comments at this time. | The DHHL acknowledges the State<br>Commission on Water Resource<br>Management's (CWRM) comments<br>regarding water resources. The<br>recommendations provided by the<br>CWRM have been included in Section<br>3.12.1 of the Draft EA.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Comment                 | Hawaii State Fire Code and Chapter 26 of the<br>Hawaii County Code.                                                                                                                            | In reference to your July 1, 2022 letter regarding the above subject, staff has reviewed your communication and reserves comment until completion and receipt of the Draft Environmental Assessment. | No comments                                                                                                                | Thank you for the opportunity to review the subject document. The Commission on Water Resource Management (CWRM) is the agency responsible for administering the State Water Code (Code). Under the Code, all waters of the State are held in trust for the benefit of the citizens of the State, therefore all water use is subject to legally protected water rights. CWRM strongly promotes the efficient use of Hawaii's water resources through conservation measures and appropriate resource management. For more information, please refer to the State Water Code, Chapter 174C, Hawaii Revised Statutes, and Hawaii Administrative Rules, Chapters 13-167 to 13-171. These |
| Sender                  |                                                                                                                                                                                                | Paul Ferreira,<br>Police Chief                                                                                                                                                                       | Russell Tsuji,<br>Land<br>Administrator                                                                                    | M. Kaleo<br>Manuel,<br>Deputy<br>Director                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Agency/<br>Organization |                                                                                                                                                                                                | County of<br>Hawai'i, Police<br>Department                                                                                                                                                           | State of Hawai'i, Department of Land and Natural Resources, Land Division                                                  | State of Hawai'i,<br>Department of<br>Land and Natural<br>Resources,<br>Commission on<br>Water Resource<br>Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date                    |                                                                                                                                                                                                | July 15,<br>2022                                                                                                                                                                                     | July 22,<br>2022                                                                                                           | July 25,<br>2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Referenced<br>Section   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Response                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Comment                 | documents are available via the Internet at http://dlnr.hawaii.gov/cwrm.  Our comments related to water resources are checked off below.  - We recommend that water efficient fixtures be installed and water efficient practices implemented throughout the development to reduce the increased demand on the area's freshwater resources. Reducing the water usage of a home or building may earn credit towards Leadership in Energy and Environmental Design (LEED) certification.  More information on LEED certification is available at http://www.usgbc.org/leed. A listing of fixtures certified by the EAP as having high water efficiency can be found at http://www.epa.gov/watersense.  - We recommend the use of best management practices (BMP) for stormwater management to minimize the impact of the project to the existing area's hydrology while maintaining on-site infiltration and preventing polluted runoff from storm events. Stormwater management BMPs can be found at http://planning.hawaii.gov/czm/initiatives/low-impact-development/  - We recommend the use of alternative water sources, wherever practicable. |
| Sender                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Agency/<br>Organization |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Date                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

78

| Date             | Agency/<br>Organization                                                                                         | Sender                                          | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Response                                                                                                                                                                                                                                                                                                                                                                                                  | Referenced<br>Section |
|------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                  |                                                                                                                 |                                                 | <ul> <li>We recommend adopting landscape irrigation conservation best management practices endorsed by the Landscape Industry Council of Hawaii. These practices can be found online at http://www.hawaiiscape.com/wp-content/uploads/2013/04/LICH_Irrigation_Conservation_BMPs.pdf.</li> <li>The Commission strongly encourages the implementation of water conservation measures, best management practices to mitigate storm water runoff, and the reuse of storm water and the use of other alternative non-potable sources where practicable.</li> </ul>                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                           |                       |
| July 27,<br>2022 | State of Hawai'i,<br>Department of<br>Land and Natural<br>Resources,<br>Division of<br>Forestry and<br>Wildlife | Lainie Berry,<br>Wildlife<br>Program<br>Manager | The Department of Land and Natural Resources, Division of Forestry and Wildlife (DOFAW) has received your pre-assessment consultation request for a DEA regarding Waimea Nui Regional Community Development Initiative to relocate KOKO Native Hawaiian Rural Health Clinic to the Department of Hawaiian Home Lands (DHHL) Homestead Lands located in Waimea, in the South Kola District, on the island of Hawai'i, TMK: (3) 6-4-038:011. The proposed project consists of relocating the KOKO Clinic to DHHL Homestead Lands on a 2.5-acre portion of the undeveloped 161-acre property leased by the Waimea Nui Community Development Corporation.  The State listed Hawaiian Hoary Bat or 'Öpe'ape'a (Lasiurus cinereus semotus) could | The DHHL acknowledges the State Department of Land and Natural Resources, Division of Forestry and Wildlife's (DOFAW) recommendations to minimize potential impacts to State listed Hawaiian Hoary Bat, Hawaiian Goose, Hawaiian Hawk, Blackburn's Sphinx Moth, and seabirds, as well as native plant species. The recommendations provided by DOFAW have been included in Section 3.6.2 of the Draft EA. | Section 3.6.2         |

| Referenced<br>Section   | Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Response                | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Comment                 | potentially occur at or in the vicinity of the project and may roost in nearby trees. Any required site clearing should be timed to avoid disturbance to bats during their birthing and pup rearing season (June 1 through September 15). During this period woody plants greater than 15 feet (4.6 meters) tall should not be disturbed, removed, or trimmed. Barbed wire should also be avoided for any construction because bats can become ensnared and killed by such fencing material during flight.  Artificial lighting can adversely impact seabirds that may pass through the area at night by causing them to become disoriented. This disorientation can result in their collision with manmade structures or the grounding of birds. For nighttime work that might be required, DOFAW recommends that all lights used to be fully shielded to minimize the | attraction of seabirds.  Nighttime work that requires outdoor lighting should be avoided during the seabird fledging season, from September 15 through December 15. This is the period when young seabirds take their maiden voyage to the open sea. Permanent lighting also poses a risk of seabird attraction, and as such should be minimized or eliminated to protect seabird flyways and preserve the night sky. For illustrations and guidance related to |
| Sender                  | Sender                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Agency/<br>Organization | Organization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Date                    | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Date | Agency/<br>Organization | Sender | Comment                                          | Response | Referenced<br>Section |
|------|-------------------------|--------|--------------------------------------------------|----------|-----------------------|
|      |                         |        | seabirds and the dark starry skies of Hawai'i    |          |                       |
|      |                         |        | please visit                                     |          |                       |
|      |                         |        | https://dlnr.hawaii.gov/wildlife/files/2016/03   |          |                       |
|      |                         |        | /DOC439.pdf.                                     |          |                       |
|      |                         |        | The State listed Hawaiian Goose or Nēnē          |          |                       |
|      |                         |        | (Branta sandvicensis) could potentially occur    |          |                       |
|      |                         |        | in the vicinity of the proposed project site. It |          |                       |
|      |                         |        | is against State law to harm or harass these     |          |                       |
|      |                         |        | species. If any are present during               |          |                       |
|      |                         |        | construction, then all activities within 100     |          |                       |
|      |                         |        | feet (30 meters) should cease, and the bird or   |          |                       |
|      |                         |        | birds should not be approached. Work may         |          |                       |
|      |                         |        | continue after the bird or birds leave the area  |          |                       |
|      |                         |        | of their own accord. If a nest is discovered at  |          |                       |
|      |                         |        | any point, please contact the Hawai'i Island     |          |                       |
|      |                         |        | Branch DOFAW Office at (808) 974-4221.           |          |                       |
|      |                         |        | The State listed Hawaiian Hawk or 'lo (Buteo     |          |                       |
|      |                         |        | solitarius) may occur in the project vicinity.   |          |                       |
|      |                         |        | DOFAW recommends surveying the area to           |          |                       |
|      |                         |        | ensure no Hawaiian Hawk nests are present if     |          |                       |
|      |                         |        | trees are to be cut. 'Io nests may be present    |          |                       |
|      |                         |        | during the breeding season from March to         |          |                       |
|      |                         |        | September.                                       |          |                       |
|      |                         |        | The project area is within the range of the      |          |                       |
|      |                         |        | State listed Blackburn's Sphinx Moth             |          |                       |
|      |                         |        | (Manduca blackburni) or BSM. Larvae of BSM       |          |                       |
|      |                         |        | feed on many nonnative hostplants that           |          |                       |
|      |                         |        | include tree tobacco (Nicotiana glauca),         |          |                       |
|      |                         |        | which grows in disturbed soil. We                |          |                       |
|      |                         |        | recommend contacting the Hawai'i Island          |          |                       |
|      |                         |        | Branch DOFAW office at (808) 974-4221 for        |          |                       |
|      |                         |        | further information about where BSM may be       |          |                       |

81

| Comment present and whether a vegetation survey                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------|
| should be conducted to determine the presence of plants preferred by BSM. DOFAW recommends removing plants less than one                  |
| meter in neignt or during the dry time of the<br>year to avoid harm to BSM. If you intend to<br>either remove tree tobacco over one meter |
| in height or to disturb the ground around or                                                                                              |
| within several meters of these plants, they                                                                                               |
| biologist for the presence of BSM eggs and                                                                                                |
| larvae.                                                                                                                                   |
| DOFAW recommends using native plant                                                                                                       |
| species for landscaping that are appropriate for the area (i.e., climate conditions are                                                   |
| suitable for the plants to thrive, historically                                                                                           |
| occurred there, etc.). Please do not plant                                                                                                |
| invasive species. DOFAW also recommends consulting the Hawai'i-Pacific Weed Risk                                                          |
| Assessment website to determine the                                                                                                       |
| potential invasiveness of plants proposed for                                                                                             |
| use in the project                                                                                                                        |
| (https://sites.google.com/site/weedriskasses                                                                                              |
| sment/home). Please refer to                                                                                                              |
| www.plantpono.org for guidance on the                                                                                                     |
| selection and evaluation of landscaping                                                                                                   |
| plants.                                                                                                                                   |
| DOFAW recommends minimizing the                                                                                                           |
| movement of plant or soil material between                                                                                                |
| worksites. Soil and plant material may                                                                                                    |
| contain invasive fungal pathogens (e.g., Rapid                                                                                            |
| 'Ōhi'a Death), vertebrate and invertebrate                                                                                                |

| Agency/<br>Organization           | Sender                                                               | Comment pests (e.g., Little Fire Ants, Coconut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Response                                                            | Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   |                                                                      | pests (e.g., Little Fire Ants, Coconut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                   |                                                                      | Rhinoceros Beetles), or invasive plant parts that could harm our native species and ecosystems. We recommend consulting the Big Island Invasive Species Committee (BIISC) at (808) 933-3340 to help plan, design, and construct the project, learn of any high-risk invasive species in the area, and ways to mitigate their spread. All equipment, materials, and personnel should be cleaned of excess soil and debris to minimize the risk of spreading invasive species. We appreciate your efforts to work with our office for the conservation of our native species. These comments are general guidelines and should not be considered comprehensive for this site or project. It is the responsibility of the applicant to do their own due diligence to avoid any negative environmental impacts. Should the scope of the project change significantly, or should it become apparent that threatened or endangered species may be impacted, please contact our staff as soon as possible. If you have any questions, please contact Paul Radley, Protected Species Habitat Conservation Planning Coordinator at (808) 295-1123 or paul.m.radley@hawaii.gov. |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| State of Hawaiʻi,                 |                                                                      | The rules and regulations of the National                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The DHHL acknowledges the State                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Department of<br>Land and Natural | Carty Chang,<br>Chief Engineer                                       | Flood Insurance Program (NFIP), Title 44 of the Code of Federal Regulations (44CFR), are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Department of Land and Natural<br>Resources, Engineering Division's | Section 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Resources,                        | 0                                                                    | in effect when development falls within a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | comment regarding the rules and                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                   | State of Hawai'i,<br>Department of<br>Land and Natural<br>Resources, | of Hawai'i, ritment of Carty Chang, and Natural Chief Engineer urces,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Carty Chang,                                                        | mitigate their spread. All equipment, materials, and personnel should be cleaned of excess soil and debris to minimize the risk of spreading invasive species. We appreciate your efforts to work with our office for the conservation of our native species. These comments are general guidelines and should not be considered comprehensive for this site or project. It is the responsibility of the applicant to do their own due diligence to avoid any negative environmental impacts. Should the scope of the project change significantly, or should it become apparent that threatened or endangered species may be impacted, please contact our staff as soon as possible. If you have any questions, please contact Paul Radley, Protected Species Habitat Conservation Planning Coordinator at (808) 295-1123 or paul.m.radley@hawaii.gov. The rules and regulations of the National Flood Insurance Program (NFIP), Title 44 of the Code of Federal Regulations (44CFR), are in effect when development falls within a |

| Date                  | Agency/<br>Organization                         | Sender                                                                   | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Response                                                                                                                                                                                                                                                                                                | Referenced<br>Section   |
|-----------------------|-------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                       | Engineering<br>Division                         |                                                                          | Special Flood Hazard Area (high-risk areas). Be advised that 44CFR, Chapter 1, Subchapter B, Part 60 reflects the minimum standards as set forth by the NFIP. Local community flood ordinances may stipulate higher standards that can be more restrictive and would take precedence over the minimum NFIP standards.  The owner of the project property and/or their representative is responsible to research the Flood Hazard Zone designation for the project. Flood zones subject to NFIP requirements are identified on FEMA's Flood Insurance Rate Maps (FIRM). The official FIRMs can be accessed through FEMA's Map Service Center (msc.fema.gov). Our Flood Hazard Assessment Tool (FHAT) (http://gis.hawaiinfip.org/FHAT) could also be used to research flood hazard information. | regulations of the National Flood Insurance Program. The proposed project site is within the Federal Emergency Management Agency's Flood Zone X, which is not a Special Flood Hazard Zone and does not have any regulations for development This discussion is included in Section 3.5 of the Draft EA. |                         |
| July 28,<br>2022      | State of Hawai'i,<br>Department of<br>Education | Roy Ikeda,<br>Interim Public<br>Works<br>Manager,<br>Planning<br>Section | Thank you for your letter dated July 1, 2022.<br>Based on the information provided, the<br>proposed project will not impact Hawai'i<br>State Department of Education facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The DHHL acknowledges the State<br>Department of Education's (DOE)<br>comment that the proposed project will<br>not impact any DOE facilities.                                                                                                                                                          | N/A                     |
| August<br>30,<br>2022 | County of<br>Hawaiʻi, Planning<br>Department    | Zendo Kern,<br>Planning<br>Director                                      | Thank you for including us in early consultation for this draft environmental assessment. The State Land Use designation of the subject property is Agriculture. Hawai'i Revised Statutes (H.R.S.), Section 205-4.5 allows for "public institutions and buildings that are necessary for agricultural practices"                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The DHHL acknowledges COH Planning Department's comment regarding the existing State Land Use designation, LUPAG designation, and the County zoning designation and the reference to the Memorandum of Agreement between the COH and the DHHL. The                                                      | Sections 4.2<br>and 4.3 |

84

| Date | Agency/<br>Organization | Sender | Comment                                       | Response                                 | Referenced<br>Section |
|------|-------------------------|--------|-----------------------------------------------|------------------------------------------|-----------------------|
|      |                         |        | to be permitted uses in Agriculture State     | DHHL will continue to inform the County  |                       |
|      |                         |        | Land Use districts. The Land Use Pattern      | of any changes in preferred zoning       |                       |
|      |                         |        | Allocation Guide (LUPAG) Map from the 2005    | designation for the subject DHHL parcel. |                       |
|      |                         |        | General Plan designation is Important         |                                          |                       |
|      |                         |        | Agricultural Land. In the face of competition |                                          |                       |
|      |                         |        | from urban uses, "the protection of           |                                          |                       |
|      |                         |        | important agricultural lands has long been a  |                                          |                       |
|      |                         |        | policy of the County". The County Zoning of   |                                          |                       |
|      |                         |        | the property is also agriculture and noted as |                                          |                       |
|      |                         |        | A-40a, which provides for agricultural and    |                                          |                       |
|      |                         |        | very low density agriculturally based         |                                          |                       |
|      |                         |        | residential use, encompassing rural areas of  |                                          |                       |
|      |                         |        | good to marginal agricultural and grazing     |                                          |                       |
|      |                         |        | land, forest land, game habitats, and areas   |                                          |                       |
|      |                         |        | where urbanization is not found to be         |                                          |                       |
|      |                         |        | appropriate.                                  |                                          |                       |
|      |                         |        | The Planning Department herein references     |                                          |                       |
|      |                         |        | the Memorandum of Agreement between           |                                          |                       |
|      |                         |        | the County of Hawai'i and the Department of   |                                          |                       |
|      |                         |        | Hawaiian Homelands (dated January 7, 2003):   |                                          |                       |
|      |                         |        | "County zoning cannot override the authority  |                                          |                       |
|      |                         |        | of the Hawaiian Homes Commission to           |                                          |                       |
|      |                         |        | control the uses of its property". Please     |                                          |                       |
|      |                         |        | continue to inform the County of any changes  |                                          |                       |
|      |                         |        | in preferred zoning designation for the       |                                          |                       |
|      |                         |        | subject (DHHL) parcel; DHHL will choose from  |                                          |                       |
|      |                         |        | existing county zoning districts and the      |                                          |                       |
|      |                         |        | Planning Department will enter those on its   |                                          |                       |
|      |                         |        | maps.                                         |                                          |                       |
|      |                         |        | Moreover, the Planning Department herein      |                                          |                       |
|      |                         |        | references the November 13, 2019 Attorney     |                                          |                       |
|      |                         |        | General Opinion which opines that under the   |                                          |                       |

| Date | Agency/<br>Organization | Sender | Comment                                        | Response | Referenced<br>Section |
|------|-------------------------|--------|------------------------------------------------|----------|-----------------------|
|      | •                       |        | Hawaiian Homes Commission Act, laws that       |          |                       |
|      |                         |        | would "significantly affect" DHHL's use of its |          |                       |
|      |                         |        | lands cannot apply to Hawaiian Home Lands.     |          |                       |
|      |                         |        | You may reference the enclosed Attorney        |          |                       |
|      |                         |        | General's opinion in furtherance of resolving  |          |                       |
|      |                         |        | any State/County land use conflicts that may   |          |                       |
|      |                         |        | arise for the subject (DHHL) parcel. To wit:   |          |                       |
|      |                         |        | "To the extent that the LUC's classifications  |          |                       |
|      |                         |        | conflict with DHHL's uses of its lands for     |          |                       |
|      |                         |        | homesteading purposes, the HHCA will           |          |                       |
|      |                         |        | control and the LUC's classifications cannot   |          |                       |
|      |                         |        | be enforced".                                  |          |                       |

### 8.0 REFERENCES

Courtney, C.A; Romine, B.M.; Lander, M.; Hintzen, K.D.; Owens, T.M.; Pap, R.A. 2020. "Guidance for Addressing Sea Level Rise in Community Planning in Hawai'i." Prepared by Tetra Tech, Inc. for the University of Hawai'i Sea Grant College Program and State of Hawai'i Department of Land and Natural Resources and Office of Planning, with funding from National Oceanic and Atmospheric Administration Office for Coastal Management Award No. NA16NOS4730016.

County of Hawai'i. "County of Hawai'i General Plan." February 2005. <a href="https://www.planning.hawaiicounty.gov/home/showpublisheddocument/301643/6372046641">https://www.planning.hawaiicounty.gov/home/showpublisheddocument/301643/6372046641</a> 41830000

Giambelluca, T.W., Q. Chen, A. G. Frazier, J. P. Price, Y.-L. Chen, P.-S. Chu, J. K Eischeid, and D.M. Delparte. Online rainfall atlas of Hawai'i. Bulletin of the American Meteorological Society. 2013. <a href="http://rainfall.geography.hawaii.edu">http://rainfall.geography.hawaii.edu</a>

Group 70 International. "Waimea Nui Regional Community Development Initiative Final Environmental Assessment." 2015. <a href="https://files.hawaii.gov/dbedt/erp/EA">https://files.hawaii.gov/dbedt/erp/EA</a> EIS Library/2015-06-08-HA-FEA-Waimea-Nui-Regional-Community-Development-Initiative.pdf

Hawai'i Climate Mitigation and Adaptation Commission. "Hawai'i Sea Level Rise Vulnerability and Adaptation Report." 2017.

https://climateadaptation.hawaii.gov/wpcontent/uploads/2017/12/SLR-Report Dec2017.pdf

IPCC. "Climate Change 2013: The Physical Science Basis." 2013. http://www.ipcc.ch/report/ar5/wg1/

South Kohala Community, County of Hawai'i Planning Department, and Townscape, Inc. "South Kohala Community Development Plan." November 2008.

https://www.planning.hawaiicounty.gov/home/showpublisheddocument/304240/637799919889070000

State of Hawai'i, Department of Business, Economic Development, and Tourism. "The State of Hawai'i Data Book 2021." 2021. https://dbedt.hawaii.gov/economic/databook/db2021/

Sweet, W. V., Kopp, R. E., Weaver, C. P., Obeysekera, J., Horton, R. M., Thieler, E. R., & Zervas, C. "Global and Regional Sea Level Rise Scenarios for the United States." 2017.

https://tidesandcurrents.noaa.gov/publications/techrpt83 Global and Regional SLR Scenarios for the US final.pdf

U.S Army Corps of Engineers, Honolulu District. "Waikoloa Maneuver Area Property No. H09HI0359 Comprehensive Strategic Plan for the Waikoloa Maneuver Area 22-MRSs to achieve Response Complete (RC)." June 2021.

https://www.poh.usace.army.mil/Portals/10/docs/fuds/Waikoloa%20FUDS/Comprehensive%20Strategic%20Plan%20for%20the%20WMA%2022-

 $\frac{MRSs\%20 to\%20 achieve\%20 RC.pdf?ver=9 kdaGSFzyVPQdhD1tNjUhg\%3d\%3d\&timestamp=1658}{342899276}$ 

| Кїр                                  | uka o ke Ola (KOKO) Clinic Relocation |
|--------------------------------------|---------------------------------------|
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
| Appendix A – Pre-assessment Consulta | tion Comment Letters                  |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |
|                                      |                                       |

Waimea Nui Regional Community Development Initiative

DAVID Y. IGE



ELIZABETH A. CHAR, M.D. DIRECTOR OF HEALTH

STATE OF HAWAII
DEPARTMENT OF HEALTH
P. O. BOX 3378
HONOLULU, HI 96801-3378

In reply, please refer to: File;

July 5, 2022

501 Sumner Street, Suite 620 Mr. Jared K. Chang, AICP Honolulu, HI 96817 SSFM International

Dear Mr. Chang:

Thank you for your submittal requesting comments to a Pre-Assessment Consultation for a Draft Environmental Assessment to relocate the Kipuka o ke Ola (KOKO) Native Hawaiian Rural Health Clinic to Department of Hawaiian Home Lands (DHHL) Homestead Lands located in Waimea, South Kohala District, Hawaii Island, Tax Map Key (3) 6-4-038:011.

Project activities shall comply with the following Administrative Rules of the Department of

- Air Conditioning & Ventilating Chapter 11-39
  - Lead-based Paint Activities Radiation Control Chapter 11-45 Chapter 11-41
    - Chapter 11-46
- Community Noise Control Chapter 11-501
- Asbestos Abatement Certification Program Asbestos Requirements Chapter 11-504

Information pertaining to other health and environmental issues may be addressed by other programs within our department.

Should you have any questions, please contact me at (808) 586-4700.

Sincerely,

Program Manager Indoor and Radiological Health Branch Thomas G. Lileikis



October 3, 2022

SSFM 2021\_043.000

State of Hawai'i T0:

Department of Health

Indoor and Radiological Health Branch

P.O. Box 3378

Honolulu, Hawai'i 96801

Mr. Thomas Lileikis, Program Manager Attention:

Waimea Nui Regional Community Development Initiative Kīpuka o ke Ola (KOKO) Clinic Relocation SUBJECT:

Tax Map Key: (3) 6-4-038:011 por.

Waimea, South Kohala District, Island of Hawai'i

Pre-Assessment Consultation Comment Response Letter

Dear Mr. Lileikis,

Thank you for your July 5, 2022 letter commenting on the Pre-Assessment Consultation letter for project activities shall comply with the listed Administrative Rules of the DOH. Sections 2.4 and the subject project. The State Department of Hawaiian Home Lands acknowledges the comment provided by the State Department of Health (DOH), Indoor and Radiological Health Branch that Administrative Rules of the DOH, including Chapter 11-39 Air Conditioning & Ventilating and 3.14 of the Draft Environmental Assessment (Draft EA) includes references to the applicable Chapter 11-46 Community Noise Control.

A copy of your July 5, 2022 letter, as well as this response letter, will be included in the Draft comments or questions regarding the proposed project, please feel free to contact me at (808) EA. We appreciate your participation in the EA process. Should you have any additional 356-1242 or by email at jchang@ssfm.com.

SSFM INTERNATIONAL, INC.

Jared K. Chang, AICP

Manager, Strategic Services Group

Email: jchang@ssfm.com



### DEPARTMENT OF ACCOUNTING AND GENERAL SERVICES STATE OF HAWAII

P.O. BOX 119, HONOLULU, HAWAII 96810-0119

JUL - 7 2022



International

SSFM International, Inc.

Attn: Jared Chang 501 Sumner Street, Suite 620

Honolulu, HI 96817

Dear Mr. Chang:

Pre-Consultation Assessment for Draft Assessment for Subject:

Waimea Nui Regional Community Development Initiative

Kipuka o ke Ola (KOKO) Clinic Relocation Waimea, S. Kohala, Hawaii Island, Hawaii

TMK: (3) 6-4-038: 011

and General Services' projects or existing facilities. However, as we serve many of the agencies Thank you for the opportunity to comment on the subject project. We have no comments to offer at this time as the proposed project does not impact any of the Department of Accounting to be located in the facility, we would like to be kept informed of the progress and may offer comments at a later date

If you have any questions, your staff may call Ms. Gayle Takasaki of the Planning Branch at (808) 586-0584


**CHRISTINE L. KINIMAKA** 

Public Works Administrator

GT:mo

::

Mari Joy Angsioco, DAGS HDO



October 3, 2022

(P)22.XXX

AUDREY HIDA DEPUTY COMPTRO

SSFM 2021\_043.000

State of Hawai'i . 10

Department of Accounting and General Services

P.O. Box 119

Honolulu, Hawai'i 96810

Ms. Christine Kinimaka, Public Works Administrator Attention: Waimea Nui Regional Community Development Initiative Kīpuka o ke Ola (KOKO) Clinic Relocation SUBJECT:

Tax Map Key: (3) 6-4-038:011 por.

Waimea, South Kohala District, Island of Hawai'i

Pre-Assessment Consultation Comment Response Letter

Dear Ms. Kinimaka,

Thank you for your July 7, 2022 letter commenting on the Pre-Assessment Consultation Letter for the subject project. The State Department of Hawaiian Home Lands acknowledges that the State Department of Accounting and General Services does not have any comments to offer at

process. Should you have any additional comments or questions regarding the proposed project, Environmental Assessment. We appreciate your participation in the Environmental Assessment A copy of your July 7, 2022 letter, as well as this response letter, will be included in the Draft please feel free to contact me at (808) 356-1242 or by email at jchang@ssfm.com.

SSFM INTERNATIONAL, INC.

Jared K. Chang, AICP

Manager, Strategic Services Group Email: jchang@ssfm.com



# DEPARTMENT OF WATER SUPPLY • COUNTY OF H.

2

345 KEKŪANAŌ'A STREET, SUITE 20 · HILO, HAWAI'I 96720 TELEPHONE (808) 961-8050 · FAX (808) 961-8657

July 13, 2022

Jarcd K. Chang, AICP, Senior Planner Mr. Jared K. Chang, AIC SSFM International, Inc.

501 Sumner Street, Suite 620 Honolulu, HI 96817

Dear Mr. Chang:

Pre-Assessment Consultation for Draft Environmental Assessment SUBJECT: Waimea Nui Regional Community Development Initiative Kipuka o ke Ola (KOKO) Clinic Relocation Tax Map Key 6-4-038:011 We have reviewed the Pre-Assessment for the Draft Environmental Assessment and have the following

Please be informed that the water availability in the area, which is subject to change without notice, allows for up to a maximum of 25 units of water per pre-existing lot of record. Each unit of water is equal to an average daily usage of 400 gallons. The subject parcel is currently serviced by a combination 8-inch x 4-inch meter, which is allocated 25 units of water or 10,000 gallons per day. Therefore, the Department cannot provide additional water at this time. Extensive improvements and additions, which may include, but not be limited to, source, storage, booster pumps, transmission, and distribution facilities, would be required. Currently, sufficient funding is not available from the Department for such improvements and no time schedule is set.

commitment from the Department for the proposed development. The Agreement will establish, among other things, the scope of the necessary water system improvements, facilities charges to be paid, and a timeline for The applicant of the subject parcel may proceed to enter into a Water Development Agreement with the Water Board, in accordance with Rule 5 of the Department's Rules and Regulations, to obtain a water

Should there be any questions, please contact Mr. Troy Samura of our Water Resources and Planning Branch at (808) 961-8070, extension 255

Sincerely yours,

Keith K. Okamoto, P.E.

Manager-Chief Engineer

TS:dmj

... Water, Our Most Precious Resource ... Ka Wai A Kāne ... The Department of Water Supply is an Equal Opportunity provider and employer,

International Innovate | Adapt | Sustain

INTERNATIONAL, INC. JUL 1 8 2022 RECEIVED

October 3, 2022

SSFM 2021 043.000

Department of Water Supply 345 Kekuanao'a St., Suite 20 County of Hawai'i

Ţ0:

Hilo, Hawai'i 96720

Mr. Keith Okamoto, P.E., Manager-Chief Engineer Attention:

Waimea Nui Regional Community Development Initiative Kīpuka o ke Ola (KOKO) Clinic Relocation SUBJECT:

Tax Map Key: (3) 6-4-038:011 por.

Waimea, South Kohala District, Island of Hawai'i

Pre-Assessment Consultation Comment Response Letter

Dear Mr. Okamoto,

for the subject project. The State Department of Hawaiian Home Lands (DHHL) acknowledges Department of Agriculture is required to determine the best possible solution to provide potable Thank you for your July 13, 2022 letter commenting on the Pre-Assessment Consultation letter the comments provided by the County of Hawai'i, Department of Water Supply (DWS). The DHHL acknowledges that further consultation and coordination with the DWS and State water to the project site.

was proposed that the WNR-CDI development use agriculture water from the Waimea Irrigation 2015 Final Environmental Assessment - Finding of No Significant Impact (FEA-FONSI) for the tank farm was proposed to be constructed so that water from the system would fill on-site tanks affecting the irrigation system. As the KOKO Clinic would be relocated to the WNR-CDI's site, Section 3.12.1 of the Draft Environmental Assessment (Draft EA). In the 2015 FEA-FONSI, it water system. As the Waimea Irrigation System experiences low pressure during peak flows, a distributed on-site for potable use. The system would be certified through the DOH as a public it is anticipated that it would be serviced by the same water system. It should be noted that the Waimea Nui Regional Community Development Initiative (WNR-CDI) has been included in In addition, reference to the DWS' comment and the proposed water system described in the System, which is managed by the State Department of Agriculture (DOA), to be treated and water system and proposed developments indicated in the 2015 FEA-FONSI have not been during off-peak hours to meet potable and non-potable water demands without adversely developed as of the date of this letter.



Page 2

October 3, 2022

A copy of your July 13, 2022 letter, as well as this response letter, will be included in the Draft comments or questions regarding the proposed project, please feel free to contact me at (808) EA. We appreciate your participation in the EA process. Should you have any additional 356-1242 or by email at jchang@

SSFM INTERNATIONAL, INC.

Manager, Strategic Services Group Email: jchang@ssfm.com Jared K. Chang, AICP



# United States Department of the Interior



300 Ala Moana Boulevard, Room 3-122 Pacific Islands Fish and Wildlife Office FISH AND WILDLIFE SERVICE Honolulu, Hawai'i 96850

Thac generated official species list for the Pacific Islands Fish and Wildlife Office

Subject:

Dear Action Agency or Applicant:

Planning and Consultation (IPaC) online portal, https://ipac.ecosphere.fws.gov/ for federal action measures to consider in your general project design. IPaC has been used by continental USFWS Using IPaC expedites the process for species list distribution. Obtaining a species list in IPaC is threatened and endangered species, designated critical habitat, and avoidance and minimization offices to provide official species lists and avoidance and minimization guidance since 2017. The Pacific Islands Fish and Wildlife Office (PIFWO) is transitioning to the Information for relatively straightforward and takes minimal time to complete. Step by step instructions are agencies and non-federal agencies or individuals to obtain official species lists, including included below.

updated list may be requested through the IPaC system by completing the same process used to Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, visiting the IPaC website at regular intervals during project planning and implementation. An the accuracy of your species list should be verified after 90 days. New information based on conditions, or other factors could change the species list. Verification can be completed by updated surveys, changes in the abundance and distribution of species, changed habitat obtain the initial species list. We hope this process provides efficiencies to our partners in obtaining a species list. For federal consultations. We will let our agency partners know when that functionality becomes available. action agencies, it also opens additional IPaC functionality that the PIFWO office is still working on, such as the use of Determination Keys for informal section 7 programmatic

If you have questions about a species list obtained through the IPaC system or need assistance in completing an IPaC species list request, please contact the Service at 808-792-9400 or via email at pifwo admin@fws.gov. We appreciate your efforts to conserve listed species across the Pacific Islands.

### COLUMBIA-PACIFIC NORTHWEST INTERIOR REGION 9

INTERIOR REGION 12 PACIFIC ISLANDS

IDAHO, MONTANA\*, OREGON\*, WASHINGTON

AMERICAN SĀMOA, GUAM, HAWAI'1, NORTHERN Mariana Islands

Instructions for Action Agencies and partners to obtain an official species list in IPaC

- Navigate to <a href="https://ipac.ecosphere.fws.gov/">https://ipac.ecosphere.fws.gov/</a>
  You can get an unofficial species list without logging in. However, if you want an official species list you will need to log in first using your Login.gov account. If you don't have an IPaC account, they are easy to create.



Select Log in with Login.gov and sign in using your email and password.



If you have a PIV or CAC card, you can sign in using that method as well.

### Sign in with your PIV or CAC

Make sure you have a Login.gov account and you've set up PIV/CAC as a two-factor authentication method.

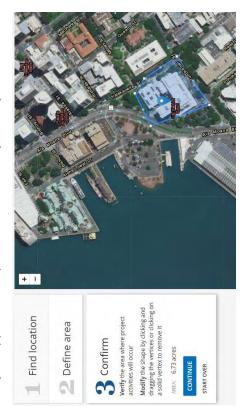
Insert your PIV/CAC

Cancel

Once you log in, select "Get Started".

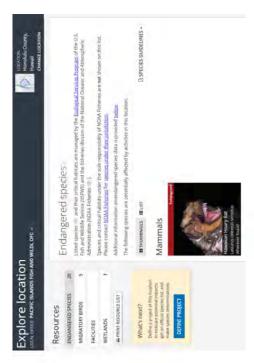


identified on the map, you can manually draw the action area using the drawing tools. · Define the action area: Identify the location of the proposed action by uploading an existing shapefile or by entering an address or coordinates of the action area. Once




 $\epsilon$ 

7




To help identify your action area you can choose between multiple base maps available.



Press continue when you have finished drawing or uploading the action area location.

- The species information on the page that follows is not official. However, it identifies the project County, local Fish and Wildlife Field Office, species covered under NOAA Fisheries as well as Migratory Bird Treaty Act species. The list can be viewed in Thumbnail or List format.
  - Once the species list populates you will see images of the species that may occur on, near, or transgress across your project. Click on SPECIES GUIDELINES on your top right to see Avoidance and Minimization measures to incorporate into your General Project Design Guidelines.



- Continue with the following steps to comply with the requirements of ESA section 7 to obtain an official species list.
  - Select Define Project



Enter the Project Name and a brief description of the project (a description is not mandatory, but recommended for future coordination with the Service). Click SAVE at bottom of page.

At the bottom of the What's next box on the right, click Request Species List



on the following screen, click Yes, Request Species List



## Step 1: Request an official species list

An official species list is a letter from the local U.S. Figh and Wildlife Service field office that assists in the explanation of promital impacts of your project, it includes a six of species that should be considered under explanation impacts of the Thickness and other pertinent information from the final office. If the Thickness of the Thic

### Fields all generical are request to Tequest of the Secretary of Interior information whether any operandwhere all maken to proposed in the fisced may be present in the area of a proposed amont fusificant of a the Edulgment Secretary of the secretary of the area conducted, permitted, funded, or licensed by any Federal among secretary applies to provide their are conducted, permitted, funded, or licensed by any Federal among secretary.

SKIP / DOES NOT APPLY

Fill out the contact information for yourself or your agency. Contractors, state partners, and any other project proponents may request a species list and should be covered using the dropdown menus.

Tell us about the project and your organization or agency

Is this project being conducted, permitted, funded, or licensed by a Federal agency?



 From the pull-down menu for Classify Type of Project, select the project type that best fits the proposed action.



 Once all required sections are filled out, press SUBMIT OFFICIAL SPECIES LIST REQUEST

9



### JBMIT OFFICIAL SPECIES LIST REQUEST

- An Official Species List should be generated and available for download in a couple of seconds.
- If you need additional information on a species, click on their name that is hot-linked to their species information page. A brief overview of the species' status, description and critical habitat will appear as well as a link to their ECOS species profile.





October 3, 2022

SSFM 2021\_043.000

U.S. Department of Interior Fish and Wildlife Service

T0:

Pacific Islands Fish and Wildlife Office

300 Ala Moana Boulevard, Room 3-122 Honolulu, Hawai'i 96850 Attention: Ms. Lindsy Asman, Island Team Manager

SUBJECT: Waimea Nui Regional Community Development Initiative

Kīpuka o ke Ola (KOKO) Clinic Relocation

Tax Map Key: (3) 6-4-038:011 por.

Waimea, South Kohala District, Island of Hawai'i

Pre-Assessment Consultation Comment Response Letter

Dear Ms. Asman,

Thank you for your July 13, 2022 email commenting on the Pre-Assessment Consultation letter for the subject project. The State Department of Hawaiian Home Lands (DHHL) acknowledges the comment provided by the U.S. Fish and Wildlife Service regarding species list being available on the online Information for Planning and Consultation (IPaC) system. The species list for the proposed project area has been included in Section 3.6.2 of the Draft Environmental Assessment (Draft EA). The relevant minimization measures included in the "General Project the Draft EA.

A copy of your July 13, 2022 email, as well as this response letter, will be included in the Draft EA. We appreciate your participation in the EA process. Should you have any additional comments or questions regarding the proposed project, please feel free to contact me at (808) 356-1242 or by email at <a href="mailto:ichang@ssfn.com">ichang@ssfn.com</a>.

SSFM INTERNATIONAL, INC.

Jared K. Chang, AICP

Manager, Strategic Services Group



United States Department of Agriculture

July 14, 2022

VIA EMAIL ONLY: jchang@ssfm.com

Mr. Jared K. Chang, AICP Senior Planner, SSFM International 501 Sunner Street Honolulu, HI 96817 RE: Waimea Nui Regional Community Development Initiative
 Kīpuka o ke Ola Clinic Relocation
 Tax Map Key: (3) 6-4-038:011 por.
 Waimea, South Kohala District, Island of Hawai'i
 Pre-Assessment Consultation for Draft Environmental Assessment.

Aloha Mr. Chang,

This letter is in response to your pre-assessment consultation letter dated July 1, 2022, requesting comments, concerns, or regulatory requirements from the United States Department of Agricultural Rural Development (Agency). Shall the owner of the facility decide to apply for financial assistance from any of our Agency's programs, the applicant/owner and the project will need to comply with environmental requirements set forth in 7 CFR Part 1970 – Environmental Policies and Procedures.

Thank you for the opportunity to comment on your project. Please do not hesitate to contact me at (808) 933-8304 or Lennie.Okano-Kendrick@usda.gov if you have any questions or need further information.

Mahalo,

LENNIE Digitally signed by LENNIE OKANO- KENNECK NELORICK DATE OZDZI 14 KENDRICK 10:30:06-10:00

KENDRICK 10:30:06-10:00°
Lennie Okano-Kendrick, P.E.

Engineer / Environmental Coordinator Hawai'i, Western Pacific and American Samoa Rural Development 154 Waianuenue Avenue, Rm 311, Hilo, Hawaii 96720 Voice (808) 933-8380 • Fax 1-855-878-2460 USDA is an equal opportunity provider, employer, and lender.

If you wish to file a Divil Rights program complaint of discrimination, complete the USDA Program Discrimination Complaint Form (PDF), found online at interplayment acts used southerness to the common of the form. You may also write a letter high lawwest custs doubt advantable for the complaint of the minimate of the form. For many also write a letter constanting all of the information requested in the form, and your completed complaint form of letter to us by mait at U.S. Department of Agriculture. Director, Children of Agriculture. A Myssibility for of Agriculture, and the complaint of the co



October 3, 2022

SSFM 2021 043.000

U.S. Department of Agriculture Rural Development Agency

TO:

154 Waiānuenue Avenue, Rm 311

Hilo, Hawai'i 96720

Attention: Ms. Lennie Okano-Kendrick, P.E., Engineer/Environmental Coordinator

SUBJECT: Waimea Nui Regional Community Development Initiative Kīpuka o ke Ola (KOKO) Clinic Relocation

Tax Map Key: (3) 6-4-038:011 por.

Waimea, South Kohala District, Island of Hawai'i Pre-Assessment Consultation Comment Response Letter

Dear Ms. Okano-Kendrick,

Thank you for your July 14, 2022 letter commenting on the Pre-Assessment Consultation letter for the subject project. The State Department of Hawaiian Home Lands (DHHL) acknowledges the U.S. Department of Agriculture (USDA), Rural Development Agency's comment regarding compliance with environmental requirements set forth in 7 CFR Part 1970 - Environmental Policies and Procedures should financial assistance from any of USDA's agency programs be applied for. The KOKO Clinic has received a Rural Business Development planning grant from the USDA for the design of the new clinic. Compliance with 7 CFR Part 1970 - Environmental Policies and Procedures has been listed in Table I of the Draft Environmental Assessment (Draft EA).

A copy of your July 14, 2022 letter, as well as this response letter, will be included in the Draft EA. We appreciate your participation in the EA process. Should you have any additional comments or questions regarding the proposed project, please feel free to contact me at (808) 356-1242 or by email at <a href="mailto:ichang@ssfm.com">ichang@ssfm.com</a>.

SSFM INTERNATIONAL, INC.

Jared K. Chang, AICP Manager, Strategic Services Group

Email: jchang@ssfm.com

501 Sumner Street | Suite 620 | Hondubu, Hawaii 96817 | Tel 806.531.1308 | Fax 855.329.7736 | www.ssfm.com Planning | Project & Construction Management | Structural, Civil & Traffic Engineering

Mitchell D. Roth



Paul K. Ferreira Police Chief

Kenneth Bugado Jr.

### County of Hawai'i

349 Kapi'olani Street • Hilo, Hawai'i 96720-3998 (808) 935-3311 • Fax (808) 961-2389 POLICE DEPARTMENT

July 15, 2022

SSFM International, Inc. RECEIVED

1.2. wil

SUBJECT:

99 Aupuni Street, Suite 202

Hilo, HI 96720

Mr. Jared K. Chang, AICP SSFM International, Inc.

Senior Planner

WAIMEA NUI REGIONAL COMMUNITY DEVELOPMENT INITIATIVE
KĪPUKA O KE OLA (KOKO) CLINIC RELOCATION
TAX MAP KEY: (3) 6-4-038:011 POR.
WAIMEA, SOUTH KOHALA DISTRICT, ISLAND OF HAWAIT
PRE-ASSESSMENT CONSULTATION FOR DRAFT ENVIRONMENTAL ASSESSMENT

Dear Mr. Chang:

In reference to your July 1, 2022 letter regarding the above subject, staff has reviewed your communication and reserves comment until completion and receipt of the Draft Environmental Assessment. If you have any additional questions or concerns regarding this matter, please feel free to contact Captain Jeremie Evangelista, Commander of our South Kohala District, at (808) 887-3080 or via email at jeremie.evangelista@hawaiicounty.gov.

Sincerely,

PAUL K. FERREIRA

POLICE CHIEF

'Hawai'i County is an Equal Opportunity Provider and Employer"



October 3, 2022

SSFM 2021\_043.000

County of Hawai'i Police Department

Ţ0:

349 Kapi'olani St.

Hilo, Hawai'i 96720

Mr. Paul Ferreira, Police Chief Attention:

Waimea Nui Regional Community Development Initiative Kīpuka o ke Ola (KOKO) Clinic Relocation SUBJECT:

Tax Map Key: (3) 6-4-038:011 por.

Waimea, South Kohala District, Island of Hawai'i

Pre-Assessment Consultation Comment Response Letter

Dear Mr. Ferreira,

Thank you for your July 15, 2022 letter commenting on the Pre-Assessment Consultation letter comment provided by the County of Hawai'i, Police Department to reserve comments until for the subject project. The State Department of Hawaiian Home Lands acknowledges the completion of the Draft Environmental Assessment (Draft EA). A copy of your July 15, 2022 letter, as well as this response letter, will be included in the Draft EA. We appreciate your participation in the EA process. Should you have any additional comments or questions regarding the proposed project, please feel free to contact me at (808) 356-1242 or by email at <u>ichang</u>

SSFM INTERNATIONAL, INC.

Manager, Strategic Services Group Jared K. Chang, AICP

Email: jchang@ssfm.com





SUZANNE D. CASE
CHARIFERSON
COMBISSON ON WATER RESOURCES
COMBISSON ON WATER RESOURCE
MANAGEMENT

### DEPARTMENT OF LAND AND NATURAL RESOURCES STATE OF HAWAII LAND DIVISION

POST OFFICE BOX 621 HONOLULU, HAWAII 96809

Jul 29, 2022

SSFM International, Inc. Attn: Mr. Jared Chang, Senior Planner 501 Sumner Street, Suite 620 Honolulu, Hawaii 96817

via email: jchang@ssfm.com

Dear Mr. Chang:

SUBJECT:

Pre-Assessment Consultation for DEA for **Kipuka o ke Ola** (KOKO) Clinic Relocation located at Waimea, South Kohala District, Island of Hawaii; TMK: (3) 6-4-038:011 por., on behalf of Waimea Nui Regional Community Development Initiative (WNR-CDI)

Thank you for the opportunity to review and comment on the subject matter. The Land Division of the Department of Land and Natural Resources (DLNR) distributed or made available a copy of your request pertaining to the subject matter to DLNR's Divisions for their review and comments.

At this time, enclosed are comments from the (a) Engineering Division, (b) Division of Forestry & Wildlife, and (c) Land Division-Hawaii District on the subject matter. Should you have any questions, please feel free to contact Darlene Nakamura at (808) 587-0417 or email: darlene.k.nakamura@hawaii.gov. Thank you.

Sincerely,

Russell Tsuji

Russell Y. Tsuji Land Administrator

Central Files Enclosures cc: Centr

DAVID Y. IGE





SUZANNE D. CASE
CHAIRPERSON
GLAND AND NATURAL RESOURCES
COMMISSION ON WATER RESOURCE
MANAGEMENT

Halu

### DEPARTMENT OF LAND AND NATURAL RESOURCES LAND DIVISION STATE OF HAWAII

POST OFFICE BOX 621 HONOLULU, HAWAII 96809

Jul 8, 2022

### MEMORANDUM

DLNR Agencies:

0

Div. of Aquatic Resources Div. of Boating & Ocean Recreation

X Engineering Division (QLINR ENGR@hawaii.gov)
X Div. of Forestry & Wridilife (rubyrosa.t.terrago@hawaii.gov)

Div. of State Parks

\_\_\_\_\_\_X. or state rains \_\_\_\_\_\_X. Commission on Water Resource Management (DLNR.CWRM@hawaii.gov) Office of Conservation & Coastal Lands

X Land Division - Hawaii District (gordon.c.heit@hawaii.gov)

Russell Y. Tsuji, Land Administrator Russell Tsuji

Pre-Assessment Consultation for DEA for Kipuka o ke Ola (KOKO) Clinic FROM: SUBJECT:

Waimea, South Kohala District, Island of Hawaii; TMK: (3) 6-4-038:011 por. SSFM International on behalf of Waimea Nui Regional Community Relocation LOCATION:

APPLICANT

Development Initiative (WNR-CDI)

Transmitted for your review and comment is information on the above-referenced subject matter. Please submit comments by July 29, 2022.

If no response is received by the above date, we will assume your agency has no ents. Should you have any questions about this request, please contact Darlene Nakamura at darlene k.nakamura@hawaii.gov. Thank you. comments.

BRIEF COMMENTS:

( ) We have no objections.

We have no comments. 7

( ) We have no additional comments.

( ) Comments are included/attached

Signed:

Print Name: Division:

ivision Date:

HE17

Central Files Attachments

DAVID Y. IGE SOVERNOR OF HAWA



SUZANNE D. CASE

MICHAEL G. BUCK EUZABETH A. CHAR, M.D. NEIL J. HANNAHS AURORA KKGAWA-VIVIANI, PH.D. WAYNE K. KGTAYAMA PAUL J. MEYER

Mr. Jared Chang Page 2 July 25, 2022

M. KALEO MANUEL

| TE OF HAWAII NID AND NATURAL RESOURCES THE RESOURCE MANAGEMENT |
|----------------------------------------------------------------|
|----------------------------------------------------------------|

STAT

| DEPARTMENT OF LAND AND NATURAL RESOURCES COMMISSION ON WATER RESOURCE MANAGEMENT P.O. BOX 621 HONOLULU, HAWANI 185898 | July 25, 2022 | Mr. Jared Chang, AICP, Senior Planner<br>SSFM International, Inc. | M. Kaleo Manuel, Deputy Director (Commission on Water Resource Management | Waimea Nui Regional Community Development Initiative |
|-----------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------|

REF: RFD.4130.8

Thank you for the opportunity to review the subject document. The Commission on Water Resource Management (CWRM) is the agency responsible for administering the State Water Code (Code). Under the Code, all waters of the State are held in trust for the benefit of the clizens of the State, therefore all water use is subject to legally protected water rights. CWRM strongly promotes the efficient use of Hawaii's water resources through conservation measures and appropriate resource management. For more information, please refer to the State Water Code, Chapter 174C, Hawaii Revised Statutes, and Hawaii Administrative Rules, Chapters 13-167 to 13-177. These documents are available via the Internet at <a href="http://dinr.hawaii.gov/cwrm">http://dinr.hawaii.gov/cwrm</a>.

(3) 6-4-038:011 por. RFD.4130.8

FILE NO: SUBJECT:

FROM:

0

| 8                                                             |    |
|---------------------------------------------------------------|----|
| pe                                                            |    |
| ±                                                             | -  |
| б                                                             |    |
| š                                                             |    |
| 96                                                            |    |
| b                                                             |    |
| are                                                           | ;  |
| S                                                             |    |
| 5                                                             |    |
| 9                                                             |    |
| es                                                            | :  |
| -                                                             |    |
| ate                                                           |    |
| >                                                             |    |
| F                                                             |    |
| te                                                            |    |
| e                                                             |    |
| S                                                             |    |
| eut                                                           | :  |
| Ē                                                             |    |
| On                                                            | ٠, |
| our comments related to water resources are checked off below | 92 |
| $\geq$                                                        |    |

- We recommend coordination with the county to incorporate this project into the county's Water Use and Development Plan. Please contact the respective Planning Department and/or Department of Water We recommend coordination with the Engineering Division of the State Department of Land and Natural We recommend coordination with the Hawaii Department of Agriculture (HDOA) to incorporate the reclassification of agricultural zoned land and the redistribution of agricultural resources into the State's Agricultural Water Use and Development Plan (AWUDP). Please contact the HDOA for more information. Resources to incorporate this project into the State Water Projects Plan. Supply for further information. <u>.</u> 3 3
- http://www.usgbc.org/leed. A listing of fixtures certified by the EAP as having high water efficiency can be found at http://www.epa.gov/watersense. Reducing the water usage of a home or building may earn credit towards Leadership in Energy and Environmental Design (LEED) certification. More information on LEED certification is available at We recommend that water efficient fixtures be installed and water efficient practices implemented throughout the development to reduce the increased demand on the area's freshwater resources. 4 ×
  - We recommend the use of best management practices (BMP) for stormwater management to minimize the impact of the project to the existing areas by twylotogy which mantaining on-site inflitation and preventing polluted runoff from storm events. Stormwater management BMPs may earn credit toward LEED certification. More information on stormwater BMPs can be found at 5 ×
    - We recommend the use of alternative water sources, wherever practicable. http://planning.hawaii.gov/czm/initiatives/low-impact-development/ 9

 $\times$ 

- We recommend participating in the Hawaii Green Business Program, that assists and recognizes businesses that strive to operate in an environmentally and socially responsible manner. The program description can be found online at http://energy.hawaii.gov/green-business-program. 7.
- We recommend adopting landscape irrigation conservation best management practices endorsed by the Landscape Industry Council of Hawaii. These practices can be found online at http://www.hawaiiscape.com/wp-content/uploads/2013/04/LICH\_Irrigation\_Conservation\_BMPs.pdf. œ. ×

|       | တ်   |                                                                                                                                                                        | There may be the potential for ground or surface water degradation/contamination and recommend that<br>approvals for this project be conditioned upon a review by the State Department of Health and the<br>developer's acceptance of any resulting requirements related to water quality.                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | . 10 | A SECT                                                                                                                                                                 | The proposed water supply source for the project is located in a designated water management area, and a Water Use Permit may be conditioned on the requirement to use dual line water supply systems for new industrial and commercial developments.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | Ξ.   |                                                                                                                                                                        | The Hawaii Water Plan is directed toward the achievement of the utilization of reclaimed water for uses other than drinking and for potable water needs in one hundred per cent of State and County facilities by December 31, 2045 (§174C-31(g)(6), Hawaii Revised Statutes). We strongly recommend that this project consider using reclaimed water for its non-potable water needs, such as irrigation. Reclaimed water may include, but its not limited to, recycled wastewater, gray water, and captured rainwater/stormwater. Please contact the Hawaii Department of Health, Wastewater Branch, for more information on their reuse quidelines and the availability of reclaimed water in the project area. |
|       | . 12 | 12 A Well Construction Permit(s) is (are) are required before the commencement of any well construction work.                                                          | before the commencement of any well construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | . 13 |                                                                                                                                                                        | A Pump Installation Permit(s) is (are) required before ground water is developed as a source of supply for the project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 4 .  |                                                                                                                                                                        | There is (are) well(s) located on or adjacent to this project. If wells are not planned to be used and will be affected by any new construction, they must be properly abandoned and sealed. A permit for well abandonment must be obtained.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | . 15 |                                                                                                                                                                        | Ground-water withdrawals from this project may affect streamflows, which may require an instream flow standard amendment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ris . | 16   | 16 A Stream Channel Alteration Permit(s) is (are) required before any alteration can be made to the bed and/or banks of a steam channel.                               | ired before any alteration can be made to the bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | 17   | 17 A Stream Diversion Works Permit(s) is (are) require altered.                                                                                                        | A Stream Diversion Works Permit(s) is (are) required before any stream diversion works is constructed or altered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | . 19 |                                                                                                                                                                        | A Petition to Amend the Interim Instream Flow Standard is required for any new or expanded diversion(s) of surface water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | . 19 | St. STRUTS                                                                                                                                                             | The planned source of water for this project has not been identified in this report. Therefore, we cannot determine what permits or petitions are required from our office, or whether there are potential impacts to water resources.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ×     | OTH  | X OTHER: Planning-                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |      | The Commission strongly encourages the implementatic management practices to mitigate storm water runoff, are other alternative non-potable sources where practicable. | The Commission strongly encourages the implementation of water conservation measures, best management practices to mitigate storm water runoff, and the reuse of storm water and the use of other alternative non-potable sources where practicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

If you have any questions, please contact Katie Roth of the Commission staff at (808) 587-0216.



SSFM 2021\_043.000 October 3, 2022

State of Hawai'i Ţ

Department of Land and Natural Resources

Commission on Water Resource Management

P.O. Box 621

Honolulu, Hawai'i 96809

Mr. M. Kaleo Manuel, Deputy Director Attention:

Waimea Nui Regional Community Development Initiative SUBJECT:

Kīpuka o ke Ola (KOKO) Clinic Relocation

Waimea, South Kohala District, Island of Hawai'i Tax Map Key: (3) 6-4-038:011 por.

Pre-Assessment Consultation Comment Response Letter

Dear Mr. Manuel,

Commission on Water Resource Management's (CWRM) comments regarding water resources. The recommendations provided by the CWRM have been included in Section 3.12.1 of the Draft for the subject project. The State Department of Hawaiian Home Lands acknowledges the State Thank you for your July 25, 2022 letter commenting on the Pre-Assessment Consultation letter Environmental Assessment (Draft EA).

A copy of your July 25, 2022 letter, as well as this response letter, will be included in the Draft comments or questions regarding the proposed project, please feel free to contact me at (808) EA. We appreciate your participation in the EA process. Should you have any additional 356-1242 or by email at jch

SSFM INTERNATIONAL, INC.

Jared K. Chang, AICP

Manager, Strategic Services Group Email: jchang@ssfm.com 501 Summer Street | Suite 820 | Hornoldu, Hawaii 96817 | Tel 808.531.1308 | Fax 855.329.7736 | www.ssfm.com Planning | Project & Construction Management | Structural, Civil & Traffic Engineering





### DEPARTMENT OF LAND AND NATURAL RESOURCES LAND DIVISION STATE OF HAWAII

POST OFFICE BOX 621 HONOLULU, HAWAII 96809

Jul 8, 2022

#### MEMORANDUM

DLNR Agencies: di H

FROM:

Div. of Aquatic Resources

Div. of Boating & Ocean Recreation

X Engineering Division (DLNR.ENGR@hawaii.gov)

X Div. of Forestry & Wildlife (rubyrosa.t.terrago@hawaii.gov)

Div. of State Parks

X Commission on Water Resource Management (DLNR.CWRM@hawaii.gov)

Office of Conservation & Coastal Lands

X Land Division — Hawaii District (gordon.c.heit@hawaii.gov)

Russell Y. Tsuji, Land Administrator Russell Tsuji FROM

10:

Pre-Assessment Consultation for DEA for Kipuka o ke Ola (KOKO) Clinic SUBJECT

Relocation

Waimea, South Kohala District, Island of Hawaii; TMK: (3) 6-4-038:011 por. SSFM International on behalf of Waimea Nui Regional Community APPLICANT LOCATION

Development Initiative (WNR-CDI)

Transmitted for your review and comment is information on the above-referenced subject matter. Please submit comments by July 29, 2022.

If no response is received by the above date, we will assume your agency has no Should you have any questions about this request, please contact Darlene Nakamura at darlene k. nakamura@hawaii.gov. Thank you. comments.

BRIEF COMMENTS:

We have no objections.

We have no comments.

( ) We have no additional comments.

(V) Comments are included/attached.

Signed

Print Name:

Carty S. Chang, Chief Engineer Division:

**Engineering Division** 

Jul 27, 2022

Date:

Attachments

Central Files cc

## DEPARTMENT OF LAND AND NATURAL RESOURCES **ENGINEERING DIVISION**

LD/Russell Y. Tsuji

Pre-Assessment Consultation for DEA for Kipuka o ke Ola (KOKO) Clinic Relocation

Location: Waimea, South Kohala District, Island of Hawaii TMK(s): (3) 6-4-038:011 por.

Applicant: SSFM International on behalf of Waimea Nui Regional Community Development Initiative (WNR-CDI)

#### COMMENTS

The rules and regulations of the National Flood Insurance Program (NFIP), Title 44 of the Code of Federal Regulations (44CFR), are in effect when development falls within a Special Flood Hazard Area (high-risk areas). Be advised that 44CFR, Chapter 1, Subchapter B, Part ordinances may stipulate higher standards that can be more restrictive and would take 60 reflects the minimum standards as set forth by the NFIP. Local community flood precedence over the minimum NFIP standards.

The owner of the project property and/or their representative is responsible to research the Flood Hazard Zone designation for the project. Flood zones subject to NFIP requirements are identified on FEMA's Flood Insurance Rate Maps (FIRM). The official FIRMs can be Assessment Tool (FHAT) (http://gis.hawaiinfip.org/FHAT) could also be used to research accessed through FEMA's Map Service Center (msc.fema.gov). Our Flood Hazard flood hazard information.

If there are questions regarding the local flood ordinances, please contact the applicable County NFIP coordinating agency below:

- Oahu: City and County of Honolulu, Department of Planning and Permitting 0
- Hawaii Island: County of Hawaii, Department of Public Works (808) 961-8327 0
- Maui/Molokai/Lanai County of Maui, Department of Planning (808) 270-7139. 0
- Kauai: County of Kauai, Department of Public Works (808) 241-4849. 0

CARTY S. CHANG, CHIEF ENGINEER

Jul 27, 2022 Date:



October 3, 2022

SSFM 2021 043.000

Department of Land and Natural Resources State of Hawai'i

Ţ0:

Engineering Division

1151 Punchbowl St., Room 221

Honolulu, Hawai'i 96813

Mr. Carty Chang, Chief Engineer Attention:

Waimea Nui Regional Community Development Initiative SUBJECT:

Kīpuka o ke Ola (KOKO) Clinic Řelocation

Tax Map Key: (3) 6-4-038:011 por.

Waimea, South Kohala District, Island of Hawai'i

Pre-Assessment Consultation Comment Response Letter

Dear Mr. Chang,

Department of Land and Natural Resources, Engineering Division's comment regarding the rules and regulations of the National Flood Insurance Program. The proposed project site is within the for the subject project. The State Department of Hawaiian Home Lands acknowledges the State Zone and does not have any regulations for development. This discussion is included in Section Thank you for your July 27, 2022 letter commenting on the Pre-Assessment Consultation letter Federal Emergency Management Agency's Flood Zone X, which is not a Special Flood Hazard 3.5 of the Draft Environmental Assessment (Draft EA).

A copy of your July 27, 2022 letter, as well as this response letter, will be included in the Draft comments or questions regarding the proposed project, please feel free to contact me at (808) EA. We appreciate your participation in the EA process. Should you have any additional 356-1242 or by email at jchang@ssfm.com.

SSEM INTERNATIONAL, INC.

Jared K. Chang, AICP

Manager, Strategic Services Group

Email: ichang





SUZANNE D. CASE
CHAIRPERSON
BOARD OF LANDATHRAL RESOURCES
COMMISSION ON WATER RESOURCE
MANAGEMENT

### DEPARTMENT OF LAND AND NATURAL RESOURCES STATE OF HAWAII

POST OFFICE BOX 621 HONOLULU, HAWAII 96809

LAND DIVISION

Jul 8, 2022

#### MEMORANDUM

DLNR Agencies:

10

Div. of Aquatic Resources

Div. of Boating & Ocean Recreation

UN. of State Parks

X. Commission on Water Resource Management (DLNR.CWRM@hawaii.gov) X Engineering Division (DLNR.ENGRIGUIEMENTS)
X Div. of Forestry & Wildlife (<u>rubyrosa.t.terrago@hawaii.go</u>x)
Div. of State Parks
Div. of State Parks

Office of Conservation & Coastal Lands

X Land Division – Hawaii District (gordon.c.heit@hawaii.gov)

Russell Y. Tsuji, Land Administrator Russell Tsuji

SUBJECT: FROM:

Pre-Assessment Consultation for DEA for Kipuka o ke Ola (KOKO) Clinic Relocation

Waimea, South Kohala District, Island of Hawaii; TMK: (3) 6-4-038:011 por. SSFM International on behalf of Waimea Nui Regional Community APPLICANT LOCATION

Development Initiative (WNR-CDI)

Transmitted for your review and comment is information on the above-referenced subject matter. Please submit comments by July 29, 2022.

If no response is received by the above date, we will assume your agency has no comments. Should you have any questions about this request, please contact Darlene Nakamura at darlene.k.nakamura@hawaii.gov. Thank you.

BRIEF COMMENTS:

) We have no objections.

We have no comments.

We have no additional comments.

Comments are included/attached <u>S</u>

Signed:

LAINIE BERRY, Wildlife Program Mgr Division of Forestry and Wildlife Print Name: Division:

Jul 27, 2022 Date:

DAVID V. IGE DVERNOR OF HAWA



ROBERT K. MASUDA FIRST DEPUTY M. KALEO MANUEL DEPUTY DIRECTOR - WATE

## STATE OF HAWAII

DEPARTMENT OF LAND AND NATURAL RESOURCES DIVISION OF FORESTRY AND WILDLIFE 1151 PUNCHBOWL STREET, ROOM 325 HONOLULU, HAWAII 98813

July 27, 2022

Log no. 3742

RUSSELL Y. TSUJI, Land Administrator T0:

MEMORANDUM

Land Division

LAINIE BERRY, Wildlife Program Manager Division of Forestry and Wildlife FROM:

Division of Forestry and Wildlife Comments for the Pre-Assessment Consultation for a Draft Environmental Assessment (DEA) for the Kīpuka o ke Ola (KOKO) Clinic Relocation on Hawai'i Island SUBJECT:

Community Development Initiative to relocate KOKO Native Hawaiian Rural Health Clinic to the The Department of Land and Natural Resources, Division of Forestry and Wildlife (DOFAW) has received your pre-assessment consultation request for a DEA regarding Waimea Nui Regional Department of Hawaiian Home Lands (DHHL) Homestead Lands located in Waimea, in the South Kola District, on the island of Hawai'i, TMK: (3) 6-4-038:011. The proposed project consists of relocating the KOKO Clinic to DHHL Homestead Lands on a 2.5-acre portion of the undeveloped 161-acre property leased by the Waimea Nui Community Development Corporation. The State listed Hawaiian Hoary Bat or 'Ope'ape'a (Lasiurus cinereus semotus) could potentially occur at or in the vicinity of the project and may roost in nearby trees. Any required site clearing through September 15. During this period woody plants greater than 15 feet (4.6 meters) tall should not be disturbed, removed, or trimmed. Barbed wire should also be avoided for any construction because bats can become ensnared and killed by such fencing material during flight. should be timed to avoid disturbance to bats during their birthing and pup rearing season (June 1

Artificial lighting can adversely impact seabirds that may pass through the area at night by causing them to become disoriented. This disorientation can result in their collision with mammade structures or the grounding of birds. For nighttime work that might be required, DOFAW their maiden voyage to the open sea. Permanent lighting also poses a risk of seabird attraction, and Nighttime work that requires outdoor lighting should be avoided during the seabird fledging season, from September 15 through December 15. This is the period when young seabirds take as such should be minimized or eliminated to protect seabird flyways and preserve the night sky. For illustrations and guidance related to seabird-friendly light styles that also protect seabirds and recommends that all lights used to be fully shielded to minimize the attraction of seabirds.

Attachments

Central Files

the dark starry skies of Hawai'i please visit https://dlnr.hawaii.gov/wildlife/files/2016/03/DOC439.pdf.

The State listed Hawaiian Goose or None (Branta sandvicensis) could potentially occur in the vicinity of the proposed project site. It is against State law to harm or harass these species. If any are present during construction, then all activities within 100 feet (30 meters) should cease, and the bird or birds should not be approached. Work may continue after the bird or birds leave the area of their own accord. If a nest is discovered at any point, please contact the Hawai'i Island Branch DOFAW Office at (808) 974-4221.

The State listed Hawaiian Hawk or 'Io (Buteo solitarius) may occur in the project vicinity, DOFAW recommends surveying the area to ensure no Hawaiian Hawk nests are present if trees are to be cut. 'Io nests may be present during the breeding season from March to September. The project area is within the range of the State listed Blackburn's Sphinx Moth (Manduca blackburn!) or BSM. Larvae of BSM feed on many nonnative hostplants that include tree tobacco (Nicotiana glauca), which grows in disturbed soil. We recommend contacting the Hawai'i Island Branch DOFAW office at (808) 974-4221 for further information about where BSM may be present and whether a vegetation survey should be conducted to determine the presence of plants preferred by BSM. DOFAW recommends removing plants less than one meter in height or during the dry time of the year to avoid harm to BSM. If you intend to either remove tree tobacco over one meter in height or to disturb the ground around or within several meters of these plants, they must be thoroughly inspected by a qualified biologist for the presence of BSM eggs and larvae.

DOFAW recommends using native plant species for landscaping that are appropriate for the area (i.e., climate conditions are suitable for the plants to thrive, historically occurred there, etc.). Please do not plant invasive species. DOFAW also recommends consulting the Hawai'i-Pacific Weed Risk Assessment website to determine the potential invasiveness of plants proposed for use in the project (https://sites.google.com/site/weedriskassessment/home). Please refer to www.plantpono.org for guidance on the selection and evaluation of landscaping plants.

DOFAW recommends minimizing the movement of plant or soil material between worksites. Soil and plant material may contain invasive fungal pathogens (e.g., Rapid 'Ohi'a Death), vertebrate and invertebrate pests (e.g., Little Fire Ants, Coconut Rhinoceros Beetles), or invasive plant parts that could harm our native species and ecosystems. We recommend consulting the Big Island Invasive Species Committee (BIISC) at (808) 933-3340 to help plan, design, and construct the project, learn of any high-risk invasive species in the area, and ways to mitigate their spread. All equipment, materials, and personnel should be cleaned of excess soil and debris to minimize the risk of spreading invasive species.

We appreciate your efforts to work with our office for the conservation of our native species. These comments are general guidelines and should not be considered comprehensive for this site or project. It is the responsability of the applicant to do their own due diligence to avoid any negative environmental impacts. Should the scope of the project change significantly, or should it become apparent that threatened or endangered species may be impacted, please contact our staff as soon

as possible. If you have any questions, please contact Paul Radley, Protected Species Habitat Conservation Planning Coordinator at (808) 295-1123 or paul.m.radley@hawaii.gov.

Sincerely,

LAINIE BERRY Widlife Program Manager



October 3, 2022

SSFM 2021\_043.000

State of Hawai'i Ţ

Department of Land and Natural Resources

Division of Forestry and Wildlife

1151 Punchbowl St., Room 325

Honolulu, Hawai'i 96813

Ms. Lainie Berry, Wildlife Program Manager Attention:

Waimea Nui Regional Community Development Initiative SUBJECT:

Kīpuka o ke Ola (KOKO) Clinic Relocation

Tax Map Key: (3) 6-4-038:011 por.

Waimea, South Kohala District, Island of Hawai'i

Pre-Assessment Consultation Comment Response Letter

Dear Ms. Berry,

for the subject project. The State Department of Hawaiian Home Lands acknowledges the State Department of Land and Natural Resources, Division of Forestry and Wildlife's (DOFAW) Goose, Hawaiian Hawk, Blackburn's Sphinx Moth, and seabirds, as well as native plant species. Thank you for your July 27, 2022 letter commenting on the Pre-Assessment Consultation letter recommendations to minimize potential impacts to State listed Hawaiian Hoary Bat, Hawaiian The recommendations provided by DOFAW have been included in Section 3.6.2 of the Draft Environmental Assessment (Draft EA).

A copy of your July 27, 2022 letter, as well as this response letter, will be included in the Draft comments or questions regarding the proposed project, please feel free to contact me at (808) EA. We appreciate your participation in the EA process. Should you have any additional 356-1242 or by email at jchang@ssfm.com.

SSFM INTERNATIONAL, INC.

Jared K. Chang, AICP

Manager, Strategic Services Group Email: jch 501 Summer Street | Suite 820 | Hornoldu, Hawaii 96817 | Tel 808.531.1308 | Fax 855.329.7736 | www.ssfm.com Planning | Project & Construction Management | Structural, Civil & Traffic Engineering



DAVID Y. IGE GOVERNOR



SSFM INTERNATIONAL, INC.

AUG 0 1 202 RECEIVED

DX0

#### DEPARTMENT OF EDUCATION STATE OF HAWAI'I

P.O. BOX 2360

HONOLULU, HAWAI'I 96804 OFFICE OF FACILITIES AND OPERATIONS

July 28, 2022

Jared K. Chang, AICP

SSFM International

501 Sumner Street, Suite 620 Honolulu, Hawaii 96817 Pre-Assessment Consultation for Draft Environmental Assessment for the Waimea Nui Regional Community Development Initiative, Kipuka o ke Ola Clinic Relocation, Waimea, South Kohala District, TMK (3)6-4-038:011 Re:

Dear. Mr. Chang:

Thank you for your letter that dated, July 1, 2022. Based on the information provided, the proposed project will not impact Hawaii State Department of Education facilities.

Thank you for the opportunity to comment. Should you have any questions, please contact Cori China of the Facilities Development Branch, Planning Section, at (808) 784-5095.

Sincerely,

Interim Public Works Manager Planning Section Roy Ikeda

RI:ctc

c: Facilities Development Branch

AN AFFIRMATIVE ACTION AND EQUAL OPPORTUNITY EMPLOYER



October 3, 2022

State of Hawai'i Ţ

Department of Land and Natural Resources

Engineering Division

1151 Punchbowl St., Room 221

Honolulu, Hawai'i 96813

Mr. Roy Ikeda, Interim Public Works Manager Attention:

Waimea Nui Regional Community Development Initiative SUBJECT:

Kīpuka o ke Ola (KOKO) Clinic Relocation

Tax Map Key: (3) 6-4-038:011 por.

Waimea, South Kohala District, Island of Hawai'i

Pre-Assessment Consultation Comment Response Letter

Dear Mr. Ikeda,

for the subject project. The State Department of Hawaiian Home Lands acknowledges the State Department of Education's (DOE) comment that the proposed project will not impact any DOE Thank you for your July 28, 2022 letter commenting on the Pre-Assessment Consultation letter facilities.

A copy of your July 28, 2022 letter, as well as this response letter, will be included in the Draft comments or questions regarding the proposed project, please feel free to contact me at (808) EA. We appreciate your participation in the EA process. Should you have any additional 356-1242 or by email at jchang@ssfm.com.

SSFM INTERNATIONAL, INC.

Jared K. Chang, AICP

Manager, Strategic Services Group Email: jchang@ssfm.com 501 Sumner Street | Suite 620 | Honolulu, Hawaii 96817 | Tel 808 531 1308 | Fax 855 329 7736 | www.ssfm.com Planning | Project & Construction Management | Structural, Civil & Traffic Engineering

Mitchell D. Roth

Lee E. Lord Managing Direct West Hawai'i Office 74-5044 Ane Keobiokälole Hwy Kailua-Kona, Hawai'i 96740 Phone (808) 323-4770 Fax (808) 327-3563

SSFM 2021\_043.000



Zendo Kern

Jeffrey W. Darrow

Deputy Director

East Hawai'i Office 101 Pauahi Street, Suite 3 Hilo, Hawai'i 96720 Phone (808) 961-8288 Fax (808) 961-8742

County of Hawai µi PLANNING DEPARTMENT

August 30, 2022

Honolulu, HI 96817 SSFM International 501 Sumner Street Jared K. Chang

Dear Mr. Chang:

SUBJECT:

Early Consultation for Draft Environmental Assessment (PL-INT-2022-003133)

Waimea Nui Regional Community Development Initiative Landowner: Department of Hawaiian Homelands (DHHL) . puka o ke Ola (KOKO) Clinic Relocation Project:

(3)6-4-038:011 por. Waimea, South Kohala District, Island of +DZDL% Location:

Thank you for including us in early consultation for this draft environmental assessment.

The State Land Use designation of the subject property is Agriculture. Hawai'i Revised Statutes (H.R.S.), Section 205-4.5 allows for 'public institutions and buildings that are necessary for agricultural practices" to be permitted uses in Agriculture State Land Use districts<sup>1</sup>. The Land Use agricultural lands has long been a policy of the County"3. The County Zoning of the property is Pattern Allocation Guide (LUPAG) Map from the 2005 General Plan designation is Important Agricultural Land<sup>2</sup>. In the face of competition from urban uses, "the protection of important agriculturally based residential use, encompassing rural areas of good to marginal agricultural and grazing land, forest land, game habitats, and areas where urbanization is not found to be also agriculture and noted as A-40a, which provides for agricultural and very low density appropriate4

cannot override the authority of the Hawaiian Homes Commission to control the uses of its The Planning Department herein references the Memorandum of Agreement between the County of Hawai'i and the Department of Hawaiian Homelands (dated January 7, 2003): "County zoning

planning@Hawai icounty gov

H.R.S. §205-4-5(a)(5)

<sup>2-</sup>important Agricultural Land: Important agricultural lands are those with better potential for sustained high agricultural yields because of soil type, climate, topography, or other factors?.
2-20th Sequent Plan 2.1 (Agriculture)
4-HCC Sec. 25-5-70, Purpose and Applicability

Hawai'i County is an Equal Opportunity Provider and Employer www.planning Hawai recounty gov

SSFM International August 30, 2022 Jared K. Chang

property". Please continue to inform the County of any changes in preferred zoning designation for the subject (DHHL) parcel; DHHL will choose from existing county zoning districts and the Planning Department will enter those on its maps. Moreover, the Planning Department herein references the November 13, 2019 Attorney General Opinion which opines that under the Hawaiian Homes Commission Act, laws that would significantly affect" DHHL's use of its lands cannot apply to Hawaiian Home Lands. You may reference the enclosed Attorney General's opinion in furtherance of resolving any State/County LUC's classifications conflict with DHHL's uses of its lands for homesteading purposes, the land use conflicts that may arise for the subject (DHHL) parcel. To wit: "To the extent that the HHCA will control and the LUC's classifications cannot be enforced". We look forward to reviewing the Draft Environmental Assessment when available. If you have any questions regarding this correspondence, please contact Kevin Sullivan of this office at (808) 961-8135 or via email at kevin sullivan@hawaiicounty.gov.

Sincerely,

Zendo Kern

09:48 HST)

ZENDO KERN

Planning Director

January 7, 2003 Memorandum No. 03-2: MOA between County of Hawai'i and the DHHL Attachments:

November 13, 2019 Attorney General Opinion (The Honorable William J. Aila, Jr.)

%coh01/planning/public/wpwin60/CH343/2022/08.30.2022\_PL-INT-2022-003133\_PreConsultDEA\_WaimeaNuiRegionalCommDev.docx

Harry Kim



Christopher J. Yuen Director

Roy R. Takemoto Deputy Director

## County of Naturii

#### 25 Aupuni Street, Room 109 • Hilo, Hawaii 96720-4252 (808) 961-8288 • Fax (808) 961-8742 PLANNING DEPARTMENT

MEMORANDUM NO. 03-2

January 7, 2003

STAFF TO: CHRISTOPHER J. YUEN PLANNING DIRECTOR FROM:

HAWAII AND THE DEPARTMENT OF HAWAIIAN HOME LANDS MEMORANDUM OF AGREEMENT BETWEEN THE COUNTY OF SUBJECT:

covers various areas such as the payment of real property taxes and county maintenance of facilities on DHHL property. The purpose of this memo is to explain how the MOA The County of Hawaii and the Department of Hawaiian Home Lands have adopted a Memorandum of Agreement. A copy of the full MOA is attached to this memo. It affects our activities in the Planning Department.

regulations that do not have the effect of controlling the ultimate use still apply. Much of The basic premise of the MOA is that County zoning cannot override the authority of the what the Planning Department does—subdivision approval, plan approval, building permit review—happens after the determination of the basic use has been zoned. These Planning Department services are necessary for the orderly development of land in this county. They are a service both to the affected landowner and the general community. Hawaiian Homes Commission to control the uses of its property. However, County

but not any final authority. Generally speaking, DHHL must go through a Chap. 343 EIS Those plans are currently being formulated. The Planning Department will have input, Under the MOA, DHHL will determine the uses for its lands through its own planning system, and will follow land use plans adopted by the Hawaiian Homes Commission. process before beginning any new projects, because of the Hawaii Supreme Court's decision in Kepo'o v. Watson, 87 Haw. 91, 952 P.2d 379 (1998), so the public can comment on their plans during that process.

STAFF
Page 2
January 7, 2003

· ·

DHHL will let the County know its preferred zoning designation for its property and the Planning Department will enter those on its maps. DHHL will choose from the existing county zoning districts. For lands that are presently occupied, we will be writing to DHHL to suggest zoning designations that are consistent with the present uses. For example, the present Walmart Center site is zoned ML; the present uses would be more consistent with CG or possibly MCX.

We will have some formality in entering these zoning designations on the maps. I will be writing to DHHL to ask whether these zoning designations for existing uses should be decided by the Commission or by their staff. On our end, there will be a director's memo directing the change in the zoning maps after we get word from DHHL, and the map entry will reference the memo.

Thereafter, the Planning Department will administer permits and approvals on DHHL property in the same way as it would for other landowners (with slight differences as discussed in this memo.) The MOA says that "all normal land use controls will be applied by Hawaii County to DHHL property according to the zoning district selected by DHHL." This means that, for example, that if DHHL constructs a new residential subdivision in what they have designated as an RS-10 zone, they will apply for subdivision approval in the same manner as other subdividers, and will be held to the same standards for roads and other infrastructure (unless they obtain a variance or a PUD, again through normal procedures). DHHL lessees who wish to construct buildings in commercial districts will need Plan Approval. In reviewing building permits for homes on DHHL property, Planning Department staff will look for the same elements as in the applicable zoning district: setbacks, heights, etc. We will continue to waive subdivision fees for DHHL property.

All permit applications will have to be accompanied by a written consent from DHHL. Unless you are instructed otherwise, a consent signed by a DHHL staff person will be adequate; this will not be done by the Commission. We will be writing DHHL to determine if there are categories of applications that will not need DHHL consent, such as building permits for minor home improvements.

Under the MOA, the county will also enforce land use violations on Hawaiian home lands. Because of some transitional issues, all complaints should be discussed with the director or deputy director before any action is taken. One of the main transitional issues is that some of the present zoning designations will have to be changed: we will not be citing Walmart and Borders as zoning code violations pending the change from ML. We

STAFF Page 3 January 7, 2003 will also inform DHHL of any violation before we make a citation and give them the opportunity to correct it before we take any enforcement action. For the most part, zoning violations will also be violations of the DHHL lease. There are going to be some thorny issues with respect to violations because in some cases, people established businesses on DHHL property that are inconsistent with zoning after observing that the County was taking the position that it had no jurisdiction to control land uses on DHHL property.

DHHL lessees will have to apply (with DHHL consent) for special permits on ag land, and for use permits on residentially-zoned land, if they wish to commence uses that would need special permits or use permits in the zone in question. The MOA does contemplate that DHHL may implement its own special permit procedure at some point in the future.

For new developments, County zoning will not control the ultimate use; our only role will be to comment. The MOA does commit DHHL to build offsite infrastructure necessary for the new development (such as access roads to the property) to the same extent that would be expected of a private developer similarly situated.

This memo probably does not answer all questions that might arise in connection with DHHL property. Any questions should be brought to the director or deputy director. The MOA itself does not answer all questions. We are committed to working out unresolved issues with DHHL in a cooperative spirit. Staff should bring these issues to the director or deputy director so that we can discuss them with DHHL.

During the negotiation of the MOA we had questions about the overall legality of the agreement. There is definitely a legal "gray area" with respect to the county's authority over DHHL property. There is also a gray area with respect to state property in general. These jurisdictional disputes and gray areas have led to the government not doing its job of serving the public. "Roads in limbo" is a prime example. The DHHL MOA is the attempt of the County government and DHHL to get back on track in a positive way. The only ways to remove the legal ambiguities are (1) legislation enacted by the state legislature, and (2) litigation. Either of these routes often results in further ambiguity and uncertainty.

Turning to the legality of the present MOA, it is clear that, in general, the county has no zoning authority over DHHL property unless some state statute gives it that authority. It is also clear that the County has no authority to prohibit DHHL from taking the property

STAFF Page 4 January 7, 2003

.,

granted to it and leasing it to Native Hawaiians for residential, agricultural, and pastoral uses. The major gray area concerns the laws that permit DHHL to lease land for commercial and industrial uses. It is not clear whether these laws incorporate the same restriction as DLNR leases of commercial and industrial lands: that they be "consistent with county zoning requirements". See H.R.S. sec. 171-41(a) (which applies to DLNR leases), and which possibly applies to commercial and industrial leases on DHHL property because of sec. 204(a)(2) of the Hawaiian Homes Act.

From the County's point of view, we want our zoning control to cover all lands so that we can implement comprehensive planning. From DHHL's point of view, it could not accept county zoning control without clear legal authority, and the County had previously acceded to DHHL's position that its commercial leases were not subject to county zoning (most prominently in the case of Walmart Center.) We primarily based the ultimate compromise in the MOA on the Hawaii Supreme Court's statement in Kepo'o v. Walson that zoning restrictions would not apply on DHHL property because they had the ultimate effect of controlling the use. 87 Haw. at 101. Although this is not a binding statement of the law, because the case did not directly involve county zoning, it is the closest statement made by the court on the issue.

On the other hand, the court also said in Kepo'o that DHHL property could be subject to other governmental regulations enacted to promote the public health and safety, such as environmental laws, as long as they had only an incidental or indirect effect upon the use of the property. This, therefore, is the legal basis for applying other regulations such as the various standards of the zoning code (setbacks, required parking areas, etc.), the building code, the subdivision code, grading ordinance, flood control laws, etc.

We have a February 2002 corporation counsel opinion that says that the approach taken by the MOA is legal and superceding Corporation Counsel Opinion 98-02.

CJY:pak

Wpwin60/Chris\DHHL Staff on MOA.doc - No. 03-02

Attachment

cc: Mayor Harry Kim

Mr. Darrell C. Yagodich, DHHL via Planning Office

# Memorandum of Agreement Between the County of Hawaii and the Department of Hawaiian Home Lands

#### I. Purpose

The purpose of this Memorandum of Agreement (MOA) is to clarify the respective roles, responsibilities, and obligations of the County of Hawaii (County) and the Department of Hawaiian Home Lands (DHHL) relating to land use planning, infrastructure maintenance, enforcement of laws, and collection of taxes and other fees on Hawaiian home lands.

### II. Guiding Principles

The following general principles have guided the development of this MOA:

- A. The Hawaiian Homes Commission is responsible for determining land use on Hawaiian home lands. The County may not use its land use and zoning powers to prevent the Hawaiian Homes Commission from controlling the use of Hawaiian home lands.
- B. The County and DHHL share common goals in planning for the use of Hawaiian home lands: both support the orderly development of those lands for the benefit of native Hawaiians and both are committed to the integration of planning by DHHL and Hawaii County.
- C. The County should manage and maintain all infrastructure built to County standards
- The County is authorized to enforce criminal laws and applicable County ordinances and regulations on Hawaiian home lands.
- Hawaiian homestead lessees are residents of the County of Hawaii and should be treated in a manner consistent with all other residents of the County.
- F. Hawaiian homestead lessees should pay all taxes and fees required by law.
- G. The County and DHHL acknowledge that there are areas where agreement will not be reached, and agree to continue to work together toward a mutually acceptable resolution of such issues.

# III. Relating to Planning and Land Use

DHHL will implement its Planning System which includes plans with DHHL land use designations such as the Hawaii Island Plan, various Development and Subdivision Plans, and Homestead Community Plans. In the formulation, updating, and amendment of these plans, DHHL will consult with the relevant County departments, and shall give due consideration and weight to their

COH/DHHL Memorandum of Agreement Page 2

· : ./. comments, and to the Hawaii County General Plan, and other officially adopted plans such as Community Development Plans. All land uses on DHHL property will be placed according to the applicable DHHL plans.

- B. The County will consult with DHHL over the appropriate designations of DHHL property in the Hawaii County General Plan LUPAG maps, and shall give due weight and consideration to the comments of DHHL, and to officially adopted DHHL plans.
- Based on its plans and DHHL land use designations, DHHL will determine the appropriate County zoning districts that shall apply to the property in question. DHHL will communicate these zoning districts to the County.
- D. All normal land use controls will be applied by Hawaii County to DHHL property according to the zoning district selected by DHHL. Except as specifically provided in the Agreement, DHHL will follow all normal land use procedures, regulations, and standards applicable to the zoning district.
- E. All land use permit applications on Hawaiian home lands must be accompanied by written consent from DHHL before the County can begin processing those applications.
- F. The standards of the various zoning districts selected will apply to DHHL property. DHHL and its lessees will go through normal County administrative variance procedures if they seek exemptions from standards.
- G. For uses allowed in the various zoning districts that require special permits or use permits, DHHL and its lessees will go through the applicable County permit procedures. At some time in the future, DHHL may implement its own use permit procedure for Hawaiian home lands. If DHHL grants use permits, it will be responsible for enforcing violations of those permits. The County will be notified when DHHL has formulated its use permit system.
- H. The County will advise DHHL of all violations by its lessees. The County will enforce land use codes and regulations on Hawaiian home lands in the same manner as with other landowners. DHHL will cooperate with the County in enforcing the terms of its leases requiring conformity to applicable laws and regulations, if requested by the County, Ongoing violations and failure to comply will be referred to DHHL after the County has exhausted all remedies short of pursuing legal action to address the violation. DHHL may institute lease enforcement proceedings in advance of, or in lieu of, County enforcement actions.

COH/DHHL Memorandum of Agreement Page 3

# IV. Relating to Public Facilities and Infrastructure Serving Hawaiian Home Lands

- In the development of future projects, DHHL will construct public facilities in accordance with County standards. Where departures from County standards are desired, DHHL will pursue exemptions and other administrative variances from the appropriate County department, in accordance with procedures established for all property owners. Should DHHL choose not to construct infrastructure in accordance with County standards, the County may view such improvements as private facilities for repair and maintenance purposes.
- The County will accept operation, repair, and maintenance of all future DHHL infrastructure constructed according to County standards.
- C. Existing infrastructure shall be subject to County inspection prior to being accepted by the County for operation, repair, and maintenance. The County may require DHHL to repair any damage such as leaks, holes, sags, or deterioration affecting the operation of the existing infrastructure, identified as a result of the inspection.
- D. In the case of existing infrastructure that is not constructed to County standards, the County and DHHL will work to establish minimum standards for residential, agricultural, and pastoral subdivisions. Existing projects will be evaluated based on these new standards. The County may require DHHL to upgrade the infrastructure to the minimum standard prior to being accepted by the County for operations, repair, and maintenance.
- E. The County will maintain infrastructure according to its own standards, resources and schedules. Any decisions as to upgrades or rehabilitation will be at the County's discretion.
- F. Should DHHL elect to convert its land to a more intensive land use, DHHL will be responsible for upgrading the onsite infrastructure to accommodate the new use, and will consult with the County regarding the need to upgrade offsite infrastructure. DHHL and the County shall negotiate the extent to which DHHL will be responsible for any such offsite improvements requested by the County. DHHL shall be responsible for project-related offsite improvements to the extent that these would be required of other developers with similar projects. If offsite improvements benefit other property, DHHL and the County shall cooperate so that DHHL bears only its fair share of these improvement costs.
- G. The County will treat DHHL lessees in the same manner as other property owners with respect to conformity with laws, ordinances, and regulations. The County will advise DHHL of violations, and will refer cases of ongoing violation to DHHL after the County has exhausted all remedies short of pursuing legal action

COH/DHHL Memorandum of Agreement Page 4 to address the violation. DHHL reserves the right to institute lease enforcement proceedings in advance of, or in lieu of, County enforcement actions.

# V. Relating to the Enforcement of Criminal Violations on Hawaiian Home Lands

- A. The County is authorized to and will enforce violations of criminal law on Hawaiian home lands.
- B. County law enforcement agencies and DHHL will work to establish procedures regarding sharing information and providing testimony relating to arrests made on Hawaiian home lands needed for contested case hearings and other administrative and/or judicial proceedings.

## VI. Relating to Real Property Taxes

- A. Homestead lessees on Hawaiian home lands are responsible for the payment of real property taxes in accordance with the Hawaiian Homes Commission Act, 1920, as amended, and applicable County ordinances.
- B. The County agrees to waive the penalty and interest on all delinquent real property taxes owed by Hawaiian homestead lessees as of December 31, 2001. Such waiver will apply to payments made by February 20, 2002, or to payments advanced by DHHL pursuant to paragraph C.
- C. For those homestead lessees with real property tax balances, excluding penalty and interest, of more than \$500, if payment is not made by February 20, 2002, DHHL will advance full payment of all real property taxes, excluding penalty and interest, to bring those bills current, within 60 days of receipt of an updated real property tax listing. This date may be extended by mutual agreement of the parties.
- D. It is understood that the County's waiver of interest and penalty charges on delinquent real property taxes owed by homestead lessees as of December 31, 2001, and DHHL's advance of full payment of real property taxes, excluding interest and penalty, in accordance with paragraph C, is a one-time only offer.
- In order to alleviate or reduce further delinquencies, the County will notify DHHL
  on an annual basis of any delinquent property owners.
- F. The parties will continue to meet on an annual basis to evaluate the extent of delinquencies by Hawaiian homestead lessees on the Island of Hawaii and take action, if necessary, to keep delinquencies from recurring.

COH/DHHL Memorandum of Agreement Page 5

- 4-

G. The County and DHHL shall work to establish a customer trust fund by July 1, 2004 to collect real property tax payments as part of the mortgage/loan payments in order to make smaller, regular payments.

## VII. Areas for Further Collaboration

The parties agree to work further on the following issues:

- The creation of new County zoning districts for farming and pastoral activities.
- B. The development of infrastructure standards for rural land uses such a agricultural and pastoral activities.
- The establishment of procedures for sharing evidence, information, and testimony involving criminal violations on Hawaiian home lands.

C)

 The implementation of actions to prevent and/or address future real property tax delinquencies by Hawaiian homestead lessees.

#### VIII. Termination

To achieve the objectives of this MOA, either party may, by mutual agreement in writing, further clarify or waive any term or condition of this agreement, provided such action does not violate any statutes, ordinances, or binding rules or regulations. DHHL and the County reserve the right to terminate this MOA upon one hundred eighty (180) days notice in writing to the other party.

In agreement thereof, the parties have entered into this Memorandum of Agreement on this \_\_\_\_\_\_ day of \_\_\_\_\_\_\_, 2002.

COUNTY OF HAWAII

Harry Kim Mayor

DEPARTMENT OF HAWAIIAN HOME LANDS

By
Raynard C. Soon, Chairman
Hawaiian Homes Commission

APPROVED AS TO FORM:

By Jan-

Corporation Counsel

Deputy Attorney General

DAVID Y. IGE GOVERNOR



STATE OF HAWAI'I

CLARE E. CONNORS
ATTORNEY GENERAL
DANA O. VIOLA
PIRST DEPUTY ATTORNEY GENERAL

STATE OF HAWAI'I
DEPARTMENT OF THE ATTORNEY GENERAL
445 QUEEN STREET
HONOLLUL, INWANT 9813
THE (1901 957 - 3080
Fex. (180) 951-372

November 13, 2019

#### CONFIDENTIAL/ ATTORNEY-CLIENT PRIVILEGED

The Honorable William J. Aila, Jr.
Chairman, Hawaiian Homes Commission
Department of Hawaiian Home Lands
State of Hawaii
91-5420 Kapolei Parkway
Kapolei, Hawai'i 96707

Dear Chairman Aila:

### Re: Enforcement of Land Use Classifications Over Certain Hawaiian Home Lands

This letter responds to your request for an opinion as to whether the land use classification powers of the Land Use Commission extend to lands controlled by the Department of Hawaiian Home Lands.

We understand that your request arises from an inquiry by the County of Hawai's as to whether its zoning responsibilities under chapter 205, Hawaii Revised Statutes, are applicable to DHHL's proposed subsistence agricultural homestead development on its lands in Pana'ewa, Hawai's. 12

The Honorable William J. Aila, Jr. November 13, 2019 Page 2 of 11 In addition to its concerns regarding DHHL's subsistence agriculture homestead development, the County also asked DHHL to address apparent conflicts between DHHL's existing homestead developments and County zoning, which is based on the LUC's land classifications. The following table summarizes the DHHL developments identified as problematic by the County:

| DHHL Project                                                             | Zoning Change       | LUC Classification                                            |
|--------------------------------------------------------------------------|---------------------|---------------------------------------------------------------|
| Pana'ewa Subsistence<br>Agricultural Lots                                | A-5a/A-1a to RA5a   | Agricultural                                                  |
| Kawaihae Residential Lots                                                | A-40a to RS-22      | Agricultural                                                  |
| Pana'ewa Residential Lots                                                | RS-10/A-5a to RS-15 | Agricultural                                                  |
| Pu'u Pulehu Residential Lots                                             | A-40a to RS-10      | Agricultural                                                  |
| Kauhale 'Ōiwi o Pu'ukapu<br>Cultural and Community<br>Educational Center | A-40a to CV-10      | Agricultural, would require<br>special use permit from<br>LUC |
| Lalamilo Residential Lots                                                | A-5a to RS-10       | Agricultural                                                  |
| Maku'u Farmers Market                                                    | A-5a to CV-38       | Agricultural, would require<br>special use permit from        |

We address the issues raised by you and the County by answering the following question.

## **OUESTION PRESENTED**

The only question presented by your request is whether the LUC's land classification powers, and the County's powers to enforce such classifications, extend to the developments identified by the County as conflicting with existing LUC classifications.<sup>3</sup>

### SHORT ANSWER

No. Under the HHCA, laws that would "significantly affect" DHHL's use of its lands cannot apply to Hawaiian home lands. To the extent that the LUC's classifications conflict with DHHL's uses of its lands for homesteading purposes, the HHCA will control and the LUC's classifications cannot be enforced.

<sup>&</sup>lt;sup>1</sup> The terms "Hawaiian home lands," "DHHL lands," "lands controlled by DHHL," and "its lands" are used interchangeably throughout this opinion with the term "available lands," which consist of all the lands described in section 203 of the Hawaiian Homes Commission Act, 1920, Act of Fuly 9, 1921, ch. 42, 42 Stat. 108, and all other lands later designated by statute to constitute "available lands." This includes lands acquired by DHHL after the enactment of the HHCA.

<sup>&</sup>lt;sup>2</sup> Under chapter 205, HRS, the counties are responsible for zoning within the LUC's land classification districts and are tasked with enforcing the LUC's land classifications in most situations. See footnote 8 of this letter.

<sup>&</sup>lt;sup>3</sup> Because the land in question is being developed for homestead purposes under the HHCA, we do not answer whether the LUC's powers extend to Hawaiian home lands being leased to private entities for non-homestead development under chapter 171, HRS.

<sup>4</sup> Should the lands in question lose their status as Hawaiian home lands, such as through a

The Honorable William J. Aila, Jr. November 13, 2019 Page 3 of 11

### III. DISCUSSION

# Laws Governing DHHL Lands And The LUC

# Federal and State laws relating to DHHL lands

As a compact with the United States upon admission of Hawai'i as a state, Hawai'i accepted the responsibility to manage and dispose of the Hawaiian home lands under the terms of the HHCA, and adopted the HHCA as a provision of the Hawai'i Constitution. § See section 4 of the Admission Act. 6 The HHCA is made a part of the state constitution by article XII, sections 1 and 3, of the Hawai'i Constitution.

Section 204(a) of the HHCA provides that all "available lands" shall "immediately assume the status of Hawaiian home lands and be under the control of the department to be used and disposed of in accordance with the provisions of this Act. ..."

The HHCA contains several exceptions to DHHL's sole authority to manage Hawaiian home lands: (1) any available lands under a lease made by the Territory of Hawaiii are to be managed by the Board of Land and Natural Resources (BLNR) until the lease expires or the land is withdrawn from the lease by BLNR, at which time the lands will be returned to DHHL's control; (2) DHHL may return available lands to BLNR if they are not used for homesteading purposes, subject to DHHL's right to reclaim such lands if they are subsequently required for homesteading, and (3) available lands may be exchanged for other lands of equal value only with the approval of the Secretary of the Interior of the United States. See HHCA §§ 204(a)(1), (2), and (3), respectively; see also HHCA § 212.

land exchange under section 204 of the HHCA, the LUC's classifications can be enforced on those lands from that point forward.

The Honorable William J. Aila, Jr. November 13, 2019 Page 4 of 11 In addition, section 206 of the HHCA provides that the powers and duties of the Governor and the BLNR "in respect to the lands of the State, shall not extend to lands having the status of Hawaiian home lands" except as provided in the HHCA.

### DHHL's authority to manage its lands is generally subject to the State's police power

Although the HHCA places control of Hawaiian home lands with DHHL, the Hawai'i Supreme Court has held that the State may exercise its general police power on DHHL lands. In State v. Jim, 80 Hawai'i 168, 907 P.2d 754 (1995), two individuals were convicted of criminal trespass on Hawaiian home lands. In upholding their convictions, the Hawai'i Supreme Court held that the government may enforce its criminal laws on Hawaiian home lands because the exercise of the State's inherent police power "does not necessarily conflict with the responsibility to manage and dispose of these trust lands." Id. at 171, 907 P.2d at 757.

Our office has also opined that the Hawai'i Endangered Species Act, codified as chapter 195D, HRS, applies to the taking of endangered species on Hawaiian home lands. See Attorney General Opinion No. 95-05. There, our office applied the reasoning of the *Iiim* decision and opined that the criminal penalties imposed by chapter 195D, HRS, are an exercise of the State's inherent police power that "are not necessarily in conflict with the Commission's responsibility to manage and dispose of these trust lands." Id.

Following Jim, the Hawai'i Supreme Court placed a limitation on the State's exercise of its inherent police powers on Hawaiian home lands. In Kepo'o v. Watson, 87 Hawai'i 91, 100, 952 P.2d 379, 388 (1998), the Hawai'i Supreme Court held that the State's inherent police power cannot be exercised over Hawaiian home lands when such actions would "significantly affect" DHHL's use of the land. This limitation is discussed more fully in section III.B.2 of this letter.

## Statutory provisions governing the LUC

Chapter 205, HRS, tasks the LUC with establishing and amending boundaries for four major types of land use districts: urban, rural, agricultural, and conservation. HRS §§ 205-2 and 205-3.1. The LUC must place "all lands in the State" into one of the four types of land use districts. HRS § 205-2.

Each land use district is limited to certain permissible uses. For example, section 205-2, HRS, limits uses in an agricultural district to activities commonly associated with farming, such as cultivation of crops, animal husbandry, and aquaculture. Permissible uses on lands in an agricultural district that have soil ratings of A or B are further limited by

<sup>&</sup>lt;sup>5</sup> Generally, the HHCA requires DHHL to make its lands available to native Hawaiians for residential, agricultural, and pastoral homesteading. See HHCA § 207. Under the Act, "native Hawaiian" is defined as "any descendant of not less than one-half part of the blood of the races inhabiting the Hawaiian Islands previous to 1778." See HHCA § 201.

<sup>5</sup> Act of March 18, 1959, Pub. L. No. 86-3, § 4, 73 Stat. 4.

<sup>&</sup>lt;sup>7</sup> The HHCA originally placed control of Hawaiian home lands with a body known as the Hawaiian Homes Commission. Shortly after statehood, the Legislature created DHHL as the state agency responsible for managing Hawaiian home lands. The Commission is now the executive body that controls DHHL. <u>See</u> HHCA § 202.

The Honorable William J. Aila, Jr. November 13, 2019 Page 5 of 11 section 205-4.5, HRS. Land uses in a district contrary to those permitted by chapter 205 are not allowed unless the LUC amends the relevant district boundary to reclassify the land in question. HRS §§ 205-3.1 and 205-17.

Section 205-12, HRS, provides that the counties have the authority to enforce the land use classification districts adopted by the LUC and punish violators. <sup>8</sup> <sup>9</sup> The initial penalty for violation of any provision of chapter 205 is no more than \$1,000 (or no more than \$5,000 for an initial violation of a provision relating to land in an agricultural district). HRS \$205-13. Subsequent violations may result in a fine of no more than \$5,000. Id.

In the Event of a Conflict, The LUC's Land Use
Designations and County Zoning Must Yield To
DHHL's Authority to Manage Hawaiian Home Lands

In this case, there is an apparent conflict between section 204(a) of the HHCA, which provides that Hawaiian home lands are to "be under the control of [DHHL] to be used and disposed of in accordance with the provisions of this Act," and the land classifications designated by the LUC, as well as the zoning imposed by the County pursuant to those classifications. For the following reasons, we believe that the LUC's land classifications and County zoning must yield to DHHL's authority to determine the appropriate use of its lands in the event of a conflict.

The HHCA gives DHHL sole authority to manage its lands Section 204(a) of the HHCA provides that all available lands are to be "under the control of [DHHL] to be used and disposed of in accordance with the provisions of this Act."

Other provisions of the HHCA support the position that DHHL is to be the sole entity authorized to manage Hawaiian home lands. For example, section 206 of the HHCA provides that the powers of the Governor and the BLNR, with respect to the lands of the State, shall not extend to Hawaiian home lands. Section 207 of the Act authorizes DHHL to issue residential, agricultural, and pastoral homestead leases to native Hawaiians, as well as

The Honorable William J. Aila, Jr. November 13, 2019 Page 6 of 11 issue licenses for "railroads, telephone lines, electric power and light lines, and the like." Section 212 of the HHCA authorizes DHHL to return its lands to the BLNR is they are not needed for homesteading purposes, subject to DHHL's right to reclaim such lands if they are later needed for homesteads.

When a state constitutional provision conflicts with a state statute, the constitutional provision will control. <u>See</u> 16 C.J.S. <u>Constitutional Law</u> § 107 (2014). Here, to the extent that chapter 205, HRS, authorizes the LUC to regulate the permissible uses on the land on which the DHHL developments described herein are located, it conflicts with the HHCA's provision that requires all available lands to be "under the control of [DHHL] to be used and disposed of in accordance with the provisions of this Act." Since the HHCA is a constitutional provision under article XII, sections I and 3 of the Hawai'i Constitution, it will control over section 205, HRS.

This is consistent with the legislative history of the HHCA. On May 22, 1920, the following exchange occurred between Representatives Joseph Walsh of Massachusetts and Cassius Dowell of Jowa on the floor of the United States House of Representatives:

Mr. Walsh. Will there be duties conflicting in any way, or has provision been made in this bill for any possible conflict between the duties to be performed by this commission and any other governmental agency either of the Territory of Hawaii or the government of the United States? As I understand, these are public lands, in a sense. Now, is there provision in the bill which will prevent any possibility of conflict?

Mr. Dowell. I am very glad the gentleman has submitted that question. There is a public-land commissioner in Hawaii whose duty it is to have charge of the public lands. Under this bill certain specific lands are windrawn from his jurisdiction and from the jurisdiction of every commission except the special one to have charge of these specific lands described in this bill, and these lands are exclusively by the terms of the bill under the control of this commission.

Mr. Walsh. If the gentleman will permit, if I understand correctly, some of these lands are already under the jurisdiction of the existing land commissioner?

Mr. Dowell. All of them are.

Mr. Walsh. Now some of these restrictions end his jurisdiction, and power over them is vested in the new commission?

<sup>8</sup> The only exception to this is enforcement of violations within a conservation district. Enforcement of such violations rests with BLNR. <u>See</u> HRS § 205-15 and chapter 183C, 110.

<sup>&</sup>lt;sup>9</sup> The counties have other responsibilities under chapter 205. For example, section 205-3.1, HRS, authorizes counties to determine district boundary amendments when the land in question is less than 15 acres in size.

The Honorable William J. Aila, Jr. November 13, 2019 Page 7 of 11 Mr. Dowell. That is correct.

59 Cong. Rec. 7,495 (1920) (emphasis added).

This exchange shows that Hawaiian home lands were placed under the jurisdiction of the Hawaiian Homes Commission "to prevent any possibility of conflict" that would prevent the Commission from performing its duties under the HHCA. <u>Id.</u>

Furthermore, in an act authorizing the Territory of Hawai'i to create a public authority to engage in "slum clearance," Congress provided that the "commissioner of public lands, the Hawaiian Homes Commissioners, and any other officers of the Territory having power to manage and dispose of its public lands" could choose to convey lands to the new public authority. <sup>10</sup> Congress's specific citation to the Commission shows that it was intended to be the sole entity charged with controlling Hawaiian home lands, to the exclusion of the public lands commissioner and other commissions authorized to manage public lands.

 Laws that "significantly affect" DHHL's use of its lands do not apply to Hawaiian home lands The authority of DHHL to manage and use its lands has been discussed by the Hawai'i Supreme Court in three cases since statehood. In Ahuna v. Department of Hawaiian Home Lands, 64 Haw. 327, 640 P.2d 1161 (1982), the Hawai'i Supreme Court considered whether the Commission breached its duties to native Hawaiians when it withheld a 3.5-acre portion of an already-planned and established homestead lot from an eligible native Hawaiian for a "highly speculative" county highway extension.

In holding that the Commission owed fiduciary duties of loyalty and prudence to native Hawaiians, both collectively and individually, the Court considered the nature of the Act and DHHL's control over its lands:

The Department of Hawaiian Home Lands, headed by the Hawaiian Homes Commission, received exclusive control of the Hawaiian home lands by section 204 of the HHCA. The HHCA further stated: "the powers and duties of the governor and the board of land and natural resources, in respect to the lands of the State, shall not extend to lands having the status of Hawaiian home lands, except as specifically provided in this title." We conclude from this listory that the Hawaiian Homes Commission, which oversees the

The Honorable William J. Aila, Jr. November 13, 2019 Page 8 of 11 Department, is the specific state entity obliged to implement the fiduciary duty under the HHCA on behalf of eligible native Hawaiians.

Id. at 338, 640 P.2d at 1168 (internal citation omitted). The Court found that the Commission breached its duties in two ways. First, the Commission breached its duty of loyalty by valuing the interests of the citizens and taxpayers of the state in general over the interests of the beneficiaries, in deciding to withhold the 3.5 acres for the highway extension. Id. at 341-342, 640 P.2d at 1170-71. Second, the Commission failed to use reasonable skill and care in making trust property productive, by requiring nearly four acres of agricultural land to remain fallow for a "highly speculative" highway extension. Id. at 343, 640 P.2d at 1171. The Court thus held that DHHL was required to award the beneficiary a lease for the entire homestead lot. The lease could allow DHHL to withdraw a portion of the lot if needed for the highway, provided that DHHL relocate the lessee and pay him certain compensation. Id. at 343, 640 P.2d at 1171-72.

Building on <u>Ahuna</u>, the Court held in Jim, supra, that while "DHHL has had 'exclusive control' over the management and disposition of Hawaiian home lands since Hawai's became a state," the State retains authority to exercise its "inherent police power," on DHHL lands. Id. at 171, 907 P.2d at 757. In Jim, the police power in question was State and county enforcement of criminal laws on Hawaiian home lands. The Hawaii's Supreme Court reasoned that the enforcement of criminal laws on Hawaiian home lands "does not necessarily conflict with the responsibility to manage and dispose of these trust lands." Id. at 172, 907 P.2d at 758.

Finally, in Kepo'o, supra, the Hawai'i Supreme Court considered whether chapter 343, HRS, Hawaii's environmental impact statement law, applies to Hawaiian home lands. In holding that chapter 343 applies to DHHL lands, the Court determined that requiring State agencies (including DHHL) to perform environmental assessments on its lands prior to development constitutes a valid exercise of the State's police powers:

The present case, like Jim and Attomey General's Opinion No. 95-05, involves regulations enacted pursuant to the state's police power. The police power "extends to the public safety, health, and welfare." HRS ch. 343 involves EIS requirements and is therefore a type of environmental regulation. Clearly, environmental regulations are enacted for the purpose of protecting the public safety, health, and welfare. Consequently, the present case is similar to Lim in that HRS ch. 343, like the Hawai'i Penal Code, is a police power regulation.

Id. at 99, 952 P.2d at 387.

<sup>10</sup> Act of July 10, 1937, Pub. L. No. 202, 50 Stat. 508.

The Honorable William J. Aila, Jr. November 13, 2019 Page 9 of 11 Although the Kepo'o Court ultimately held that chapter 343 applies to Hawaiian home lands, it distinguished between laws that "significantly affect" the land, and those that merely have an incidental effect on DHHL's use of Hawaiian home lands. In characterizing its previous decision in Jim, the Court stated that "under Jim, police powers apply to Hawaiian home lands...as long as these regulations do not significantly affect the land." Id. The Court went on to explain:

Another aspect of this case that is similar to Jim is the fact that HRS ch. 343 does not significantly affect the land. HRS ch. 343 essentially requires decision makers to consider the potential impact of their projects on the environment and to prepare informational documents disclosing these effects....Thus, it is clear that HRS ch. 343 primarily establishes procedural and informational requirements.

Id. at 100, 952 P.2d at 388. The Court then discussed, in dicta, other laws that would fall within the inherent police powers of the State but would not apply to Hawaiian home lands because they significantly affect the land:

The effect of HRS ch. 343 on the land is also incidental in that the statute does not affirmatively require DHH. to use the land for any particular purposes. Whereas application of other laws, such as zoning ordinances, would require DHHL to use Hawaiian home lands for specific purposes, HRS ch. 343 marely places a hold on particular DHHL projects until DHHL complies with the procedural and informational requirements of the statute.

<u>Id.</u> at 101, 952 P.2d at 389 (emphasis added). The <u>Kepo'o</u> Court also referred favorably to this office's past opinions regarding State and county powers over Hawaiian home lands:

The incidental effect of HRS ch. 343 is even more obvious if the statute is compared to other government actions that have been the subject of Attorney General's Opinion No. 75-3 dealt with the practice of Setting aside lands for public use by executive order....Clearly, such set asides have a direct and significant effect on the land. Once set aside, the land cannot be used for homesteading purposes and is effectively removed from the Hawaiian home lands program. Similarly, Attorney General's Opinion No. 72-21 dealt with the applicability of county zoning ordinances to Hawaiian home lands.... Zoning laws affirmatively dictate how the land may be used and would therefore require DHHL to use Hawaiian home lands in a manner consistent with the relative zoning classification. This would also constitute a direct and significant effect on the land.

The Honorable William J. Aila, Jr. November 13, 2019 Page 10 of 11

Id.

While the LUC's land classification authority is undoubtedly an exercise of the State's inherent police powers to protect public safety, health, and welfare, we must determine whether such authority significantly affects DHHL's lands.

Pursuant to <u>Kepo'o</u> and the line of cases that precede it, we believe that in this case, chapter 205, HRS, has more than incidental effect on DHHL's use of its lands. On the contrary, these land classification powers are akin to the county zoning ordinances discussed in <u>Kepo'o</u>. Such regulations "affirmatively dictate how the land may be used" and would require DHHL to use its lands in a manner consistent with the LUC's classifications and the zoning imposed by the County pursuant to those classifications. For example, the LUC's land classifications and County zoning over DHHL's Pana'ewa Subsistence Agricultural Lots development would not allow DHHL to create subsistence agricultural lots of 0.5 acres. Similarly, DHHL could not allow the Maku'u Farmers Market or the Kauhale 'Giwi o Pu'ukapu Cultural and Community Educational Center to operate on lands the LUC has designated as part of the Agricultural District without receiving a discretionary special use permit from the LUC.

These regulations give the LUC the authority to directly and significantly affect DHHL's management and use of its lands for homesteading and are inconsistent with section 204 of the HHCA. Under article XII, sections 1 and 3, of the Hawai'i Constitution, which make the HHCA a part of the state constitution, the LUC's land classifications, along with the County's zoning based on Inlose classifications, must yield to DHHL's authority to determine the appropriate use of its lands.

The Honorable William J. Aila, Jr. November 13, 2019 Page 11 of 11

#### CONCLUSION IV.

LUC's land classifications and County zoning, DHHL's authority to determine the appropriate use of its lands must control. Accordingly, neither the LUC nor the County may To the extent that DHHL's developments described in this letter conflict with the enforce its land use controls in those conflicting circumstances.

Very truly yours,

Deputy Attorney General Matthew S. Dvonch

APPROVED,

Clare E. Connors Attorney General



October 3, 2022

SSFM 2021\_043.000

County of Hawai'i Ţ0:

Planning Department West Hawai'i Office 74-5044 Ane Keohokalole Hwy

Kailua-Kona, Hawai'i 96740

Mr. Zendo Kern, Planning Director Attention:

Waimea Nui Regional Community Development Initiative Kīpuka o ke Ola (KOKO) Clinic Řelocation SUBJECT:

Tax Map Key: (3) 6-4-038:011 por.

Pre-Assessment Consultation Comment Response Letter Waimea, South Kohala District, Island of Hawai'i

Dear Mr. Kern,

Zoning designation and the reference to the Memorandum of Agreement between the County of letter for the subject project. The State Department of Hawaiian Home Lands (DHHL) acknowledges the County of Hawai'i, Planning Department's comments regarding the existing State Land Use designation, Land Use Pattern Allocation Guide designation, and the County Thank you for your August 30, 2022 letter commenting on the Pre-Assessment Consultation Hawai'i and the DHHL. The DHHL will continue to inform the County of any changes in preferred zoning designation for the subject DHHL parcel.

Draft EA. We appreciate your participation in the EA process. Should you have any additional comments or questions regarding the proposed project, please feel free to contact me at (808) A copy of your August 30, 2022 letter, as well as this response letter, will be included in the 356-1242 or by email at ichang@ssfm.com.

SSEM INTERNATIONAL, INC.

Manager, Strategic Services Group Jared K. Chang, AICP Email: ichan 501 Sumner Street | Suite 620 | Hondulu, Hawaii 96817 | T4l 808 531,1308 | Fax 855,329,7736 | www.ssifn.com Planning | Project & Construction Management | Structural, CM & Traffic Engineering

| Waimea Nui Re | gional Community Develo | pment Initiative  |
|---------------|-------------------------|-------------------|
|               | Kīpuka o ke Ola (KOKO)  | Clinic Relocation |

**Appendix B – USFWS IPaC General Project Design Guidelines** 

## U.S. Fish & Wildlife Service

# General Project Design Guidelines (23 Species)

Generated August 18, 2022 01:33 AM UTC, IPaC v6.79.0-rc4



IPaC - Information for Planning and Consultation (https://fpac.ecosphere.fws.gov/): A project planning tool to help streamline the U.S. Fish and Wildlife Service environmental review process.

## Table of Contents

General Project Design Guidelines (23 Species) Species Document Availability

# Species Document Availability

# Species with general design guidelines

Band-rumped Storm-petrel Oceanodroma castro

Blackburn's Sphinx Moth Manduca blackburni

Green Sea Turtle Chelonia mydas

Hawaii Akepa Loxops coccineus Hala Pepe Pleomele hawaiiensis

Hawaiian (=koloa) Duck Anas wyvilliana

Hawaiian Goose Branta (=Nesochen) sandvicensis Hawaiian Coot Fulica americana alai

Hawaiian Hoary Bat Lasiurus cinereus semotus

Hawaiian Petrel Pterodroma sandwichensis

Hawaiian Stilt Himantopus mexicanus knudseni

Holei Ochrosia kilaueaensis

Holei Ochrosia haleakalae

Honohono Haplostachys haplostachya

Microlepia strigosa var. mauiensis

Newell's Townsend's Shearwater Puffinus auricularis newelli

Po'e Portulaca sclerocarpa

Popolo Ku Mai Solanum incompletum

Silene hawaiiensis

Stenogyne angustifolia var. angustifolia

Tetramolopium arenarium

Uhi Uhi Mezoneuron kavaiense

Vigna o-wahuensis

# Species without general design guidelines available

Ihi Portulaca villosa

Nehe Lipochaeta venosa

Page 1 IPaC v6.79.0-rc4 8/18/2022 1:34 AM

# General Project Design Guidelines - Popolo Ku Mai and 24 more species

Published by Pacific Islands Fish And Wildlife Office - Publication Date: April 1, 2022 for the following species included in your

Popolo Ku Mai Solanum incompletum

Hawaii Akepa Loxops coccineus

Holei Ochrosia kilaueaensis

Hawaiian (=koloa) Duck Anas wyvilliana

Uhi Uhi Mezoneuron kavaiense

Po'e Portulaca sclerocarpa

Stenogyne angustifolia var. angustifolia

Hawaiian Stilt Himantopus mexicanus knudseni

Hawaiian Goose Branta (=Nesochen) sandvicensis

Silene hawaiiensis

Band-rumped Storm-petrel Oceanodroma castro

Ihi Portulaca villosa

Hawaiian Coot Fulica americana alai

Tetramolopium arenarium

Hawaiian Hoary Bat Lasiurus cinereus semotus

Hawaiian Petrel Pterodroma sandwichensis Microlepia strigosa var. mauiensis

Newell's Townsend's Shearwater Puffinus auricularis newelli

Honohono Haplostachys haplostachya

Hala Pepe Pleomele hawaiiensis

Green Sea Turtle Chelonia mydas

Nehe Lipochaeta venosa

Holei Ochrosia haleakalae

Blackburn's Sphinx Moth Manduca blackburni

#### Avoidance, Minimization, and Conservation Measures for listed plants in the Pacific Islands

Project activities may affect listed plant species by causing physical damage to plant parts (roots, atems, flowers, fluits, seeds, etc.) as well as impacts to other life requisite features of their habitat which may result in reduction of germination, growth and/or reproduction. Cutting and removal of vegetation surrounding listed plants has the potential to after microsite conditions (e.g., light, moisture, temperature), damaging or destroying the listed plants and also increasing the risk of invasion by nonnative plants which can result in higher incidence or intensity of fire. Activities such as grazing, use of construction equipment and vehicles, and increased human traffic (i.e. trails, visitation, monitoring), can cause ground disturbance, erosion, and/or soil compaction which decrease absorption of water and nutrients and damage plant root systems and may result in reduced growth and/or mortality of listed plants. Soil disturbance or removal has the potential to negatively impact the soil seed bank of listed plant species if such species are present or historically occurred in the project area.

In order to avoid or minimize potential adverse effects to listed plants that may occur on the proposed project site, we recommend minimizing disturbance outside of existing developed or otherwise modified areas. When disturbance outside of existing developed or otherwise modified areas. When disturbance outside of the area where modified sites is proposed, conduct a botanical survey for listed plant species within the project action area, defined as the area where direct and indirect effects are likely to occur. Surveys should be conducted by a knowledgeable botanist with documented experience in identifying native Hawaiian and Pacific Islands plants, including listed plant species. Botanical surveys should optimally be conducted during the wettest part of the year (typically October to April) when plants and identifying features are more likely to be conducted during the wettest part of the year (typically October to April) when plants and identifying features are more likely to be

The boundary of the area occupied by listed plants should be marked with flagging by the surveyor. To avoid or minimize potential adverse effects to listed plants, we recommend adherence to buffer distances for the activities in the Table below. Where disturbed areas do not need to be maintained as an open area, restore disturbed areas using native plants as appropriate for the location. Whenever possible we recommend using native plants for landscaping purposes. The following websites are good resources to use when choosing landscaping plants: Landscape Industry Council of Hawai'i Native Plant Poster (https://hawaiiseape.wpengine.com/publications/), Native Hawaiiian Plants for Landscaping, Conservation, and Reforestation (https://hawaiiseape.wpengine.com/publications/), and Best Native Plants for Landscapes (https://www.ciahr.hawaii.edu/oc/freepubs/pdf/OF-40.pdf).

8/18/2022/134 AM ALS (2027/91-764 pdg)

Pacific Islands Fish And Wildlife Office - Publication Date: April 1, 2022 General Project Design Guidelines - Popolo Ku Mai and 24 more species

If listed plants occur in a project area, the avoidance buffers are recommended to reduce direct and indirect impacts to listed plants from project activities. However, where project activities will occur within the buffer recommended buffer distances, additional consultation is required. The impacts to the plants of concern within the buffer area may be reduced by placing temporary fencing or other barriers at the boundary of the disturbance, as far from the affected plants as practicable.

The above guidelines apply to areas outside of designated critical habitat. If project activities occur within designated critical habitat unit boundaries, additional consultation is required.

All activities, including site surveys, risk introducing nonnative species into project areas. Specific attention needs to be made to ensure that all equipment, personnel and supplies are properly checked and are free of contamination (weed seeds, organic matter, or other contaminants) before entering project areas. Quarantines and or management activities occurring on specific priority invasive species proximal to project areas need to be considered or adequately addressed. This information can be acquired by contacting local experts such as those on local invasive species committees (Kauai: <a href="https://www.canaisco.org/">https://www.canaisco.org/</a>; Oahu: <a href="https://www.canaisco.org/">https://www.canaisco.org/</a>; Maui https://www.canaisco.org/; Oahu: <a href="https://www.canaisco.org/">https://www.canaisco.org/</a>; and Hawaii: <a href="https://www.biisco.org/">https://www.canaisco.org/</a>; All activities of the management activities of the management activities of the management activities or an local invasive species committees (Kauai: <a href="https://www.canaisco.org/">https://www.canaisco.org/</a>; All activities of the management activities of the management activities of the management activities of the management activities or activities of the management activities or activities of the management activities or a

Table 1. Recommended buffer distances to minimize and avoid potential adverse impacts to listed plants from activities listed below.

| (m 052) ft 028                                              | + xnamqiupa dybiw x2<br>hogafa yo | Removal of Vegetation with Heavy Equipment (e.g.,<br>bulldozer, tractor, "bush hog")        |
|-------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 3 ft up to height of removed vegetation (whichever greater) | 3 ft up to height of removed vegetation (whichever greater)           | Mechanical Removal of Individual Plants or Woody<br>Vegetation (e.g., chainsaw, weed eater) |
| (m l) ft £                                                  | (m I) ft £                                                            | Cutting and Removing Vegetation By Hand or Hand Tools<br>(e.g., weeding)                    |
| (m l) ft £                                                  | (m l) ft E                                                            | Walking, hiking, surveys                                                                    |
| Trees and Arboreal Orchids                                  | Grasses/Herbs/Shrubs and<br>Terrestrial Orchids                       |                                                                                             |
|                                                             | Buffer Distance (feet (meters)<br>Far Away froi                       | пойэА                                                                                       |

408-2023/34.78 MA 734.79 http://dx.734.78 http://dx.734.79 http://dx.734.7

| Farming/Ranching/Silv    | iculture                                                                                | (m 025) ft 028                | (m 025) ft 028                |
|--------------------------|-----------------------------------------------------------------------------------------|-------------------------------|-------------------------------|
| Prescribed Burns         |                                                                                         | Further consultation required | Further consultation required |
| сотрасцои                | Roads/Utility Corridors,<br>Buildings/Structures                                        | (m 001) ft 82£                | (m 025) ft 028                |
| Surface Hardening/Sc     | Trails (e.g., human, ungulates)                                                         | (m ð) ft 02                   | 2х стоwn diameter             |
| Ground/Soil Disturban    | се (Невлу Еquipment)                                                                    | (m 001) ft 82£                | (m 025) ft 028                |
|                          | ce/Outplanting/Fencing (Hand tools,<br>mechanized tools, e.g., auger)                   | (m ð) ft 02                   | 2х стоwn diameter             |
| Use of Insecticides (pol | inators, seed dispersers)                                                               | Further consultation required | Further consultation required |
| V                        | erial Spray (boom)                                                                      | Further consultation required | Further consultation required |
|                          | Prial Application – herbicide ballistic<br>chnology (individual plant treatment)        | (m 0£) ft 001                 | Crown diameter                |
| (ladal aniwollof)        | erial Spray (dall applicator)                                                           | (m 97) ft 022                 | (m 97) ft 022                 |
|                          | round-based Spray Application;<br>hicle-mounted tank sprayer                            | (m &1) ft 0&                  | Crown diameter                |
|                          | round-based Spray Application;<br>anual pump with wand, backpack                        | (m &1) ft 0&                  | Crown diameter                |
| ;ų                       | round-based Spray Application;<br>and application (no wand applicator;<br>ot treatment) | (m £) ft 01                   | Crown diameter                |

Pacific Islands Fish And Wildlife Office - Publication Date: April 1, 2022 General Project Design Guidelines - Popolo Ku Mai and 24 more species

Definitions (Wagner et al. 1999)

Crown: The leafy top of a tree. Herb: A plant, either annual, biennial, or perennial, with the non-woody stems dying back to the ground at the end of the growing

Scason.

Shrub: A perennial woody plant with usually several to numerous primary stems arising from or relatively near the ground.

Tree: A woody perennial that usually has a single trunk

#### References Cited

- USFWS. 2010. Endangered and threatened wildlife and plants; determination of endangered status for 48 species on Kauai and designation of critical habitat. Federal Register 75: 18960-19165.
- . 2012. Endangered and threatened wildlife and plants; endangered status for 23 species on Oahu and designation of critical habitat for 124 species; final rule. Federal Register 77: 57648-57862.
- status for 38 species from Molokai, Lanai, and Maui. Federal Register 78: 32014-32065. . 2013a Endangered and threatened wildlife and plants; determination of endangered
- 2013b. Endangered and threatened wildlife and plants; determination of endangered species status for 15 species on Hawaii Island. Federal Register 78: 64638-64690.
- 2016. Endangered and threatened wildlife and plants; determination of endangered status for 49 species from the Hawaiian Islands. Federal Register 81: 67786-67860.
- . 2016. USFWS Rare plant database. Unpublished.
- Wagner, W.L., Sohmer, S., and D.R. Herbst. 1999. Manual of the flowering plants of Hawaii, revised edition. Honolulu, Hawaii. University of Hawaii and Bishop Museum Press.

Page 7 IPaC v6.79.0-rc4 8/18/2022 1:34 AM

# General Project Design Guidelines - Popolo Ku Mai and 24 more species

Published by Pacific Islands Fish And Wildlife Office - Publication Date: February 1, 2022 for the following species included in your project

Popolo Ku Mai Solanum incompletum

Hawaii Akepa Loxops coccineus

Holei Ochrosia kilaueaensis

Hawaiian (=koloa) Duck Anas wyvilliana

Uhi Uhi Mezoneuron kavaiense

Po'e Portulaca sclerocarpa

Stenogyne angustifolia var. angustifolia

Hawaiian Goose Branta (=Nesochen) sandvicensis Hawaiian Stilt Himantopus mexicanus knudseni

Silene hawaiiensis

Band-rumped Storm-petrel Oceanodroma castro

Ihi Portulaca villosa

Hawaiian Coot Fulica americana alai

Tetramolopium arenarium

Hawaiian Hoary Bat Lasiurus cinereus semotus

Microlepia strigosa var. mauiensis

Hawaiian Petrel Pterodroma sandwichensis

Newell's Townsend's Shearwater Puffinus auricularis newelli

Honohono Haplostachys haplostachya

Hala Pepe Pleomele hawaiiensis

Green Sea Turtle Chelonia mydas

Nehe Lipochaeta venosa

Holei Ochrosia haleakalae

Blackburn's Sphinx Moth Manduca blackburni

Akohekohe, Palmeria dolei; Iiwi, Drepanis coccinea; MOLOKAI: Iiwi, Drepanis coccinea Hawaiian forest birds (OAHU: Oahu elepaio, Chasiempis ibidis; Iiwi, Drepanis coccinea; caeruleirostris; Iiwi, Drepanis coccinea; HAWAII: Akiapolaau, Hemignathus wilsonsi; Hawaii creeper, Oreomystis mana; Hawaii akepa, Loxops coccineus; Palila, Loxioides bailleui; Iiwi, Drepanis coccinea; MAUI: Maui parrotbill, Pseudonestor xanthophrys; KAUAI: Puaiohi, Myadestes palmeri; Akikiki, Oreomystis bairdi; Akekee, Loxops

invasive species threats. Grazing results in reductions in woody vegetation and increased grass cover, which reduces forest habitat quality and results in increased wildfire risk on the landscape. increases in areas where ungulate presence results in small pools of standing water. Actions such as road construction and development increase human access and result in increased wildfire and also affected by mosquito-borne diseases. Mosquitoes are not native to Hawaii; their occurrence agriculture, grazing, wildfire, and spread of invasive habitat-altering species. Forest birds are Hawaiian forest birds' current ranges are predominately restricted to montane forests above 3,500 feet in elevation. Hawaiian forest bird habitat has been lost due to development,

Recommended avoidance and minimization measures when conducting activities within forest bird habitat include:

- Preventing the spread or survival of non-native or invasive species.
- Decrease mosquito populations by removing or preventing stagnant water habitat.
  - Reducing wildfire threat to montane forest habitats.
- Restrict the removal of tree cover during the peak breeding season between January 1 and June 30.

IPaC v6.79.0-rc4 8/18/2022 1:34 AM

Page 9

# General Project Design Guidelines - Popolo Ku Mai and 24 more species

Published by Pacific Islands Fish And Wildlife Office - Publication Date: April 1, 2022 for the following species included in your project

Popolo Ku Mai Solanum incompletum

Hawaii Akepa Loxops coccineus

Holei Ochrosia kilaueaensis

Hawaiian (=koloa) Duck Anas wyvilliana

Uhi Uhi Mezoneuron kavaiense

Po'e Portulaca sclerocarpa

Stenogyne angustifolia var. angustifolia

Hawaiian Stilt Himantopus mexicanus knudseni

Hawaiian Goose Branta (=Nesochen) sandvicensis

Silene hawaiiensis

Band-rumped Storm-petrel Oceanodroma castro

Ihi Portulaca villosa

Hawaiian Coot Fulica americana alai

Fetramolopium arenarium

Hawaiian Hoary Bat Lasiurus cinereus semotus

Microlepia strigosa var. mauiensis

Hawaiian Petrel Pterodroma sandwichensis

Newell's Townsend's Shearwater Puffinus auricularis newelli

Honohono Haplostachys haplostachya

Green Sea Turtle Chelonia mydas

Hala Pepe Pleomele hawaiiensis

Nehe Lipochaeta venosa

Holei Ochrosia haleakalae

Blackburn's Sphinx Moth Manduca blackburni

#### Avoidance, Minimization, and Conservation Measures for listed plants in the Pacific Islands

Project activities may affect listed plant species by causing physical damage to plant parts (roots, stems, flowers, fruits, seeds, etc.) as well as impacts to other life requisite features of their habitat which may result in reduction of germination, growth and/or reproduction. Cutting and removal of vegetation surrounding listed plants has the potential to alter microsite conditions (e.g., light, moisture, temperature), damaging or destroying the listed plants and also increasing the risk of invasion by nonnative plants which can result in higher incidence or intensity of fire. Activities such as grazing, use of construction equipment and vehicles, and increased human traffic (i.e. trails, visitation, monitoring), can cause ground disturbance, erosion, and/or soil compaction which decrease absorption of water and nutrients and damage plant root systems and may result in reduced growth and/or mortality of listed plants. Soil disturbance or removal has the potential to negatively impact the soil seed bank of listed plant species if such species are present or historically occurred in the project area.

In order to avoid or minimize potential adverse effects to listed plants that may occur on the proposed project site, we recommend minimizing disturbance outside of existing developed or otherwise modified areas. When disturbance outside existing developed or otherwise modified areas. When disturbance outside existing developed or otherwise modified sites is proposed, conduct a botanical survey for listed plant species within the project action area, defined as the area where direct and indirect effects are likely to occur. Surveys should be conducted by a knowledgeable botanist with documented experience in identifying native Hawaiian and Pacific Islands plants, including listed plant species. Botanical surveys should optimally be conducted during the wettest part of the year (typically October to April) when plants and identifying features are more likely to be ordered outside of the wet season, the Service may assume plant presence.

The boundary of the area occupied by listed plants should be marked with flagging by the surveyor. To avoid or minimize potential adverse effects to listed plants, we recommend adherence to buffer distances for the activities in the Table below. Where disturbed areas do not need to be maintained as an open area, restore disturbed areas using native plants as appropriate for the location. Whenever possible we recommend using native plants for landscaping purposes. The following websites are good resources to use when choosing landscaping plants: Landscape Industry Council of Hawai'i Native Plant Poster (https://hawaiiseape.wpengine.com/publications/), Native Hawaiiian Plants for Landscaping, Conservation, and Reforestation (https://hawaiiseape.wpengine.com/publications/), and Best Native Plants for Landscapes (https://www.ciahr.hawaii.edu/oc/freepubs/pdf/OF-40.pdf).

F1 892 N2.1 S2 1.34 FM MA 1.51 S2 1.51 Page N2.1 S2 1.52 Page N2.1

Pacific Islands Fish And Wildlife Office - Publication Date: April 1, 2022 General Project Design Guidelines - Popolo Ku Mai and 24 more species

If listed plants occur in a project area, the avoidance buffers are recommended to reduce direct and indirect impacts to listed plants from project activities. However, where project activities will occur within the buffer recommended buffer distances, additional consultation is required. The impacts to the plants of concern within the buffer area may be reduced by placing temporary fencing or other barriers at the boundary of the disturbance, as far from the affected plants as practicable.

The above guidelines apply to areas outside of designated critical habitat. If project activities occur within designated critical habitat unit boundaries, additional consultation is required.

All activities, including site surveys, risk introducing nonnative species into project areas. Specific attention needs to be made to ensure that all equipment, personnel and supplies are properly checked and are free of contamination (weed seeds, organic matter, or other contaminants) before entering project areas. Quarantines and or management activities occurring on specific priority invasive species proximal to project areas need to be considered or adequately addressed. This information can be acquired by contacting local experts such as those on local invasive species committees (Kauai: <a href="https://www.canaisco.org/">https://www.canaisco.org/</a>; Oahu: <a href="https://www.canaisco.org/">https://www.canaisco.org/</a>; and Hawaii: <a href="https://www.bauaisco.org/">https://www.canaisco.org/</a>; and Hawaii: <a href="https://www.bauaisco.org/">https://www.bauaisco.org/</a>; and Hawaii: <a href="https://www.bauaisco.

Table 1. Recommended buffer distances to minimize and avoid potential adverse impacts to listed plants from activities listed below.

| (m 02S) ft 028                                              | + Aramqiupa hybiw x<br>hight of vegetation                  | Removal of Vegetation with Heavy Equipment (e.g.,<br>bulldozer, tractor, "bush hog")        |
|-------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 3 ft up to height of removed vegetation (whichever greater) | 3 ft up to height of removed vegetation (whichever greater) | Mechanical Removal of Individual Plants or Woody<br>Vegetation (e.g., chainsaw, weed eater) |
| (m l) ft £                                                  | (m I) ft £                                                  | Cutting and Removing Vegetation By Hand or Hand Tools<br>(e.g., weeding)                    |
| (m l) ft E                                                  | (m l) ft E                                                  | Walking, hiking, surveys                                                                    |
| Trees and Arboreal Orchids                                  | Grasses/Herbs/Shrubs and<br>Terrestrial Orchids             |                                                                                             |
|                                                             | Buffer Distance (feet (meters)<br>Far Away fron             | пойэА                                                                                       |

2/18/2022 1:34 AM Page 12

| Farming/Ranching/Silv    | iculture                                                                                | (m 025) ft 028                | (m 025) ft 028                |
|--------------------------|-----------------------------------------------------------------------------------------|-------------------------------|-------------------------------|
| Prescribed Burns         |                                                                                         | Further consultation required | Further consultation required |
| сотрасцои                | Roads/Utility Corridors,<br>Buildings/Structures                                        | (m 001) ft 82£                | (m 025) ft 028                |
| Surface Hardening/Sc     | Trails (e.g., human, ungulates)                                                         | (m ð) ft 02                   | 2х стоwn diameter             |
| Ground/Soil Disturban    | се (Невлу Еquipment)                                                                    | (m 001) ft 82£                | (m 025) ft 028                |
|                          | ce/Outplanting/Fencing (Hand tools,<br>mechanized tools, e.g., auger)                   | (m ð) ft 02                   | 2х стоwn diameter             |
| Use of Insecticides (pol | inators, seed dispersers)                                                               | Further consultation required | Further consultation required |
| V                        | erial Spray (boom)                                                                      | Further consultation required | Further consultation required |
|                          | Prial Application – herbicide ballistic<br>chnology (individual plant treatment)        | (m 0£) ft 001                 | Crown diameter                |
| (ladal aniwollof)        | erial Spray (dall applicator)                                                           | (m 97) ft 022                 | (m 97) ft 022                 |
|                          | round-based Spray Application;<br>hicle-mounted tank sprayer                            | (m &1) ft 0&                  | Crown diameter                |
|                          | round-based Spray Application;<br>anual pump with wand, backpack                        | (m &1) ft 0&                  | Crown diameter                |
| ;ų                       | round-based Spray Application;<br>and application (no wand applicator;<br>ot treatment) | (m £) ft 01                   | Crown diameter                |

Pacific Islands Fish And Wildlife Office - Publication Date: April 1, 2022 General Project Design Guidelines - Popolo Ku Mai and 24 more species

Definitions (Wagner et al. 1999)

Crown: The leafy top of a tree. Herb: A plant, either annual, biennial, or perennial, with the non-woody stems dying back to the ground at the end of the growing

Shrub: A perennial woody plant with usually several to numerous primary stems arising from or relatively near the ground.

Tree: A woody perennial that usually has a single trunk

4 P egsq 4 20.9.7.6.7.8 P 2.9.2 A MA +2.1 r 2.0.2/81 / 8 M2 − 2.9.2 A P − 2.

#### References Cited

- USFWS. 2010. Endangered and threatened wildlife and plants; determination of endangered status for 48 species on Kauai and designation of critical habitat. Federal Register 75: 18960-19165.
- . 2012. Endangered and threatened wildlife and plants; endangered status for 23 species on Oahu and designation of critical habitat for 124 species; final rule. Federal Register 77: 57648-57862.
- status for 38 species from Molokai, Lanai, and Maui. Federal Register 78: 32014-32065. . 2013a Endangered and threatened wildlife and plants; determination of endangered
- 2013b. Endangered and threatened wildlife and plants; determination of endangered species status for 15 species on Hawaii Island. Federal Register 78: 64638-64690.
- 2016. Endangered and threatened wildlife and plants; determination of endangered status for 49 species from the Hawaiian Islands. Federal Register 81: 67786-67860.
- . 2016. USFWS Rare plant database. Unpublished.
- Wagner, W.L., Sohmer, S., and D.R. Herbst. 1999. Manual of the flowering plants of Hawaii, revised edition. Honolulu, Hawaii. University of Hawaii and Bishop Museum Press.

Page 15 IPaC v6.79.0-rc4 8/18/2022 1:34 AM

# General Project Design Guidelines - Popolo Ku Mai and 24 more species

Published by Pacific Islands Fish And Wildlife Office - Publication Date: February 1, 2022 for the following species included in your project

Popolo Ku Mai Solanum incompletum

Hawaii Akepa Loxops coccineus

Holei Ochrosia kilaueaensis

Hawaiian (=koloa) Duck Anas wyvilliana

Uhi Uhi Mezoneuron kavaiense

Po'e Portulaca sclerocarpa

Stenogyne angustifolia var. angustifolia

Hawaiian Stilt Himantopus mexicanus knudseni

Hawaiian Goose Branta (=Nesochen) sandvicensis

Silene hawaiiensis

Band-rumped Storm-petrel Oceanodroma castro

Ihi Portulaca villosa

Hawaiian Coot Fulica americana alai

Tetramolopium arenarium

Hawaiian Hoary Bat Lasiurus cinereus semotus

Microlepia strigosa var. mauiensis

Hawaiian Petrel Pterodroma sandwichensis

Newell's Townsend's Shearwater Puffinus auricularis newelli

Honohono Haplostachys haplostachya

Hala Pepe Pleomele hawaiiensis

Green Sea Turtle Chelonia mydas

Nehe Lipochaeta venosa

Holei Ochrosia haleakalae

Blackburn's Sphinx Moth Manduca blackburni

# Fulica alai; Hawaiian common gallinule, Gallinula galeata sandvicensis; Hawaiian duck, Hawaiian waterbirds (Hawaiian stilt, *Himantopus mexicanus knudseni*; Hawaiian coot,

made ponds. Hawaiian stilts may also be found wherever ephemeral or persistent standing water Listed Hawaiian waterbirds are found in fresh and brackish-water marshes and natural or manmay occur. Threats to these species include non-native predators, habitat loss, and habitat degradation. Hawaiian ducks are also subject to threats from hybridization with introduced mallards.

optimal locations (e.g. any ponding water), if water is present. Hawaiian waterbirds attracted to work with our office during project planning so that we may assist you in developing measures to avoid impacts to listed species (e.g., fencing, vegetation control, predator management). The creation of standing or open water may result in the attraction of Hawaiian waterbirds to a site (creative nuisance or habitat sink). In particular, the Hawaiian stilt is known to nest in subsuccess, and thus the project may create an attractive nuisance. Therefore, we recommend you sub-optimal habitat may suffer adverse impacts, such as predation and reduced reproductive

To avoid and minimize potential project impacts to Hawaiian waterbirds we recommend you incorporate the following applicable measures into your project description:

- In areas where waterbirds are known to be present, post and enforce reduced speed limits, and inform project personnel and contractors about the presence of endangered species
- Incorporate the Service's Best Management Practices for Work in Aquatic Environments into the project design.
- project initiation and after any subsequent delay of work of 3 or more days (during which proposed project site, prior to project initiation. Repeat surveys again within 3 days of Have a biological monitor that is familiar with the species' biology conduct Hawaiian waterbird nest surveys, where appropriate habitat occurs within the vicinity of the the birds may attempt to nest). If a nest or active brood is found:
  - Contact the Service within 48 hours for further guidance.
- Establish and maintain a 100-foot buffer around all active nests and/or broods until the chicks/ducklings have fledged. Do not conduct potentially disruptive activities or habitat alteration within this buffer.
- Have a biological monitor that is familiar with the species' biology present on chicks/ducklings fledge to ensure that Hawaiian waterbirds and nests are not the project site during all construction or earth moving activities until the adversely impacted.

Page 17 IPaC v6.79.0-rc4 8/18/2022 1:34 AM

# General Project Design Guidelines - Popolo Ku Mai and 24 more species

Published by Pacific Islands Fish And Wildlife Office - Publication Date: February 1, 2022 for the following species included in your project

Popolo Ku Mai Solanum incompletum

Hawaii Akepa Loxops coccineus

Holei Ochrosia kilaueaensis

Hawaiian (=koloa) Duck Anas wyvilliana

Uhi Uhi Mezoneuron kavaiense

Po'e Portulaca sclerocarpa

Stenogyne angustifolia var. angustifolia

Hawaiian Stilt Himantopus mexicanus knudseni

Hawaiian Goose Branta (=Nesochen) sandvicensis

Silene hawaiiensis

Band-rumped Storm-petrel Oceanodroma castro

thi Portulaca villosa

Hawaiian Coot Fulica americana alai

Tetramolopium arenarium

Hawaiian Hoary Bat Lasiurus cinereus semotus

Microlepia strigosa var. mauiensis

Hawaiian Petrel Pterodroma sandwichensis

Newell's Townsend's Shearwater Puffinus auricularis newelli

Honohono Haplostachys haplostachya

Hala Pepe Pleomele hawaiiensis

Green Sea Turtle Chelonia mydas

Nehe Lipochaeta venosa

Holei Ochrosia haleakalae

Blackburn's Sphinx Moth Manduca blackburni

areas, such as pastures, golf courses, wetlands, natural grasslands and shrublands, and lava flows. Hawaiian goose (nene), (Branta (Nesochen) sandvicensis): Nene are found on the islands of Hawaii, Maui, Molokai, and Kauai. They are observed in a variety of habitats, but prefer open Threats to the species include introduced mammalian and avian predators, wind facilities, and vehicle strikes.

To avoid and minimize potential project impacts to nene we recommend you incorporate the following measures into your project description:

- Do not approach, feed, or disturb nene.
- Repeat surveys after any subsequent delay of work of 3 or more days (during which the season (September through April), have a biologist familiar with nene nesting behavior If nene are observed loafing or foraging within the project area during the breeding survey for nests in and around the project area prior to the resumption of any work. birds may attempt to nest).
- discovered within a radius of 150 feet of proposed project, or a previously undiscovered Cease all work immediately and contact the Service for further guidance if a nest is nest is found within the 150-foot radius after work begins.
  - In areas where nene are known to be present, post and implement reduced speed limits, and inform project personnel and contractors about the presence of endangered species

status. Under the 4(d) rule, the following actions are not prohibited under the Act, provided the nene 4(d) rule: A 4(d) rule was established at the time the nene was downlisted to threatened additional measures described in the downlisting rule are adhered to:

- hazing or other deterrent measures not likely to cause direct injury or mortality, or nene Take by landowners, or their agents, conducting intentional harassment in the form of
- Take that is incidental to conducting lawful control of introduced predators or habitat management activities for nene.
- Take by authorized law enforcement officers for the purpose of aiding or euthanizing sick, injured, or orphaned nene; disposing of dead specimens; and salvaging a dead specimen that may be used for scientific study.

Page 19 IPaC v6.79.0-rc4 8/18/2022 1:34 AM

# General Project Design Guidelines - Popolo Ku Mai and 24 more species

Published by Pacific Islands Fish And Wildlife Office - Publication Date: February 1, 2022 for the following species included in your project

Popolo Ku Mai Solanum incompletum

Hawaii Akepa Loxops coccineus

Holei Ochrosia kilaueaensis

Hawaiian (=koloa) Duck Anas wyvilliana

Uhi Uhi Mezoneuron kavaiense

Po'e Portulaca sclerocarpa

Stenogyne angustifolia var. angustifolia

Hawaiian Stilt Himantopus mexicanus knudseni

Hawaiian Goose Branta (=Nesochen) sandvicensis

Silene hawaiiensis

Band-rumped Storm-petrel Oceanodroma castro

Ihi Portulaca villosa

Hawaiian Coot Fulica americana alai

Fetramolopium arenarium

Hawaiian Hoary Bat Lasiurus cinereus semotus

Microlepia strigosa var. mauiensis

Hawaiian Petrel Pterodroma sandwichensi:

Newell's Townsend's Shearwater Puffinus auricularis newelli

Honohono Haplostachys haplostachya

Green Sea Turtle Chelonia mydas Hala Pepe Pleomele hawaiiensis

Nehe Lipochaeta venosa

Holei Ochrosia haleakalae

Blackburn's Sphinx Moth Manduca blackburni

## Endangered Hawaiian petrel (Pterodroma sandwichensis), Threatened Newell's shearwater (Puffinus auricularis newelli), and Endangered Hawaii Distinct Population Segment of the band-rumped storm-petrel ( $Oceanodroma\ castro$ ):

Young birds (fledglings) traversing the project area between September 15 and December 15, in disorientation, fallout, and injury or mortality. Seabirds are attracted to lights and after circling the lights they may become exhausted and collide with nearby wires, buildings, or other structures or they may land on the ground. Downed seabirds are subject to increased mortality due to collision with automobiles, starvation, and predation by dogs, cats, and other predators. Hawaiian seabirds may traverse the project area at night during the breeding, nesting and their first flights from their mountain nests to the sea, are particularly vulnerable to light fledging seasons (March 1 to December 15). Outdoor lighting could result in seabird

To avoid and minimize potential project impacts to seabirds we recommend you incorporate the following measures into your project description:

- Fully shield all outdoor lights so the bulb can only be seen from below
- Install automatic motion sensor switches and controls on all outdoor lights or turn off lights when human activity is not occurring in the lighted area
- Avoid nighttime construction during the seabird fledging period, September 15 through

areas of high seabird passage rate. In general, self-supporting monopoles are the least likely to Listed seabirds have been documented colliding with communication towers, particularly in result in collisions, whereas lattice towers, particularly those that rely on guy-wires, have a To avoid and minimize the likelihood that towers will result in collisions by listed seabirds we recommend you incorporate the following measures into your project description:

- The profile of the tower should be as small as possible, minimize the extent of the tower that protrudes above the surrounding vegetation layer, and avoid the use of guywires.
- If the top of the tower must be lit to comply with Federal Aviation Administration regulations, use a flashing red light verses a steady-beam red or white light.
  - If possible, co-locate with existing towers or facilities.

colonies. To avoid and minimize the likelihood of collision we recommend you incorporate the Seabirds have been known to collide with fences, powerlines, and other structures near nesting following measures into your project description:

- Where fences extend above vegetation, integrate three strands of polytape into the fence to increase visibility.
- For powerlines, guywires and other cables, minimize exposure above vegetation height and vertical profile.

Page 21 IPaC v6.79.0-rc4 8/18/2022 1:34 AM

# General Project Design Guidelines - Popolo Ku Mai and 24 more species

Published by Pacific Islands Fish And Wildlife Office - Publication Date: March 1, 2020 for the following species included in your project

Popolo Ku Mai Solanum incompletum

Hawaii Akepa Loxops coccineus

Holei Ochrosia kilaueaensis

Hawaiian (=koloa) Duck Anas wyvilliana

Uhi Uhi Mezoneuron kavaiense

Po'e Portulaca sclerocarpa

Stenogyne angustifolia var. angustifolia

Hawaiian Stilt Himantopus mexicanus knudseni

Hawaiian Goose Branta (=Nesochen) sandvicensis

Silene hawaiiensis

Band-rumped Storm-petrel Oceanodroma castro

Ihi Portulaca villosa

Hawaiian Coot Fulica americana alai

Tetramolopium arenarium

Hawaiian Hoary Bat Lasiurus cinereus ser

Microlepia strigosa var. mauiensis

Hawaiian Petrel Pterodroma sandwichensis

Newell's Townsend's Shearwater Puffinus auricularis newelli

Honohono Haplostachys haplostachya

Hala Pepe Pleomele hawaiiensis

Green Sea Turtle Chelonia mydas

Nehe Lipochaeta venosa

Holei Ochrosia haleakalae

Blackburn's Sphinx Moth Manduca blackburni

Hawaiian hoary bat (*Lasiurus cinereus semotus*): The Hawaiian hoary bat roosts in both exotic and native woody vegetation across all islands and will leave young unattended in trees and shrubs when they forage. If trees or shrubs 15 feet or taller are cleared during the pupping season, there is a risk that young bats could inadvertently be harmed or killed since they are too young to fly or may not move away. Additionally, Hawaiian hoary bats forage for insects from as low as 3 feet to higher than 500 feet above the ground and can become entangled in barbed wire used for fencing.

To avoid and minimize impacts to the endangered Hawaiian hoary bat we recommend you incorporate the following applicable measures into your project description:

- Do not disturb, remove, or trim woody plants greater than 15 feet tall during the bat birthing and pup rearing season (June 1 through September 15).
  - Do not use barbed wire for fencing.

IPaC v6.79.0-rc4

8/18/2022 1:34 AM

Page 23

# General Project Design Guidelines - Popolo Ku Mai and 24 more species

Published by Pacific Islands Fish And Wildlife Office - Publication Date: February 1, 2022 for the following species included in your project

Popolo Ku Mai Solanum incompletum

Hawaii Akepa Loxops coccineus

Holei Ochrosia kilaueaensis

Hawaiian (=koloa) Duck Anas wyvilliana

Uhi Uhi Mezoneuron kavaiense

Po'e Portulaca sclerocarpa

Stenogyne angustifolia var. angustifolia

Hawaiian Stilt Himantopus mexicanus knudseni

Hawaiian Goose Branta (=Nesochen) sandvicensis

Silene hawaiiensis

Band-rumped Storm-petrel Oceanodroma castro

Ihi Portulaca villosa

Hawaiian Coot Fulica americana alai

Tetramolopium arenarium

Hawaiian Hoary Bat Lasiurus cinereus semotus

Microlepia strigosa var. mauiensis

Hawaiian Petrel Pterodroma sandwichensis

Newell's Townsend's Shearwater Puffinus auricularis newelli

Honohono Haplostachys haplostachya

Hala Pepe Pleomele hawaiiensis

Green Sea Turtle Chelonia mydas

Nehe Lipochaeta venosa

Holei Ochrosia haleakalae

Blackburn's Sphinx Moth Manduca blackburni

Pacific sea turtles: Green sea turtles (Chelonia mydas) (Central North Pacific DPS - Hawaii and Johnston Atoll), (Central West Pacific DPS - Mariana Archipelago and Wake NWR) and (Central South Pacific DPS - American Samoa, Palmyra, Kingman, Howland, Baker and Jarvis NWR), and Hawksbill sea turtle (Eretmochelys imbricata):

The Service consults on sea turtles and their use of terrestrial habitats (beaches where nesting and/or basking is known to occur), whereas the National Marine Fisheries Service (NMFS) consults on sea turtles and their use of off-shore and open ocean habitats. We recommend that you consult with NMFS regarding the potential impacts from the proposed project to sea turtles in off-shore and open ocean habitats.

Green sea turtles may nest on any sandy beach area in the Pacific Islands. Hawksbill sea turtles exhibit a wide tolerance for nesting substrate (ranging from sandy beach to crushed coral) with nests typically placed under vegetation. Both species exhibit strong nesting site fidelity. Nesting occurs on Hawaiian beaches from May through September, peaking in June and July, with hatchlings emerging through November and December. Sea turtle nesting in the Western Pacific, Marianas, and South Pacific Islands can occur year-round; peaking in April and July. Nesting in American Samoa is from October to March).

Construction on, or in the vicinity of, beaches can result in sand and sediment compaction, sea turtle nest destruction, beach erosion, contaminant and nutrient runoff, and an increase in direct and ambient light pollution which may disorient hatchlings or deter nesting females. Off-road vehicle traffic may result in direct impacts to sea turtles and nests, and also contributes to habitat degradation through erosion and compaction.

Projects that alter the natural beach profile, such as nourishment and hardening, including the placement of seawalls, jetties, sandbags, and other structures, are known to reduce the suitability of on-shore habitat for sea turtles. These types of projects often result in sand compaction, erosion, and additional sedimentation in nearshore habitats, resulting in adverse effects to the ecological community and future sea turtle nests. The hardening of a shoreline increases the potential for erosion in adjacent areas, resulting in subsequent requests to install stabilization structures or conduct beach nourishment in adjacent areas. Given projected sea level rise estimates, the likelihood of increase in storm surge intensity, and other factors associated with climate change, we anticipate that beach erosion will continue and likely increase.

Whenever possible, projects should consider alternatives that avoid the modification or hardening of coastlines. Beach nourishment or beach hardening projects should evaluate the long-term effect to sea turtle nesting habitat and consider the cumulative effects.

To avoid and minimize project impacts to sea turtles and their nests we recommend you incorporate the following applicable measures into your project description:

- No vehicle use on, or modification of, the beach/dune environment during the sea turtle
  nesting or hatching season, or on beaches where sea turtles are known to bask.
- Do not remove or destroy native dune vegetation.
- Incorporate applicable Best Management Practices for Work in Aquatic Environments into the project design.

8/18/2022 1:34 AM Page 25

Pacific Islands Fish And Wildlife Office - Publication Date: February 1, 2022 General Project Design Guidelines - Popolo Ku Mai and 24 more species

- Have a biologist familiar with sea turtles conduct a visual survey of the project site to ensure no basking sea turtles are present.
  - If a basking sea turtle is found within the project area, cease all mechanical or construction activities within 100 feet until the animal voluntarily leaves the area.
    - Cease all activities between the basking turtle and the ocean.
- Remove any project-related debris, trash, or equipment from the beach or dune if not actively being used.
  - Do not stockpile project-related materials in the intertidal zone, reef flats, or stream channels.

Lighting: Optimal nesting habitat is a dark beach free of barriers that restrict sea turtle movement. Nesting turtles may be deterred from approaching or laying successful nests on lighted or disturbed beaches. They may become disoriented by artificial lighting, leading to exhaustion and placement of a nest in an inappropriate location (such as at or below the high tide line). Hatchlings that emerge from nests may also be disoriented by artificial lighting. Inland areas visible from the beach should be sufficiently dark to allow for successful navigation to the ocean.

To avoid and minimize project impacts to sea turtles from lighting we recommend incorporating the following applicable measures into your project description:

- Avoid nighttime work during the nesting and hatching season.
- Minimize the use of lighting and shield all project-related lights so the light is not visible from any beach.
- If lights can't be fully shielded or if headlights must be used, fully enclose the light source with light filtering tape or filters.
- Incorporate design measures into the construction or operation of buildings adjacent to the beach to reduce ambient outdoor lighting such as:
  - cach to reduce another outdoor ingrining such as.
     tinting or using automatic window shades for exterior windows that face the
- reducing the height of exterior lighting to below 3 feet and pointed downward or away from the beach; and
- minimize light intensity to the lowest level feasible and, when possible, include timers and motion sensors.

8/18/2022 1:34 AM IPaC v6.79.0-rc4 Page 26

# General Project Design Guidelines - Popolo Ku Mai and 24 more species

Published by Pacific Islands Fish And Wildlife Office - Publication Date: February 1, 2022 for the following species included in your project

Popolo Ku Mai Solanum incompletum

Hawaii Akepa Loxops coccineus

Holei Ochrosia kilaueaensis

Hawaiian (=koloa) Duck Anas wyvilliana

Uhi Uhi Mezoneuron kavaiense

Po'e Portulaca sclerocarpa

Stenogyne angustifolia var. angustifolia

Hawaiian Stilt Himantopus mexicanus knudseni

Hawaiian Goose Branta (=Nesochen) sandvicensis

Silene hawaiiensis

Band-rumped Storm-petrel Oceanodroma castro

Ihi Portulaca villosa

Hawaiian Coot Fulica americana alai

Hawaiian Hoary Bat Lasiurus cinereus semotus Tetramolopium arenarium

Microlepia strigosa var. mauiensis

Hawaiian Petrel Pterodroma sandwichensis

Newell's Townsend's Shearwater Puffinus auricularis newelli

Honohono Haplostachys haplostachya

Hala Pepe Pleomele hawaiiensis

Green Sea Turtle Chelonia mydas

Nehe Lipochaeta venosa

Holei Ochrosia haleakalae

Blackburn's Sphinx Moth Manduca blackburni

Vigna o-wahuensis

Pacific Islands Fish And Wildlife Office - Publication Date: February 1, 2022 General Project Design Guidelines - Popolo Ku Mai and 24 more species

# Blackburn's sphinx moth (Manduca blackburni):

glory (Ipomoea pes-caprae), iliee (Plumbago zeylanica), and maiapilo (Capparis sandwichiana); larvae feed upon non-native tree tobacco (Nicotiana glauca) and native aiea (Nothocestrum sp.). To pupate, the larvae burrow into the soil and can remain in a state of torpor for a year or more Adult Blackburn's sphinx moths feed on nectar from native plants, including beach morning before emerging from the soil. Soil disturbance can result in death of the pupae. We offer the following survey recommendations to assess whether the Blackburn's sphinx moth is within the project area:

- A biologist familiar with the species should survey areas of proposed activities for Blackburn's sphinx moth and its larval host plants prior to work initiation.
- November-April or several weeks after a significant rain) and within 4-6 weeks Surveys should be conducted during the wettest portion of the year (usually prior to construction.
  - Surveys should include searches for eggs, larvae, and signs of larval feeding (chewed stems, frass, or leaf damage). 0
- If native aiea or tree tobacco over 3 feet tall, or adult Blackburn's sphinx moths are found during surveys, do not disturb them and contact the Service for additional guidance to avoid take.

approximately 6 weeks. If it grows over 3 feet after surveys have been completed, the plants may that measures be taken to avoid attraction of Blackburn's sphinx moth to the project location and If no Blackburn's sphinx moth, aiea, or tree tobacco are found during surveys, it is imperative prohibit tree tobacco from entering the site. Tree tobacco can grow greater than 3 feet tall in become a host plant for Blackburn's sphinx moth larvae. We therefore recommend that you:

- Remove any tree tobacco less than 3 feet tall.
- Monitor the site every 4-6 weeks for new tree tobacco growth before, during, and after the proposed ground-disturbing activity. This monitoring for can be completed by any staff, such as groundskeeper or regular maintenance crew, if they are provided with picture placards of tree tobacco at different life stages.

Page 28 IPaC v6.79.0-rc4 8/18/2022 1:34 AM Waimea Nui Regional Community Development Initiative Kīpuka o ke Ola (KOKO) Clinic Relocation

#### Appendix C – 2022 Traffic Impact Analysis Report

## WAIMEA NUI – KOKO Health Clinic TMK (3) 6-4-038:011 (PORTION)

# Traffic Impact Analysis Report

# WAIMEA, Island of Hawaii

## September 2022

#### Prepared for

Waimea Nui Regional Community Development Corporation



# Waimea Nui EA – KOKO Health Clinic TIAR

SSFM International

|     | _      |
|-----|--------|
| ÷   | 2      |
| 3   | Ξ      |
| ō   | Ū      |
| ٠   | =      |
| 5   |        |
|     | 2      |
| ٠.  | •      |
| Ç   | 5      |
| Ĺ   | J      |
| ţ   | J      |
| 40  | J      |
| 900 | ر<br>5 |

| <u>.</u> : | PRC  | PROJECT DESCRIPTION                                           |
|------------|------|---------------------------------------------------------------|
| ≓          | EXIS | EXISTING CONDITIONS5                                          |
| Ą          |      | Study Roadways5                                               |
|            | ٦    | Mamalahoa Highway5                                            |
|            | 2.   | Kamamalu Street5                                              |
|            | ĸ.   | Hijaka Street5                                                |
|            | 4.   | Ainahua Alanui Street5                                        |
|            | 5.   | Mana Road5                                                    |
| B          |      | Study Intersections6                                          |
|            | τi   | Mamalahoa Highway at Kamamalu Street6                         |
|            | 2.   | Hiiaka Street at KOKA Charter School Main Driveway6           |
|            | æ.   | Ainahua Alanui Street at KOKA Charter School Eastern Driveway |
|            | 4.   | Mamalahoa Highway at Mana Road6                               |
| ن          |      | Vehicle Volumes9                                              |
|            | 1.   | 24-Hour Volume9                                               |
|            | 5.   | Intersection Peak Turning Movement Counts11                   |
|            | ñ.   | Transit Facilities11                                          |
|            | 4.   | Pedestrian and Bicycle Volumes13                              |
| ō.         |      | Existing Level of Service14                                   |
|            | 1.   | Methodology14                                                 |
|            | 2.   | Existing Intersections LOS Results15                          |
| ≡          | F    | FUTURE WITHOUT PROJECT CONDITIONS17                           |
| Ą          |      | Upcoming Planned Projects17                                   |
|            | 1.   | STIP                                                          |
|            | 2.   | ERP17                                                         |
|            | 3.   | 2015 WNR-CDI TIAR18                                           |
| æ.         |      | Volumes                                                       |
|            | τi   | Background Growth                                             |
| ن          |      | Future (2026) Without Project Level of Service                |
|            | ٦    | Future (2026) Without Project Conditions                      |
| Ō.         | _    | Future (2031) Without Project Level of Service25              |

| SSEM International                   |
|--------------------------------------|
|                                      |
| Q                                    |
| med Nui FA - KOKO Health Clinic TIAR |
| Waimen Nui FA                        |

|    | ij        | Future (2031) Without Project Conditions       |
|----|-----------|------------------------------------------------|
|    | 2.        | Future (2031) Without Project Mitigation       |
| ш  | шi        | Future (2041) Without Project Level of Service |
|    | ij        | Future (2041) Without Project Conditions       |
|    | 2.        | Future (2041) Without Project Mitigation29     |
| ≥. | $\exists$ | FUTURE WITH PROJECT CONDITIONS31               |
| 4  | ď         | Future With Project Generated Volumes31        |
|    | ij        | Project Related Volumes31                      |
| ш  | ъ.        | Future (2026) With Project Level of Service37  |
|    | ij        | Future (2026) With Project Conditions37        |
|    | 2.        | Future (2026) With Project Mitigation38        |
| U  | ن         | Future (2031) With Project Level of Service    |
|    | ij        | Future (2031) With Project Conditions          |
|    | 2.        | Future (2031) With Project Mitigation41        |
|    | <u> </u>  | Future (2041) With Project Level of Service41  |
|    | ij        | Future (2041) With Project Conditions41        |
|    | 2.        | Future (2041) With Project Mitigation          |
| >  | SU        | SUMMARY AND RECOMMENDATIONS44                  |
| ₹  | Æ         | REFERENCES45                                   |
| 3  | 9         | Lieuwa                                         |

| <u>List of Figures</u>                                                                     |          |
|--------------------------------------------------------------------------------------------|----------|
| Figure 1: Project Location Map                                                             | 7        |
| Figure 2: Phase I WNR-CDI Conceptual Site Plan3                                            | 3        |
| Figure 3: Phase I WNR-CDI, Conceptual KOKO Health Clinic Site Plan                         | 4        |
| Figure 4: Existing Lane Configuration                                                      | $\infty$ |
| Figure 5: 2021 24-Hour Volumes along Mamalahoa Hwy. Between Mana Rd. and Pualalea Pl       | 6        |
| Figure 6: 24-Hour Volume Distribution on Mamalahoa Hwy. Between Mana Rd. and Pualalea Pl10 | 0        |
| Figure 7: 2021 Peak Hour Volumes12                                                         | 2        |
| Figure 8: Hele-On Bus Route #30113                                                         | n        |
| Figure 9. 2015 WNR-CD/ TIAR Project Related Trips19                                        | 6        |
| Figure 10. Future (2026) Without Project Peak Hour Volumes21                               | T        |
| Figure 11. Future (2031) Without Project Peak Hour Volumes2                                | 7        |
| Figure 12. Future (2041) Without Project Peak Hour Volumes                                 | cΩ.      |
| Figure 13: Future (2031) Without Project Peak Hour Warrant                                 | /        |
| Figure 14. KOKO Health Clinic Project Related Trips33                                      | ŝ        |
| Figure 15 Enture (2026) With Project Peak Hour Volumes                                     | 4        |

| SSFM International       |  |
|--------------------------|--|
|                          |  |
| ealth Clinic TIAR        |  |
| Waimea Nui EA – KOKO Hea |  |

| Figure 16. Future (2031) With Project Peak Hour Volumes                                      |
|----------------------------------------------------------------------------------------------|
| Figure 17. Future (2041) With Project Peak Hour Volumes36                                    |
| Figure 18: Future (2026) With Project Peak Hour Warrant                                      |
| List of Tables                                                                               |
| Table 1. 2013 - 2021 AADT along Mamalahoa Highway between Mana Road and Pualalea Place9      |
| Table 2. Covid Impact - Peak Hour Comparison on Mamalahoa Highway West of Mana Road10        |
| Table 3: Peak Hour Pedestrian and Bicycle Volumes13                                          |
| Table 4: LOS Criteria for Unsignalized Intersections14                                       |
| Table 5: LOS Criteria for Signalized Intersections                                           |
| Table 6: Existing (2021) Intersection LOS15                                                  |
| Table 7: Traffic Forecast – Daily Vehicle Trips in South Kohala                              |
| Table 8. Future (2026) Without Project LOS24                                                 |
| Table 9. Future (2031) Without Project LOS                                                   |
| Table 10: Future (2031) Without Project Volumes at Mamalahoa Highway and Mana Road           |
| Table 11: Future (2031) Without Project Intersection Comparison – Mamalahoa Highway and Mana |
| Road                                                                                         |
| Table 12. Future (2041) Without Project LOS28                                                |
| Table 13: Future (2041) Without Project Intersection Comparison – Mamalahoa Highway and Mana |
| Road30                                                                                       |
| Table 14: Project Related Trip Generation Rates31                                            |
| Table 15: Project Related Development Phasing and Trips Generated31                          |
| Table 16. Future (2026) With Project LOS37                                                   |
| Table 17: Future (2026) Volumes at Mamalahoa Highway and Mana Road38                         |
| Table 18. Future (2026) Without Project Intersection Comparison – Mamalahoa Highway and Mana |
| Road39                                                                                       |
| Table 19. Future (2031) With Project LOS40                                                   |
| rsection Comparison                                                                          |
|                                                                                              |
| Table 22: Future (2041) With Project Intersection Comparison43                               |
|                                                                                              |

### Appendices

| Appendix A – Historical and 2021 Traffic Data | Appendix B – Hele-on Bus Information | Appendix C – Existing Intersection Analysis Worksheets | Appendix D – Future Without Project Intersection Analysis Worksheets | Appendix E – Future With Project Intersection Analysis Worksheets |
|-----------------------------------------------|--------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|
|-----------------------------------------------|--------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|

≔

### PROJECT DESCRIPTION

The Waimea Hawaiian Homesteaders' Association subsidiary organization, Waimea Nui Community Development Corporation (WNCDC), previously proposed the development of the Waimea Nui Regional Community Development Initiative (WNR-CD) in the 2015 WNR-CDI Traffic Impact Analysis Report (TIAR) (Traffic Management Consultant, revised March 2015). In 2015, a Final Environmental Assessment - Finding of No Significant Impact (FEA-FONSI) was prepared for the WNR-CDI, located within approximately 114-acres of Department of Hawaiian Home Lands (DHHL) Homestead Land in a portion of Tax Map Key (TIMK) (3) 6-4038:011. Since then, no construction of WNR-CDI has started, and the proposed site remains vacant. The WNCDC is now pursuing the relocation and upgrade of the existing Kipuka O Ke Ola (KOKO) Health Clinic from its current site within Uilani Plaza on Mamalahoa Highway to within the WNR-CDI. Details and surrounding area context of the future WNR-CDI are shown in the project location map in Figure 1.

The 2015 WNR-CDI TARR studied the development that included a cemetery, agriculture park, golf facility, equestrian center, and farmers' market (see Figure 2). The proposed relocated KOKO Health Clinic will be 9,600 square feet (Sef) gross floor area (GFA) and proposes to offer many of the same services that it currently offers, including primary care, psychiatry, psychology, women's health, laau lapaau, lomilomi, and acupuncture services. The KOKO Health Clinic site plan, including clinic and parking lot, is shown in Figure 3. The primary access to Health Clinic will be off of the future "New Road", originating at Hilaka Street. The future "New Road", first proposed in the previous 2015 WNR-CDI TIAR, has yet to be constructed, but is planned to provide primary access to all land uses proposed in Phase 1. Alternatively, a temporary access through Poliahu Alanui Road, west of the intersection with Uakikoni Alanui, will provide access to the relocated KOKO Health Clinic until the access from Hilaka Street at future "New Road" is constructed. The temporary access will become the secondary access frem the main access is built. The land uses included in the 2015 WNR-CDI TIAR, in addition to the KOKO Health Clinic, constitute Phase 1 of the WNR-CDI. An additional Phase 2 of the WNR-CDI will include additional developments that are not yet planned, and therefore not analyzed as a part of this TIAR.

This TIAR will supplement the previous 2015 WNR-CDI TIAR and only assess the impact of the proposed relocated KOKO Health Clinic on Future With Project analysis. As a part of this TIAR, the Future Without Project analysis will include the project-related trips from the previous 2015 WNR-CDI TIAR using updated background growth rates and intersection turning movement counts taken in September 2021. Hawaii County Code Chapter 25, Section 25-2-46, "Concurrency Requirements," indicates that traffic impacts of projects be identified and analyzed within a future five-year, ten-year, and 20-year timeline from the existing year of analysis, which for this project is 2021, and thus future analysis will be completed for the years 2026, 2031, and 2041.

Waimea Nui EA – KOKO Health Clinic TIAR

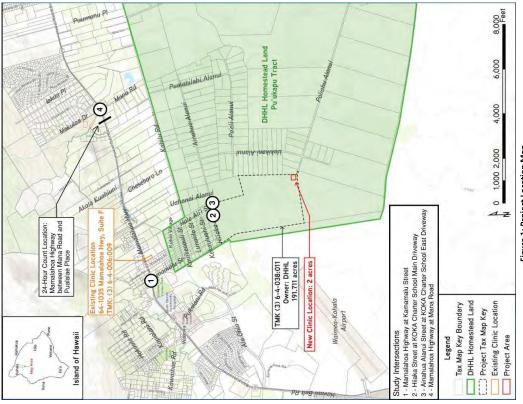



Figure 1: Project Location Map

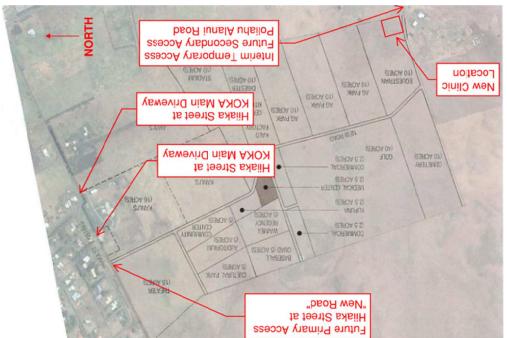



Figure 2: Phase I WNR-CDI Project Area

Interim Temporary Access Future Secondary Access Poliahu Alanui Road

Waimea Nui EA – KOKO Health Clinic TIAR

SSFM International

3

DHHL Land Use Designation

1WK (3)-9-1-38-011 **TECEND** 

Figure 3: Phase I WNR-CDI, Conceptual KOKO Health Clinic Site Plan (Source: G70)

Future Primary Access Hiiaki Street at Future "New Road"

Hijaki Street at KOKA Main Driveway

Ainahua Alanui Street at KOKA East Driveway

### **EXISTING CONDITIONS**

The proposed relocated KOKO Health Clinic project site is a part of the WNR-CDI and located in Waimea in the South Kohala District of Hawaii (see Figure 1). The current land uses around the project area are primarily residential.

### A. Study Roadways

### Mamalahoa Highway

Mamalahoa Highway changes jurisdictions along its entirety, however, within the project vicinity between Kamamalu Street and Mana Road, it falls under County of Hawaii (COH) jurisdiction. The COH jurisdiction area falls between State segments starting from Kahawai Street, continuing west, and Kipuupuu Street, continuing east. Mamalahoa Highway has additional names in the study area, including Hawaii Belt Road and Hawaii Route 19. However, the name "Mamalahoa Highway" will be used throughout this report to avoid confusion.

In Waimea Town, from lona Court to Lindsey Road, Mamalahoa Highway is a two-way, four-lane arterial highway. East of Waimea Town, where the study area is located, the highway transitions into a two-way, two-lane, undivided arterial highway. There are paved and unpaved shoulders of varying widths along the corridor. The majority of the study area along Mamalahoa Highway has no paved sidewalks or marked bike lanes. Access to numerous commercial, municipal, and healthcare buildings is provided through various paved and unpaved driveways along the corridor. The posted speed limit is 30 MPH in the study

### Kamamalu Street

Kamamalu Street is a COH-owned, two-lane, two-way, minor collector in the study area. Sections of the road north of Kamanawa Street have shoulders of varying widths; however, no shoulders are provided south of this intersection. There are no paved sidewalks or marked bike lanes along the corridor. The roadway has a north-south orientation up until its southern terminus, at which point the roadway turns into Hilaka Street and becomes an east-west roadway. The posted speed limit is 25 MPH.

### Hiiaka Street

Hiiaka Street is a COH-owned, two-lane, two-way local street in the study area. There are no paved shoulders, sidewalks, or marked bike lanes along the corridor. At the Hale Alii Street intersection, Hiiaka Street turns into Ainahua Alanui Street. The posted speed limit is 25 MPH.

### Ainahua Alanui Street

Ainahua Alanui Street is a COH-owned, two-lane, two-way local street in the study area. There are no paved shoulders, sidewalks, or marked bike lanes along the corridor. The posted speed limit is 25 MPH.

### Mana Road

Mana Road is a COH-owned, two-lane, two-way minor collector in the study area. There are no paved shoulders, sidewalks, or marked bike lanes along the corridor. As previously noted, a dedicated westbound left-turn lane exists at the intersection of Mana Road and Mamalahoa Highway. Additionally, a median acceleration lane exists on the west leg of the intersection along Mamalahoa Highway to assist

Waimea Nui EA – KOKO Health Clinic TIAR

left-turning movement from Mana Road. Mana Road is stop-controlled at Mamalahoa Highway. The posted speed limit is 35 MPH.

### Uakikoni Alanui

Uakikoni Alanui is a DHHL-owned, two-lane, two-way, rural local street. There are no paved shoulders, sidewalks, or marked bike lanes along the corridor. The posted speed limit is 25 MPH. Uakikoni Alanui is stop-controlled at the intersection with Ainahua Alanui Street. Uakikoni Alanui runs in a north-south direction to the east of the project. The future secondary access will come off of Ainahua Alanui Road, west of the intersection with Uakikoni Alanui.

### . Poliahu Alanui Road

East of Uakikoni Alanui, Poliahu Alanui Road is a COH-maintained, two-lane, two-way local street. There are no paved shoulders, sidewalks, or marked bike lanes along the corridor. Poliahu Alanui Road is stop-controlled at the intersection with Uakikoni Alanui. The west end of Poliahu Alanui Road will serve as the temporary access point to the KOKO Health Clinic until the completion of "New Road", when the access off Poliahu Alanui Road will become the secondary access.

### B. Study Intersections

Four existing study intersections were identified and analyzed to consider the impact resulting from the proposed development. The existing lane configurations and surrounding areas are shown in Figure 4.

## Mamalahoa Highway at Kamamalu Street

Mamalahoa Highway at Kamamalu Street is a three-leg, signalized intersection. The eastbound direction has two through lanes, with the southern-most lane being a shared through-right lane. There is a shared left-through lane for the westbound lanes on Mamalahoa Highway, which operates with a leading protected-permitted phase. An additional right turn pocket opens up along Kamamalu Street for the northbound lanes, approximately 85-feet before the intersection. There is a private driveway to the north of the intersection that leads to single-family residences and Kamuela Medical Associates, but it is not controlled by the traffic signal. Although there are no curb ramps or sidewalks, marked crosswalks are provided at the eastern and southern legs.

# Hiiaka Street at KOKA Charter School Main Driveway

Hiiaka Street at the Kanu O Kaaina (KOKA) Charter School Main Driveway is a three-leg, two-way stop-controlled (TWSC) intersection, with a stop sign for the KOKA Main Driveway approach. There are no marked crosswalks, curb ramps, or sidewalks at this intersection.

# Ainahua Alanui Street at KOKA Charter School Eastern Driveway

The Ainahua Alanui Street and KOKA Charter School Eastern Driveway is a three-leg, TWSC intersection, with a stop sign for the KOKA Eastern Driveway approach. The driveway is a secondary access point to the KOKA Charter School. There are no marked crosswalks, curb ramps, or sidewalks at this intersection.

## Mamalahoa Highway at Mana Road

Mamalahoa Highway and Mana Road is a three-leg, TWSC intersection, with a stop sign for the Mana Road approach. Mana Road is 23-feet wide, with 11.5-foot marked lanes in each direction. There are no marked

crosswalks, curb ramps, or sidewalks at this intersection. Intersection improvements that have been incorporated since the 2015 WNR-CDI TIAR, include:

- Widening Mamalahoa Highway at Mana Road to provide an exclusive westbound left turn lane.
- Widening Mamalahoa Highway at Mana Road to provide an acceleration lane for northbound left turns from Mana Road onto Mamalahoa Highway.
- Widening Mana Road to provide separate left and right turn lanes at Mamalahoa Highway.

### Vehicle Volumes

ن

### 24-Hour Volume

Historic Hawaii Department of Transportation (HDOT) Annual Average Daily Traffic (AADT) counts in the study area along Mamalahoa Highway between Mana Road and Pualalea Place were available from 2013 to 2020. 24-hour tube counts were also collected on Thursday, September 30, 2021, at the same location. The historic HDOT and recent 2021 counts are shown in Table 1. 2020 data was not used to analyze the growth rate due to the impacts of Covid-19. Discussion of the pandemic impacts will be discussed in a later section. Appendix A includes the raw historical HDOT traffic data and the 2021 24-hour hour counts.

Table 1. 2013 - 2021 AADT along Mamalahoa Highway between Mana Road and Pualalea Place

|             | age .        |        |        |        |        |        |        |        |        |        |
|-------------|--------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| AADT or 24- | Hour Average | 15,500 | 14,200 | 14,700 | 15,100 | 16,000 | 15,400 | 16,100 | 13,100 | 15,143 |
| V           | ועפו         | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | ~ 020Z | 2021*  |

~2020 counts may be impacted by Covid-19

\*2021 counts represent a single-day 24-hour count

The 2021 AM and PM commuter peak hours along Mamalahoa Highway were found to occur between 7:15 to 8:15 AM and 4:15 to 5:15 PM, respectively (see Figure 5). As seen in Figure 5, westbound traffic is generally heavier in the AM peak hour, while eastbound traffic is generally heavier in the PM peak hour, with more balanced traffic during the off-peaks and midday. Figure 6 shows the daily 2018-2020 HDOT volumes and the 2021 24-hour volume on Mamalahoa Highway between Mana Road and Pualalea Place.

Waimea Nui EA – KOKO Health Clinic TIAR

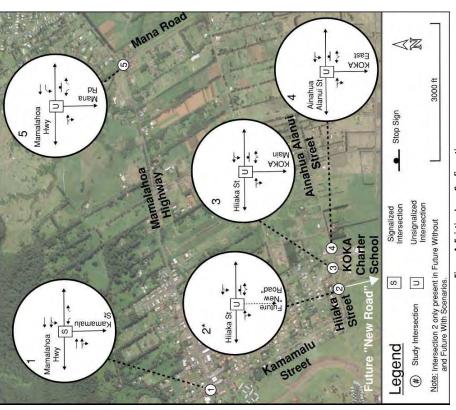




Figure 4: Existing Lane Configuration

SSFM International



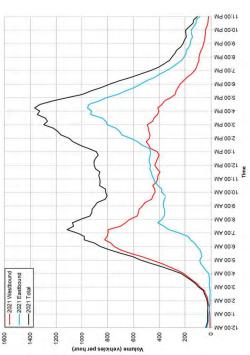



Figure 5: 2021 24-Hour Volumes along Mamalahoa Hwy. Between Mana Rd. and Pualalea Pl.

6

Waimea Nui EA – KOKO Health Clinic TIAR

SSFM International

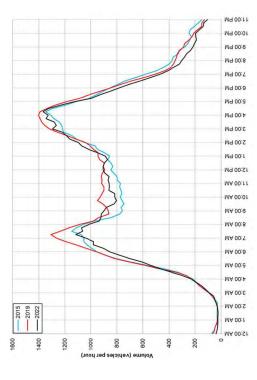



Figure 6: 24-Hour Volume Distribution on Mamalahoa Hwy. Between Mana Rd. and Pualalea Pl.

### Covid-19 Traffic Impacts

 
 a)
 Covid-19 Traffic Impacts

 The Covid-19 pandemic led to a mandatory 14-day quarantine for incoming travelers and the closure of the closure non-essential businesses in the State of Hawaii beginning in March 2020. Covid-19 restrictions resulted in a significant drop in traffic volumes across most roadways. Near the end of 2020, businesses began to return to Hawaii. Furthermore, at the beginning of the 2021-2022 school year, Hawaii public schools reopening, and non-essential employees started going back to work. Additionally, tourism slowly began reinstated in-person learning.

volumes and how they compared to pre-pandemic. This included counts at the station along Mamalahoa the count station along Mamalahoa Highway, the 2019 AM peak hour was noted to be higher than 2015 HDOT periodically collected traffic counts throughout the pandemic at various stations to analyze traffic historical counts (Table 1), the 2021 data was assumed to be representative of typical travel patterns. At Highway, west of Mana Road. Since the 2021 24-hour count was comparable to the 2013-2019 HDOT and 2021. The PM peak hour volumes were comparable across the years 2015, 2019, and 2021. With this, no Covid-related adjustments are deemed necessary for applying to 2021 data.

Table 2. Covid Impact - Peak Hour Comparison on Mamalahoa Highway West of Mana Road

| 90      | Table 2. Covid Illipact - reak noul Collipation of Mainaidida nigliway West of Maila Noad | מרו - בפו | J mon                                                    | III pariso |      | IIdidiiOd | пвпиау | West                  | Malla       | ממ    |
|---------|-------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------|------------|------|-----------|--------|-----------------------|-------------|-------|
| Jood    |                                                                                           | 3         | Eastbound                                                | -          | W    | Westbound | р      |                       | Total       |       |
| L Peak  | Time                                                                                      | 2015      | 2019                                                     | 2021       | 2015 | 2019      | 2021   | 2015                  | 2019        | 2021  |
| DOI:    |                                                                                           | HDOT      | HDOT   HDOT   Count   HDOT   HDOT   Count   HDOT   Count | Count      | HDOT | HDOT      | Count  | HDOT                  | HDOT        | Count |
| AM Peak | AM Peak 7:15-8:15AM                                                                       | 380       | 352                                                      | 321        | 269  | 957       | 962    | 1,077                 | 1,309 1,117 | 1,117 |
| PM Peak | PM Peak A:30-5-30PM 876                                                                   | 928       | 931                                                      | 976        | 418  | 407       | 380    | 380 1 294 1 338 1 325 | 1 338       | 1 375 |

## Intersection Peak Turning Movement Counts

Turning movement counts were taken at the four existing study intersections on Thursday, September 30, 2021, from 6:30 to 9:00 AM and 3:00 to 6:00 PM. The AM and PM peak hours on Mamalahoa Highway occurred between 7:15 to 8:15 AM and 4:15 to 5:15 PM, respectively. Figure 7 shows the AM and PM peak hour volumes at the study intersections. Appendix A includes traffic count data at the study intersections.

### **Transit Facilities**

The Hawaii County transit system (Hele-On Bus) has one bus route in the project area. Bus route #301 is called "Waimea Circulator" and operates as a "flex route" along Mamalahoa Highway with no designated stops close to the project site. A "flex route" can serve up to 1 mile off route if reservations are made ahead of time. In addition, this route can be flagged by passengers along its route where a bus can safely pull over. The closest designated stops are approximately 0.8 miles north of KOKA Main Driveway, near the Waimea Civic Center on Kamamalu Street. See Figure 8 for the route within the WNR-CDI area. Appendix B includes the detailed bus route schedule and map for this route.

Waimea Nui EA – KOKO Health Clinic TIAR

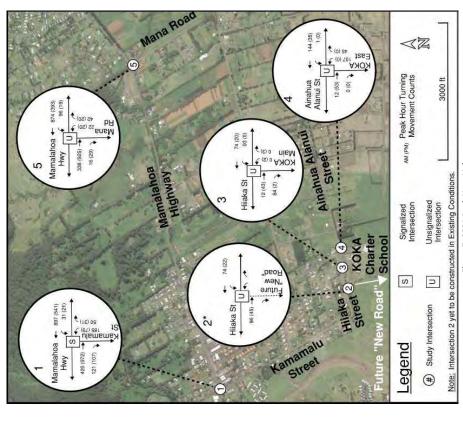



Figure 7: 2021 Peak Hour Volumes

11

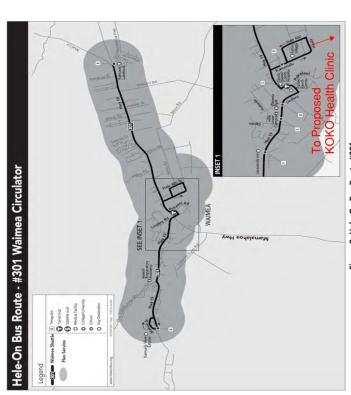



Figure 8: Hele-On Bus Route #301

### Pedestrian and Bicycle Volumes

Peak hour intersection pedestrian and bicycle volumes were also collected at the existing study intersections on Thursday, September 30, 2021, from 6:30 to 9:00 AM and 3:00 to 6:00 PM. Bike volumes include those that travel through the intersection and pedestrian volumes include those that cross along any leg of the intersection. Pedestrian volumes were higher in the PM peak hour at the Mamalahoa Highway and Kamamalu Street intersection. Bicycle volumes were low or non-existent in the AM and PM peak hours. Table 3 summarizes the pedestrian and bicycle counts during the vehicular peak hours.

Table 3: Peak Hour Pedestrian and Bicycle Volumes

| 100000000000000000000000000000000000000 | Pedestrian | strian  | Bic                                   | Bicycle |
|-----------------------------------------|------------|---------|---------------------------------------|---------|
| וווהן אברווסון                          | AM Peak    | PM Peak | AM Peak   PM Peak   AM Peak   PM Peak | PM Peak |
| Mamalahoa Hwy at Kamamalu St            | 8          | 15      | 1                                     | 1       |
| Hiiaka St at KOKA Main Dwy              | 7          | 0       | 0                                     | 0       |
| Ainahua Alanui St at KOKA Eastern Dwy   | 0          | 2       | 0                                     | 0       |
| Mamalahoa Hwy at Mana Rd                | 0          | 0       | 0                                     | 1       |

13

Waimea Nui EA – KOKO Health Clinic TIAR

### D. Existing Level of Service

### Methodology

Level of service (LOS) is a rating system used in traffic engineering to measure the effectiveness of roadway operating conditions. There are six LOS ranging from A to F. LOS A is defined as being the least interrupted flow conditions with little or no delays, whereas LOS F is defined as conditions where extreme delays exist. Guidelines state that LOS D or better is appropriate for studying intersections and movements. Intersection LOS and delay were determined for the AM and PM peak hours using Synchro Version 10.0 traffic analysis software.

As stated in the *Highway Capacity Manual 6<sup>th</sup> Edition (HCM6)* (TRB, 2016), LOS at a TWSC intersection is determined by the measured control delay (see Table 4). Delay at a TWSC intersection is defined by each minor movement and not for the major movements or intersection. The delay is defined this way because vehicles traveling along the major movements or intersection. The delay is defined this way because vehicles traveling along the major, free-flow road of a TWSC intersection proceed through with minimal delay. The vehicles approaching the intersection along the minor movement (side-street) are controlled by a stop sign and thus experience delay attributable to the volume of vehicles passing along the free-flow road and the gaps available. As Synchro is unable to analyze the impacts of an acceleration lane, when analyzing the northbound left turning movements at Mamalahoa Highway and Mana Road, westbound through volumes were omitted, as to only analyze the ability for northbound left turning vehicles to find gaps in the eastbound traffic and westbound left turning movements. With an acceleration lane, turning vehicles can complete their turn without conflicting with the westbound through movement.

Table 4: LOS Criteria for Unsignalized Intersections

| 'c Rati                                        | >1.0                             | ч      | ч           | ш           | н           | F           | щ   |
|------------------------------------------------|----------------------------------|--------|-------------|-------------|-------------|-------------|-----|
| LOS by v/c Rati                                | <=1.0                            | Α      | В           | Э           | D           | E           | F   |
| August Control Polys (chick)   LOS by v/c Rati | Average Collinol Delay (3/ vell) | ≤ 10.0 | >10 and ≤15 | >15 and <25 | >25 and ≤35 | >35 and <50 | >50 |

Source: HCM6 (TRB, 2016)

The LOS analysis for signalized intersections is determined by the average total vehicle delay based on the methodologies of the *HCM6* (TRB, 2016), shown in Table 5. *HCM6* doesn't support the protected-permitted phasing from a shared lane, which is the case at Mamalahoa Highway and Kamamalu Street for the westbound approach. For this intersection, methodologies from the *Highway Capacity Manual (HCM)* (TRB, 2000) are used. High numbers of vehicles passing through the intersection, long cycle lengths, inappropriate signal phasing, or poor signal progression can result in long delays and poor LOS.

Table 5: LOS Criteria for Signalized Intersections

| SOI                              | ٧      | В           | C           | Q           | ш           | L   |
|----------------------------------|--------|-------------|-------------|-------------|-------------|-----|
| Average Control Delay<br>(s/veh) | ≤ 10.0 | >10 and ≤20 | >20 and ≤35 | >35 and ≤55 | >55 and ≤80 | 00, |

Source: HCM (TRB, 2000)

intersection can accommodate during a specific period. A v/c ratio under 0.85 means the intersection is operating under capacity, and excessive delays are not experienced. An intersection operates near its capacity when v/c ratios range from 0.85 to 0.95. Unstable flows are expected when the v/c ratio is between 0.95 and 1.0. LOS based on HCM 2000 does not use v/c ratio as a traffic operation measure. A movement are low but have to wait a long time to make the intended movement. Poor LOS and low v/c Another measure of intersection operation is the volume to capacity (v/c) ratio. The v/c is the ratio of the volume of traffic utilizing the intersection compared to the maximum volume of vehicles that the traffic movement can have a poor LOS but low v/c, which suggests that the traffic volumes along that are common for low volume protected turn movements or minor street movements that have to wait through a long cycle length for their phase to come up.

## **Existing Intersections LOS Results**

Existing intersection and movement LOS and delay (in seconds per vehicle) were determined for the AM and PM peak hours using Synchro 10 traffic analysis software. All movements at this intersection were analyzed with volumes as shown in Figure 7. The results are shown in Table 6 and Appendix C.

Table 6: Existing (2021) Intersection LOS

|                                    | 202 (202 ) Summer of the control of | (0-)      |              |           | 1-10      |              |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|-----------|-----------|--------------|
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AIVI Peak |              |           | PIVI Peak |              |
| Approach and Movement              | Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2/10      | 301          | Delay     | 2/10      | 301          |
|                                    | (sec/veh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V/C       | 501          | (sec/veh) | ۷/۲       | 671          |
| Mamalahoa Hwy at Kamamalu St       | 11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 69.0      | 8            | 6.7       | 99.0      | ٧            |
| Mamalahoa EB Through-Right         | 12.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.57      | 8            | 9.8       | 99.0      | ٧            |
| Mamalahoa WB Left-Through          | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.60      | ٧            | 3.1       | 0.29      | ٧            |
| Kamamalu NB Left                   | 17.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 09:0      | 8            | 23.6      | 09:0      | 2            |
| Kamamalu NB Right                  | 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.04      | В            | 16.3      | 0.07      | В            |
| Hiiaka St at KOKA Main Dwy         | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unsign    | Unsignalized | 0.7       | Unsign    | Unsignalized |
| Hiiaka WB Left-Through             | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.12      | ٧            | 0.0       | 0.00      | ٧            |
| KOKA Main Dwy NB Left-Right        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00      | A            | 8.8       | 0.01      | ٧            |
| Ainahua Alanui St at KOKA East Dwy | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unsign    | Unsignalized | 0.0       | Unsign    | Unsignalized |
| Ainahua Alanui WB Left-Through     | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00      | ٧            | 0.0       | 0.00      | ٧            |
| KOKA East Dwy NB Left-Right        | 11.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.35      | 8            | 0.0       | 0.00      | ٧            |
| Mamalahoa Hwy at Mana Rd           | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unsign    | Unsignalized | 1.1       | Unsign    | Unsignalized |
| Mamalahoa WB Left                  | 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10      | ٧            | 10.4      | 0.04      | В            |
| Mana NB Left                       | 16.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.13      | )            | 21.2      | 0.10      | )            |
| Mana NB Right                      | 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.15      | 8            | 18.1      | 0.08      | 3            |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |              |           |           |              |

15

Waimea Nui EA – KOKO Health Clinic TIAR

 a) Mamalahoa Highway at Kamamalu Street
 All movements at the intersection of Mamalahoa Highway at Kamamalu Street operate at a LOS C or better and v/c < 1.0 during both peak hours.

b) Hilaka Street at KOKA Main Driveway
All movements at the intersection of Hiiaka Street at KOKA Main Driveway operate at a LOS A and v/c 1.0 during both peak hours.

# Ainahua Alanui Street at KOKA Eastern Driveway

c

All movements at the intersection of Ainahua Alanui Street at KOKA Eastern Driveway operate at a LOS B or better and v/c < 1.0 during both peak hours.

### Mamalahoa Highway at Mana Road ð

All movements at the intersection of Mamalahoa Highway at Mana Road operate at a LOS C or better and v/c < 1.0 during both peak hours.

## Recommendations for Existing Condition

All intersections and movements operate at an acceptable LOS and thus no traffic mitigation is recommended at this time.

SSFM International

### SSFM International

# FUTURE WITHOUT PROJECT CONDITIONS

development's traffic, including the project-related trips from the 2015 WNR-CDI 7IAR, were added to the Regional traffic growth, trip generation from any upcoming planned projects, and future surrounding area roadway network and analyzed for periods of five (5), ten (10), and twenty (20) years into the future corresponding to 2026, 2031, and 2041, respectively.

### **Upcoming Planned Projects**

ď

Surrounding area planned developments were researched to assess their potential impacts in adding additional traffic within the surrounding roadway network.

Improvements Program (STIP) FY 2019-2022 website. The STIP is a four-year forecast identifying state and county transportation projects funded with Federal Highway and Federal Transit funds. There were no Information on future projects was compiled on August 26, 2021, at the Statewide Transportation roadway construction or improvement projects listed in the STIP (2019-2022) that would impact the

Information on future projects was compiled on August 26, 2021, using the State of Hawaii Environmental Review Program (ERP) website. The ERP website provides Environmental Impact Statement (EIS) and Environmental Assessments (EA) available to the public. Projects from the ERP website in the surrounding area from between 2016 and 2021 were reviewed.

# Waimea Middle School New Eight Classroom Building

existing science and computer classrooms with new modern laboratories. Waimea Middle School expects The construction of this project finished in 2016 and as such, any traffic impacts would have been captured The Waimea Middle School Eight Classroom Building EA (Wilson Okamoto, 2015) proposes to replace to accommodate the current and anticipated student enrollment with no increase from the new building. by the September 30, 2021 traffic count.

# Waimea Town Center Infrastructure Improvements

The Waimea Town Center Infrastructure Improvements (PBR, 2017) project includes the development of 761 residential units, 176,000 SF commercial use, and 100,000 SF of medical-related land use. Traffic projections for the development are:

- Residential traffic projected to have 10% of trips coming east via Mamalahoa Highway.
- Commercial traffic projected to have 19% coming east via Mamalahoa Highway and 6% from Kamamalu Street.
- Medical traffic projected 16% coming east via Mamalahoa Highway and 5% from Kamamalu

The full build-out of the improvements were estimated to be complete by 2035. Ala Ohia Road will be be signalized and referred to as Ala Ohia Road East. The EA was withdrawn in 2018, and there are no immediate plans at the current time. As such, Project Generated traffic was not added to future extended east from Pukalani Road to connect with Church Road during full build-out. This extension will background traffic for this analysis.

17

## Waimea Nui EA – KOKO Health Clinic TIAR

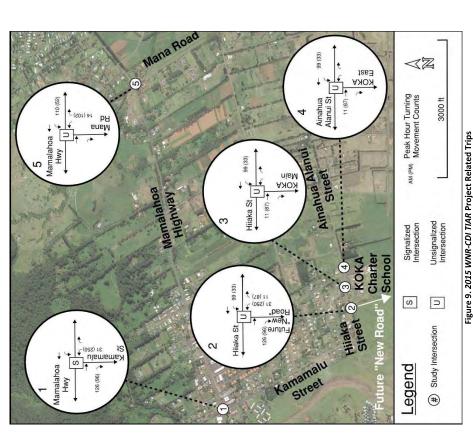
## Waimea Roadway Improvement Project

The Waimea Roadway Improvement Project EA (SSFM, 2021) was anticipated to start in 2022, with no date of when all the improvements will be completed. These improvements included:

- Adding a roundabout at Kawaihae Road and Lindsey Road
- Adding mid-block left turn restrictions along Mamalahoa Highway between Lindsey Road and Pukalani Road
- Adding landscaped medians, crosswalks, sidewalks, and additional landscaping along Mamalahoa Highway between Kaomoloa Road and Lindsey Road.

As of this report, the project had not started, however it is not anticipated to add additional traffic.

### 2015 WNR-CDI TIAR


The 2015 WNR-CDI TIAR analyzed the traffic impact of constructing the WNR-CDI development in Waimea by 2024. The primary access to the development will be off Hiiaka Street through the future "New Road". The following land uses were included in the proposed development:

- Cemetery
- 2. Agriculture Park
- **Golf Facility**
- Equestrian Center 4.
- 5. Farmers' Market

The 2015 WNR-CDI TIAR analyzed Existing (2014) conditions and Future (2024) With Project conditions that assumed a full buildout. The project generated trips are shown in Figure 9. As a part of Future (2024) With Project, the following traffic mitigation measures were recommended:

- Conducting a signal warrant at Mamalahoa Highway and Mana Road after the buildout of the proposed project.
- Widening Hijaka Street, Ainahua Alanui, Pualahilahi Alanui, Kahilu Road, and Mana Road to provide a minimum 20-foot-wide paved travel way.

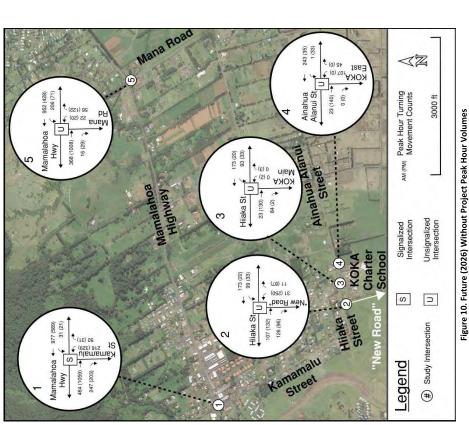
As of this report, the project had not started, however the project generated trips were added to Future Without Project volumes starting in 2026.



19

Waimea Nui EA – KOKO Health Clinic TIAR

### Volumes


### **Background Growth**

Historical traffic volumes (see Table 1) along Mamalahoa Highway between Mana Street and Pualalea Place from 2013 (15,000 AADT) to 2019 (16,100 AADT) showed a 1.19% growth rate. However, AADT varied from year to year and the most recent 2021 volumes were lower than those taken in 2019. The Federal-Aid Highways 2035 Transportation Plan for the District of Hawaii (CH2M Hill, 2014) forecasted a compounded annual increase of 1.73% in South Kohala from 2020 to 2035 (see Table 7).

Table 7: Traffic Forecast - Daily Vehicle Trips in South Kohala

| <br>Growth Rate     | 1 730/ | 1.7370  |  |
|---------------------|--------|---------|--|
| Daily Vehicle Trips | 79,890 | 103,340 |  |
| Year                | 2020   | 2035    |  |

Source: Federal-Aid Highways 2035 Transportation Plan for the District of Hawaii (CH2M Hill, 2014) The 1.73% annual growth rate from the Long-Range Transportation Plan was greater than the 1.19% calculated growth. Therefore, the 1.73% growth was considered conservative and used in this analysis by applying to through movement traffic along Mamalahoa Highway. Other projects not identified in the STIP and ERP are assumed to be included in the 1.73% annual growth rate. Future Without Project volumes, including background growth and WNR\_CDI Phase 1 traffic volumes, forecasted for 2026, 2031, and 2041 are shown in Figures 10 through 12, respectively. The primary access at Hiiaka Street and "New Road" is expected to be completed.



Mana Road NZ Peak Hour Turning Movement Counts 3000 ft Mamalahoa ← 1038 (46 Hwy ← 1038 (46 Hwy ← 1038 (45 Ainahua Alanui 173 (20) 2 Highway Signalized Intersection 3 4 KOKA KOKA Charter School 173 (22) 99 (33) Hijaka St 107 (132) + 107 (132) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (133) + 108 (13 Hijaka Street S (#) Study Intersection 31 (21) Mamalahoa → 1065 (645 Hwy S → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) → 1055 (645 506 (1154) Kamamatu Street Legend

Figure 11. Future (2031) Without Project Peak Hour Volumes

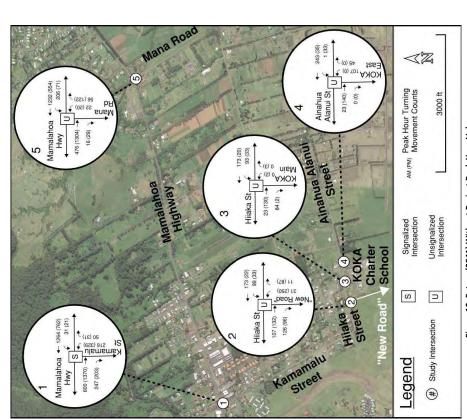



Figure 12. Future (2041) Without Project Peak Hour Volumes

# Future (2026) Without Project Level of Service

## Future (2026) Without Project Conditions

determined for the AM and PM peak hours using Synchro 10 traffic analysis software and are shown in Future (2026) Without Project intersection and movement LOS and delay (in seconds per vehicle) were Table 8. Synchro reports are included in Appendix D. For analysis, the cycle length and splits at Mamalahoa Highway and Kamamalu Street were optimized.

Table 8. Future (2026) Without Project LOS

|                                    |                    | AM Peak |              |                    | PM Peak |              |
|------------------------------------|--------------------|---------|--------------|--------------------|---------|--------------|
| Approach and Movement              | Delay<br>(sec/veh) | n/c     | SOI          | Delay<br>(sec/veh) | v/c     | SOT          |
| Mamalahoa Hwy at Kamamalu St       | 13.5               | 0.76    | 8            | 23.4               | 68'0    | J            |
| Mamalahoa EB Through-Right         | 15.0               | 0.69    | В            | 25.3               | 0.91    | С            |
| Mamalahoa WB Left-Through          | 10.1               | 0.68    | В            | 9.8                | 0.42    | Α            |
| Kamamalu NB Left                   | 20.8               | 0.68    | С            | 40.3               | 0.89    | D            |
| Kamamalu NB Right                  | 12.1               | 0.04    | В            | 15.1               | 0.04    | В            |
| Hiiaka St at "New Road"            | 2.4                | Unsign  | Unsignalized | 8.7                | Unsign  | Unsignalized |
| Hiiaka WB Left-Through             | 8.0                | 0.08    | Α            | 7.8                | 0.03    | Α            |
| "New Road" NB Left-Right           | 13.0               | 0.09    | В            | 15.2               | 0.51    | C            |
| Hiiaka St at KOKA Main Dwy         | 2.0                | Unsign  | Unsignalized | 1.6                | Unsign  | Unsignalized |
| Hiiaka WB Left-Through             | 7.9                | 0.12    | Α            | 7.7                | 0.03    | Α            |
| KOKA Main Dwy NB Left-Right        | 0.0                | 0.00    | Α            | 9.7                | 0.01    | Α            |
| Ainahua Alanui St at KOKA East Dwy | 5.5                | Unsign  | Unsignalized | 1.2                | Unsign  | Unsignalized |
| Ainahua Alanui WB Left-Through     | 7.3                | 0.01    | Α            | 7.6                | 0.02    | Α            |
| KOKA East Dwy NB Left-Right        | 14.4               | 0.42    | В            | 0.0                | 0.00    | Α            |
| Mamalahoa Hwy at Mana Rd           | 9.1                | Unsign  | Unsignalized | 4.1                | Unsigr  | Unsignalized |
| Mamalahoa WB Left                  | 9.4                | 0.23    | Α            | 11.6               | 0.14    | В            |
| Mana NB Left                       | 26.6               | 0.22    | D            | 31.3               | 0.15    | D            |
| Mana NB Right                      | 12.9               | 0.21    | В            | 34.1               | 0.55    | D            |

## Mamalahoa Highway at Kamamalu Street

All movements at the intersection of Mamalahoa Highway at Kamamalu Street operate at a LOS D or better and v/c < 1.0 during both peak hours. a)

### Hiiaka Street at "New Road"

All movements at the intersection of Hijaka Street at "New Road" operate at a LOS C or better and v/c < 1.0 during both peak hours. **(**q

c) Hijaka Street at KOKA Main Driveway All movements at the intersection of Hijaka Street at KOKA Main Driveway operate at a LOS A and v/c <1.0 during both peak hours.

 d) Ainahua Alanui Street at KOKA Eastern Driveway
 All movements at the intersection of Ainahua Alanui Street at KOKA Eastern Driveway operate at a LOS B or better and v/c < 1.0 during both peak hours.

23

### Mamalahoa Highway at Mana Road 6

All movements at the intersection of Mamalahoa Highway at Mana Road operate at a LOS D or better and v/c < 1.0 during both peak hours.

# Future (2031) Without Project Level of Service

۵

# Future (2031) Without Project Conditions

determined for the AM and PM peak hours using Synchro 10 traffic analysis software and are shown in Table 9 and the Synchro reports are included in Appendix D. For analysis, the cycle length and splits at Mamalahoa Highway and Kamamalu Street were optimized. Movements that operated at LOSE or worse Future (2031) Without Project intersection and movement, LOS and delay (in seconds per vehicle) were or v/c > 1.0 are highlighted in yellow.

## Table 9. Future (2031) Without Project LOS

| lable                              | lable 9. Future (2031) Without Project LOS | :031) With | out Project  | 2         |         |              |
|------------------------------------|--------------------------------------------|------------|--------------|-----------|---------|--------------|
|                                    |                                            | AM Peak    |              |           | PM Peak |              |
| Approach and Movement              | Delay                                      | 3/1/       | 501          | Delay     | 2/1/    | 801          |
|                                    | (sec/veh)                                  | ۸/۲        | 3            | (sec/veh) | VIC     | 3            |
| Mamalahoa Hwy at Kamamalu St       | 14.1                                       | 080        | 8            | 24.3      | 06'0    | J            |
| Mamalahoa EB Through-Right         | 15.5                                       | 0.72       | В            | 25.6      | 0.90    | С            |
| Mamalahoa WB Left-Through          | 10.9                                       | 0.73       | В            | 9.1       | 0.44    | Α            |
| Kamamalu NB Left                   | 22.2                                       | 0.69       | )            | 45.0      | 0.90    | D            |
| Kamamalu NB Right                  | 12.2                                       | 90.0       | В            | 17.6      | 0.04    | В            |
| Hiiaka St at "New Road"            | 2.4                                        | Unsign     | Unsignalized | 8.7       | Unsign  | Unsignalized |
| Hiiaka WB Left-Through             | 8.0                                        | 0.08       | Α            | 7.8       | 0.03    | Α            |
| "New Road" NB Left-Right           | 13.0                                       | 0.09       | В            | 15.2      | 0.51    | С            |
| Hiiaka St at KOKA Main Dwy         | 2.0                                        | Unsign     | Unsignalized | 1.6       | Unsign  | Unsignalized |
| Hiiaka WB Left-Through             | 6.7                                        | 0.12       | ٧            | 7.7       | 0.03    | Α            |
| KOKA Main Dwy NB Left-Right        | 0.0                                        | 0.00       | Α            | 9.7       | 0.01    | Α            |
| Ainahua Alanui St at KOKA East Dwy | 5.5                                        | Unsign     | Unsignalized | 1.2       | Unsign  | Unsignalized |
| Ainahua Alanui WB Left-Through     | 7.3                                        | 0.01       | Α            | 7.6       | 0.02    | Α            |
| KOKA East Dwy NB Left-Right        | 14.4                                       | 0.42       | В            | 0.0       | 0.00    | Α            |
| Mamalahoa Hwy at Mana Rd           | 11.8                                       | Unsign     | Unsignalized | 4.8       | Unsign  | Unsignalized |
| Mamalahoa WB Left                  | 9.6                                        | 0.24       | Α            | 12.3      | 0.16    | В            |
| Mana NB Left                       | 28.7                                       | 0.24       | D            | 36.3      | 0.17    | E            |
| Mana NB Right                      | 13.6                                       | 0.23       | В            | 43.2      | 0.63    | В            |

## Mamalahoa Highway at Kamamalu Street

All movements at the intersection of Mamalahoa Highway at Kamamalu Street operate at a LOS D or better and v/c < 1.0 during both peak hours. a)

### Hiiaka Street at "New Road"

All movements at the intersection of Hiiaka Street at "New Road" operate at a LOS C or better and v/c < 1.0 during both peak hours.

25

Waimea Nui EA – KOKO Health Clinic TIAR

## Hiiaka Street at KOKA Main Driveway

All movements at the intersection of Hiiaka Street at KOKA Main Driveway operate at a LOS A and v/c < 1.0 during both peak hours.

 d) Ainahua Alanui Street at KOKA Eastern Driveway
 All movements at the intersection of Ainahua Alanui Street at KOKA Eastern Driveway operate at a LOS B or better and v/c < 1.0 during both peak hours.

e) Mamalahoa Highway at Mana Road
During the PM Peak hour, the northbound Mana Road left turn lane will operate poorly at LOS E (v/cratio 0.63). All other movements at the intersection of Mamalahoa Highway at Mana Road will operate at LOS of 0.17) during the PM Peak Hour, as will the northbound Mana Road right turn lane at LOS E (v/c ratio of D or better and v/c < 1.0 during both peak hours.

## Future (2031) Without Project Mitigation

Traffic signal Warrant 3, Peak Hour Warrant, from the MUTCD (FHWA, 2009), was analyzed for the Future (2031) Without Project conditions. Table 10 shows the volumes used for the peak hour analysis. Figure 13 shows the Future (2031) Without Project conditions Peak Hour Warrant Analysis. The "2 or more Lanes & The northbound approaches at Mamalahoa Highway and Mana Road will operate at LOS E during the PM peak hour. Therefore, a traffic signal warrant analysis was done for Mamalahoa Highway at Mana Road. 1 Lane" curve was used for analysis.

Table 10: Future (2031) Without Project Volumes at Mamalahoa Highway and Mana Road

| Movement           | AM Peak | PIM Peak |
|--------------------|---------|----------|
| Mamalahoa Hwy. EBT | 401     | 1,098    |
| Mamalahoa Hwy. WBT | 1,038   | 467      |
| Mamalahoa Hwy. WBL | 506     | 71       |
| Mana St. NBL       | 22      | 20       |
| Mana St. NBR       | 99      | 122      |
| Major*             | 1,645   | 1,636    |
| Minor              | 78      | 142      |

<sup>\*</sup>Eastbound right turns were excluded from the major volume calculation

The Mamalahoa Highway at Mana Road intersection will pass the Peak Hour Warrant in the PM Peak hour. The signalization of a TWSC intersection can allow motorists approaching from the minor streets to make protected movements instead of waiting for a gap in the major street traffic, improving delay on the minor streets, but adding a delay to the major street.

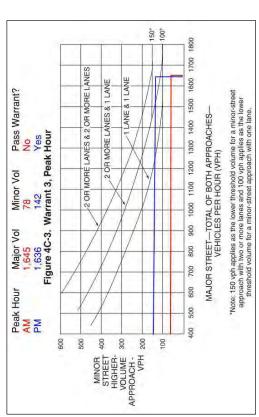



Figure 13: Future (2031) Without Project Peak Hour Warrant

Nearby signalized intersections have protected-permitted left turns from Mamalahoa Highway and permitted-overlap phasing for the minor street right turn. For consistency, the westbound left turn at this intersection was also analyzed with a leading protected-permitted left turn, and the northbound right turn was analyzed with a permitted-overlap phase. The cycle length and splits at the intersection were optimized. Table 11 shows an operational comparison of a TWSC intersection and a signalized intersection. Movements that operated at LOS E or worse or v/c > 1.0 are highlighted in yellow.

Table 11: Future (2031) Without Project Intersection Comparison – Mamalahoa Highway and Mana

|                                   |                    | AM Peak |              |                    | PM Peak |              |
|-----------------------------------|--------------------|---------|--------------|--------------------|---------|--------------|
| Approach and Movement             | Delay<br>(sec/veh) | v/c     | SOT          | Delay<br>(sec/veh) | v/c     | S01          |
| Mamalahoa Hwy at Mana Rd (TWSC)   | 11.8               | Unsign  | Jnsignalized | 4.8                | Unsign  | Unsignalized |
| Mamalahoa WB Left                 | 9.6                | 0.24    | Α            | 12.3               | 0.16    | В            |
| Mana NB Left                      | 28.7               | 0.24    | Q            | 36.3               | 0.17    | 3            |
| Mana NB Right                     | 13.6               | 0.23    | В            | 43.2               | 0.63    | 3            |
| Mamalahoa Hwy at Mana Rd (signal) | 10.4               |         | 8            | 21.3               |         | 3            |
| Mamalahoa EB Through-Right        | 8.5                | 0.52    | Α            | 28.1               | 0.95    | )            |
| Mamalahoa WB Left                 | 5.8                | 0.40    | Α            | 23.9               | 0.43    | 3            |
| Mamalahoa WB Through              | 10.3               | 0.89    | В            | 3.5                | 0.42    | ٧            |
| Mana NB Left                      | 26.4               | 0.27    | Э            | 32.6               | 0.12    | Q            |
| Mana NB Right                     | 22.9               | 0.41    | C            | 36.2               | 0.58    | Q            |

27

Waimea Nui EA – KOKO Health Clinic TIAR

The signalization of the intersection will result in an acceptable overall LOS, and an improvement for the northbound approach; however, it will introduce added delay for mainline movements along Mamalahoa Highway that is currently not present in TWSC conditions. The eastbound approach will experience a significant increase in delay, with the eastbound approach nearing capacity (v/c = 1.00). A roundabout was not considered feasible at this location due to the limited right-of-way as a result of the concrete culvert located adjacent to the intersection.

# Future (2041) Without Project Level of Service

## Future (2041) Without Project Conditions

Future (2041) Without Project intersection and movement, LOS and delay (in seconds per vehicle) were determined for the AM and PM peak hours using Synchro 10 traffic analysis software and are shown in Table 12 and the Synchro reports are included in Appendix D. For analysis, the cycle length and phasing at Mamalahoa Highway and Kamamalu Street were optimized. Movements that operate at LOS E or worse or v/c > 1.0 are highlighted in yellow.

Table 12. Future (2041) Without Project LOS

|                                    |           | AM Peak |              |           | PM Peak |              |
|------------------------------------|-----------|---------|--------------|-----------|---------|--------------|
|                                    |           | 100     |              |           | 155     |              |
| Approach and Movement              | Delay     | 4,      | 5            | Delay     | -thi    | 5            |
|                                    | (sec/veh) | v/c     | 62           | (sec/veh) | v/c     | 603          |
| Mamalahoa Hwy at Kamamalu St       | 15.8      | 0.89    | В            | 29.9      | 0.95    | J            |
| Mamalahoa EB Through-Right         | 15.9      | 0.76    | В            | 32.3      | 96'0    | )            |
| Mamalahoa WB Left-Through          | 13.3      | 0.82    | В            | 10.0      | 0.53    | Α            |
| Kamamalu NB Left                   | 26.6      | 0.74    | )            | 59.5      | 0.95    | 3            |
| Kamamalu NB Right                  | 14.6      | 0.07    | В            | 21.6      | 0.05    | В            |
| Hiiaka St at "New Road"            | 2.4       | Unsign  | Unsignalized | 8.7       | Unsign  | Unsignalized |
| Hiiaka WB Left-Through             | 8.0       | 0.08    | Α            | 7.8       | 0.03    | Α            |
| "New Road" NB Left-Right           | 13.0      | 0.09    | В            | 15.2      | 0.51    | Э            |
| Hiiaka St at KOKA Main Dwy         | 2.0       | Unsign  | Unsignalized | 1.6       | Unsign  | Unsignalized |
| Hiiaka WB Left-Through             | 7.9       | 0.12    | А            | 7.7       | 0.03    | А            |
| KOKA Main Dwy NB Left-Right        | 0.0       | 0.00    | Α            | 9.7       | 0.01    | Α            |
| Ainahua Alanui St at KOKA East Dwy | 5.5       | Unsign  | Unsignalized | 1.2       | Unsign  | Unsignalized |
| Ainahua Alanui WB Left-Through     | 7.3       | 0.01    | А            | 7.6       | 0.02    | Α            |
| KOKA East Dwy NB Left-Right        | 14.4      | 0.42    | В            | 0.0       | 0.00    | А            |
| Mamalahoa Hwy at Mana Rd           | 19.1      | Unsign  | Unsignalized | 8.1       | Unsign  | Unsignalized |
| Mamalahoa WB Left                  | 10.2      | 0.26    | Α            | 14.1      | 0.19    | В            |
| Mana NB Left                       | 34.5      | 0.28    | D            | 53.3      | 0.25    | F            |
| Mana NB Right                      | 15.1      | 0.26    | 3            | 84.8      | 0.84    | Ь            |

a) Mamalahoa Highway at Kamamalu Street
The northbound left turn will operate at LOS E, with a v/c of 0.95 during the PM peak hour. All other movements will operate at a LOS C or better and v/c < 1.0 during both peak hours.

SSFM International

# Waimea Nui EA – KOKO Health Clinic TIAR

SSFM International

b) Hilaka Street at "New Road" All movements at the intersection of Hilaka Street at "New Road" operate at a LOS C or better and v/c <1.0 during both peak hours.

c) Hiiada Street at KOKA Main Driveway All movements at the intersection of Hiiada Street at KOKA Main Driveway operate at a LOS A and v/c <1.0 during both peak hours.

 d) Ainahua Alanui Street at KOKA Eastern Driveway
 All movements at the intersection of Ainahua Alanui Street at KOKA Eastern Driveway operate at a LOS B or better and v/c < 1.0 during both peak hours.

### Mamalahoa Highway at Mana Road (a

(v/c of 0.25 and 0.84, respectively). All other movements at the intersection of Mamalahoa Highway at During the PM Peak hour, the northbound Mana Road left turn and right turn lanes will operate at LOS F Mana Road will operate at LOS D or better and v/c < 1.0 during both peak hours.

## Future (2041) Without Project Mitigation

intersection for the signal to provide more green time from the eastbound and westbound approaches to a) Mamalahoa Highway at Kamamalu Street
 The northbound left turn at Mamalahoa Highway and Kamamalu Street will operate at LOS E during the PM peak hour, with a v/c of 0.95. The eastbound and westbound mainline approaches along Mamalahoa Highway operate at LOS C and LOS A in the PM peak hour, respectively. There is an opportunity at this the northbound left turn if needed.

minute. With an estimated cycle length of 90 seconds, the northbound left turn would need to process approximately nine vehicles per cycle. Field observations and video recordings confirmed that this signal is actuated, and green time is provided to approaches that have heavier traffic. It was observed that the northbound left turn was able to process more than nine vehicles in a traffic cycle. It is recommended that The northbound left turn volume in the PM peak hour is 329 vehicles per hour, or about 5.5 vehicles per the phasing and actuated signal operation at this intersection remain as is.

## Mamalahoa Highway at Mana Road

During the PM Peak hour, as a TCSC intersection the northbound Mana Road left and right turn lanes will worsen to LOS F (v/c of 0.25 and 0.84, respectively). Similar to the Future (2031) Without Project Traffic Signal Warrant Analysis, the Peak Hour Warrant will pass in the PM peak hour. Table 13 shows an operational comparison of a TWSC intersection and a signalized intersection. Movements that operated at LOS E or worse or v/c > 1.0 are highlighted in yellow.

Table 13: Future (2041) Without Project Intersection Comparison – Mamalahoa Highway and Mana

|                                   |                    | AM Peak |              |                    | PM Peak |              |
|-----------------------------------|--------------------|---------|--------------|--------------------|---------|--------------|
| Approach and Movement             | Delay<br>(sec/veh) | v/c     | SOT          | Delay<br>(sec/veh) | v/c     | SOT          |
| Mamalahoa Hwy at Mana Rd (TWSC)   | 19.1               | Unsign  | Unsignalized | 8.1                | Unsign  | Unsignalized |
| Mamalahoa WB Left                 | 10.2               | 0.26    | Α            | 14.1               | 0.19    | 8            |
| Mana NB Left                      | 34.5               | 0.28    | Q            | 53.3               | 0.25    | Ь            |
| Mana NB Right                     | 15.1               | 0.26    | )            | 84.8               | 0.84    | Ь            |
| Mamalahoa Hwy at Mana Rd (signal) | 17.3               | -       | 8            | 31.2               | -       | )            |
| Mamalahoa EB Through-Right        | 7.1                | 0.49    | Α            | 38.6               | 0.99    | Q            |
| Mamalahoa WB Left                 | 5.6                | 0.40    | Y            | 6.07               | 0.77    | 3            |
| Mamalahoa WB Through              | 20.6               | 0.95    | )            | 3.7                | 0.46    | ٧            |
| Mana NB Left                      | 45.3               | 0.29    | Q            | 59.7               | 0.13    | Э            |
| Mana NB Right                     | 42.8               | 0.52    | Q            | 62:9               | 0.68    | 3            |

Mamalahoa Highway which are a result of the forecasted regional growth in the area. A single-lane With the addition of a signal and optimized signal timing, the northbound approaches will still operate at LOS E during the PM peak hour. However, with this, the WB left also operates at LOS E and the EB approach approaches capacity (v/c = 1.0). The delay is primarily due to the extremely high through volumes along roundabout was analyzed, however it resulted in over-capacity conditions. For this scenario, assuming the widening of Mamalahoa Highway is not feasible, the TWSC intersection may be preferred as it prioritizes the highest volume approaches.

# **FUTURE WITH PROJECT CONDITIONS**

access at the future "New Road" is expected to be completed as a part of the WNR-CDI Phase 1 controlled by a stop sign. Trips resulting from the proposed relocation of the KOKO Health Clinic were included in the Future (2026), (2031), and (2041) With Project analysis. "New Road" will extend to a The proposed relocation of the KOKO Health Clinic will be part of the WNR-CDI Phase 1. The primary development, intersecting with Hiiaka Street as a TWSC intersection with a shared left-right turn exit lane secondary access, which exists through the west end of Poliahu Alanui Road, west of the intersection with Uakikoni Alanui. This will provide sole access to the KOKO Health Clinic until the construction of the future "New Road". These are mainly rural roads with low volumes and TWSC intersections.

## **Future With Project Generated Volumes**

Ä

### **Project Related Volumes**

The anticipated project-related trips from the proposed relocation of the KOKO Health Clinic were determined using the following four-step methodology: trip generation, trip distribution, modal choice, and route assignment.

### Trip Generation

The trip generation methodology is based upon generally accepted techniques and rates developed by the Institute of Transportation Engineers (ITE) and published in the Trip Generation Manual, 11th Edition (ITE, 2021). The ITE trip rates are developed by correlating the total vehicle trip generation data with various activity/land use characteristics.

Trip generation was calculated for the proposed 9,600 SF gross floor area (SF GFA) KOKO Health Clinic. Project-related trips for the peak hour of the adjacent street were calculated based on the associated ITE formulas (see Table 14) and are shown in Table 15.

## Table 14: Project Related Trip Generation Rates

AM Peak Hour of Adjacent Street PM Peak Hour of Adjacent Street

| E    | 0011           | AIM Peak Hour of Adjacent Street                                  | r Adjacent | street             |            | PIM Peak Hour of Adjacent Street | ajacent            | street     |
|------|----------------|-------------------------------------------------------------------|------------|--------------------|------------|----------------------------------|--------------------|------------|
|      | aco pile ralid | Equation                                                          | %uI        | In% Out %          | Eq         | Equation                         | % uI               | In % Out % |
| J    | Clinic         | T=2.19(X)+8.68                                                    | 81         | 81 19              |            | T=3.53(X)+2.98                   | 30                 | 70         |
|      | Table 15: F    | Table 15: Project Related Development Phasing and Trips Generated | evelopme   | nt Phasin          | g and Trip | s Generated                      |                    |            |
| 1    |                | Independent                                                       | AM Pe      | AM Peak Hour (vph) | (hdv)      | PM Pea                           | PM Peak Hour (vph) | /bh)       |
| Code | ITE Land Use   | Variable<br>Value                                                 | Enter      | Exit               | Total      | Enter                            | Exit               | Total      |
| 930  | Clinic         | 9,600 SF GFA 24                                                   | 24         | 9                  | 30         | 11                               | 56                 | 37         |

These low number of trips are not expected to have a significant impact on the surrounding roadway network. As a result, a separate analysis analyzing the secondary access was not done. Instead, the KOKO Health Clinic volumes were considered as a part of the other trips from Phase 1 through the future "New The KOKO Health Clinic is expected to generate 30 and 37 trips in the AM and PM peak hours, respectively.

Waimea Nui EA – KOKO Health Clinic TIAR

**b) Trip Distribution/Assignment**The relocated KOKO Health Clinic related trips were distributed based on historical traffic data. Figure 14 shows the forecasted distribution of project-related trips at the study intersections during the AM and PM peak hours. The trips generated by the proposed KOKO Health Clinic were redistributed from the existing KOKO Health Clinic on Mamalahoa Highway (shown in red in Figure 14) to the new project site (shown in black in Figure 14).

c) Modal Choice
All project-related external trips were assumed to be by private vehicle only due to the surrounding land use, rural context, and lack of alternative transportation options. This reflects the worst-case traffic condition with all trips occurring by private vehicle.

### Future With Project Volumes ð

Future with Project conditions was calculated through the following methods:

- Future (2026) With Project (see Figure 15) is a sum of the Future (2026) Without Project (Figure and the KOKO Health Clinic Project Related Trips (Figure 14).
- Future (2031) With Project (see Figure 16) is a sum of the Future (2031) Without Project (Figure 11) and the KOKO Health Clinic Project Related Trips (Figure 14).
- Future (2041) With Project (see Figure 17) is a sum of the Future (2041) Without Project (Figure 12) and the KOKO Health Clinic Project Related Trips (Figure 14).

31

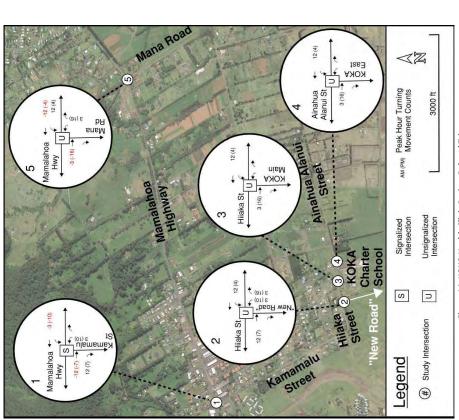



Figure 14. KOKO Health Clinic Project Related Trips

Mana Road 1 (33) Alanui St. U 1 (38)

Alanui St. (158)

28 (158)

P. (158)

P. (158)

R. (158)

R. (158) 940 (424) 218 (75) Mamalahoa → 940 (42 Hwy U U 1 (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → (80 982) → ( Peak Hour Turning Movement Counts 3000 ft Ainahua Alanui Street 185 (24) 93 (33) AM (PM) KOKA 0 (3) Hiiaka St ∠E6 (146) → (S) Highway 84 (2) 🔾 Unsignalized Intersection Signalized Intersection KOKA Charter School **6** Hijaka St. | 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 111 (6. 1 S  $\Box$ Hijaka Street 974 (579) 31 (21) # Study Intersection Kamamatu Street Legend

Figure 15. Future (2026) With Project Peak Hour Volumes

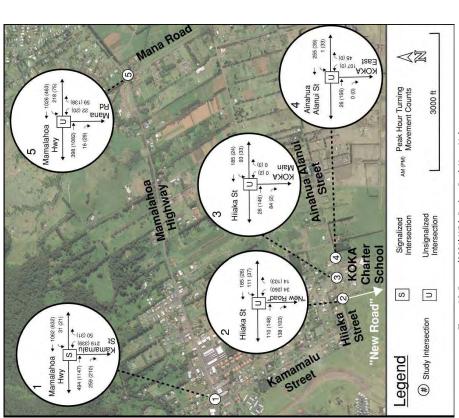



Figure 16. Future (2031) With Project Peak Hour Volumes

Mana Road 1 (33) (3.6) (3.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) (4.6) <≥ 26 (156) Ainahua Alanui St Peak Hour Turning Movement Counts 218 (75) 3000 ft Mana sz (20) ₹ Mamalahoa ← 1; Hwy ← 1288) ← 16 16 (29) Ainahua Alanui Street 185 (24) 93 (33) 26 (146) 8 (176) 4 (176) KOKA (8) AM (PM) Highway Hiiaka St 26 (146) → Unsignalized Intersection Signalized Intersection 3 4---KOKA Charter School Hijaka St. 100(148) Hijaka S  $\supset$ Hijaka Street 1261 (752) 31 (21) (#) Study Intersection Kamamatu Street Legend

Figure 17. Future (2041) With Project Peak Hour Volumes

### Future (2026) With Project Level of Service æ

## Future (2026) With Project Conditions

Future (2026) With Project intersection and movement LOS and delay (in seconds per vehicle) was determined for the AM and PM peak hours using Synchro 10 traffic analysis software and are shown in Table 16 and reports can be found in Appendix E. For analysis, the cycle length and phasing at Mamalahoa Highway and Kamamalu Street were optimized. Movements that operate at LOS E or worse or v/c > 1.0are highlighted in yellow.

Table 16. Future (2026) With Project LOS

|                                    |                    | AM Peak |              |                    | PM Peak |              |
|------------------------------------|--------------------|---------|--------------|--------------------|---------|--------------|
| Approach and Movement              | Delay<br>(sec/veh) | v/c     | ros          | Delay<br>(sec/veh) | v/c     | SOT          |
| Mamalahoa Hwy at Kamamalu St       | 13.3               | 0.76    | 8            | 24.3               | 06'0    | )            |
| Mamalahoa EB Through-Right         | 14.5               | 0.67    | В            | 25.6               | 0.91    | U            |
| Mamalahoa WB Left-Through          | 6.6                | 0.67    | Α            | 8.7                | 0.41    | ٧            |
| Kamamalu NB Left                   | 21.6               | 0.70    | C            | 40.8               | 0.91    | Q            |
| Kamamalu NB Right                  | 12.3               | 0.04    | В            | 15.1               | 0.04    | В            |
| Hiiaka St at "New Road"            | 2.6                | Unsign  | Unsignalized | 9.5                | Unsign  | Unsignalized |
| Hiiaka WB Left-Through             | 8.1                | 0.09    | Α            | 7.9                | 0.03    | ٧            |
| "New Road" NB Left-Right           | 13.7               | 0.11    | В            | 17.0               | 0.57    | )            |
| Hiiaka St at KOKA Main Dwy         | 2.0                | Unsign  | Unsignalized | 1.5                | Unsign  | Unsignalized |
| Hiiaka WB Left-Through             | 7.9                | 0.12    | Α            | 7.7                | 0.03    | Α            |
| KOKA Main Dwy NB Left-Right        | 0.0                | 0.00    | Α            | 9.7                | 0.01    | Α            |
| Ainahua Alanui St at KOKA East Dwy | 5.5                | Unsign  | Unsignalized | 1.1                | Unsign  | Unsignalized |
| Ainahua Alanui WB Left-Through     | 7.3                | 0.01    | Α            | 7.6                | 0.02    | Α            |
| KOKA East Dwy NB Left-Right        | 14.9               | 0.43    | В            | 0.0                | 0.00    | ٧            |
| Mamalahoa Hwy at Mana Rd           | 9.2                | Unsign  | Unsignalized | 4.7                | Unsign  | Unsignalized |
| Mamalahoa WB Left                  | 9.5                | 0.24    | Α            | 11.5               | 0.15    | В            |
| Mana NB Left                       | 28.1               | 0.24    | D            | 31.1               | 0.15    | Q            |
| Mana NB Right                      | 13.0               | 0.22    | В            | 37.0               | 0.61    | Э            |
|                                    |                    |         |              |                    |         |              |

### Mamalahoa Highway at Kamamalu Street a

All movements at the intersection of Mamalahoa Highway at Kamamalu Street operated at a LOS D or better and v/c < 1.0 during both peak hours.

b) Hilaka Street at "New Road"All movements at the intersection of Hiiaka Street at "New Road" operate at a LOS C or better and v/c 1.0 during both peak hours.

c) Hiiada Street at KOKA Main Driveway All movements at the intersection of Hiiaka Street at KOKA Main Driveway operate at a LOS A and v/c <1.0 during both peak hours.

37

Waimea Nui EA – KOKO Health Clinic TIAR

# Ainahua Alanui Street at KOKA Eastern Driveway

All movements at the intersection of Ainahua Alanui Street at KOKA Eastern Driveway operate at a LOS B or better and v/c < 1.0 during both peak hours.

## Mamalahoa Highway at Mana Road

During the PM Peak hour, the northbound Mana Road right turn will worsen from LOS D in Future (2026) Without Project to LOS E (v/c of 0.61). All other movements at the intersection of Mamalahoa Highway at Mana Road will operate at LOS D or better and  $\ensuremath{v/c}\xspace < 1.0$  during both peak hours.

## Future (2026) With Project Mitigation

The northbound right turn at the intersection of Mamalahoa Highway and Mana Road will operate at LOS E during the PM peak hour.

turns were not included in the major volume calculation. Figure 18 shows the Future (2026) With Project Peak Hour Warrant Analysis. The Future (2026) With Project AM and PM peak hour volumes are shown MUTCD Traffic Signal Warrant 3, Peak Hour Warrant was analyzed for the Future (2026) With Project conditions. Table 17 shows the volumes used for the peak hour analysis. For this, the eastbound right as red and blue lines, respectively. The "2 or more Lanes & 1 Lane" curve was used for analysis.

Table 17: Future (2026) Volumes at Mamalahoa Highway and Mana Road

| Movement          | AM Peak | PM Peak |
|-------------------|---------|---------|
| Mamalahoa Hwy EBT | 365     | 766     |
| Mamalahoa Hwy WBT | 940     | 424     |
| Mamalahoa Hwy WBL | 218     | 75      |
| Mana St NBL       | 22      | 70      |
| Mana St NBR       | 29      | 138     |
| Major*            | 1,523   | 1,491   |
| Minor             | 81      | 158     |

<sup>\*</sup>Eastbound right turns were excluded from the major volume calculation

The Mamalahoa Highway and Mana Road intersection satisfies the Peak Hour Warrant in the PM peak hour. The satisfaction of the Peak Hour Warrant does not indicate that a signal must be installed but can be considered. The v/c ratios for the northbound Mana Road movements indicate that they are not yet approaching capacity, and instead are a result of the difficulty a driver may have in finding a gap in within the mainline traffic. The TWSC condition was compared to the signalized intersection at Mamalahoa Highway and Mana Road for the AM and PM peak hours (see Table 18). The cycle length and splits at the intersection were optimized. Nearby signalized intersections have protected-permitted left turns from Mamalahoa Highway and permitted-overlap phasing for the minor street right turn. For consistency, the westbound left turn at this intersection was also analyzed with a leading protected-permitted left turn, and the northbound right turn was analyzed with a permitted-overlap phase.

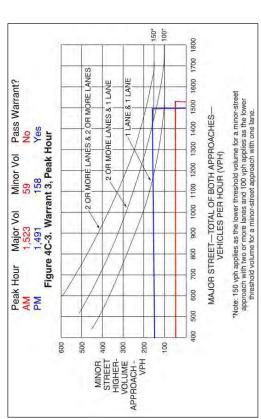



Figure 18: Future (2026) With Project Peak Hour Warrant

Table 18. Future (2026) Without Project Intersection Comparison – Mamalahoa Highway and Mana

|                                   |                    | AM Peak |              |                    | PM Peak |              |
|-----------------------------------|--------------------|---------|--------------|--------------------|---------|--------------|
| Approach and Movement             | Delay<br>(sec/veh) | v/c     | SOT          | Delay<br>(sec/veh) | v/c     | SOT          |
| Mamalahoa Hwy at Mana Rd (TWSC)   | 9.5                | Unsign  | Unsignalized | 4.7                | Unsign  | Unsignalized |
| Mamalahoa WB Left                 | 9.5                | 0.24    | Α            | 11.5               | 0.15    | В            |
| Mana NB Left                      | 28.1               | 0.24    | D            | 31.1               | 0.15    | Q            |
| Mana NB Right                     | 13.0               | 0.22    | В            | 37.0               | 0.61    | 3            |
| Mamalahoa Hwy at Mana Rd (signal) | 9.2                |         | Α            | 18.8               |         | 8            |
| Mamalahoa EB Through-Right        | 9.6                | 0.56    | А            | 24.5               | 0.93    | 2            |
| Mamalahoa WB Left                 | 6.3                | 0.43    | А            | 18.3               | 0.39    | В            |
| Mamalahoa WB Through              | 8.3                | 0.85    | А            | 3.8                | 0.40    | ٧            |
| Mana NB Left                      | 21.1               | 0.25    | С            | 29.7               | 0.11    | )            |
| Mana NB Right                     | 17.4               | 0.38    | В            | 30.2               | 0.58    | 2            |
|                                   |                    |         |              |                    |         | ı            |

The addition of the traffic signal at Mamalahoa Highway and Mana Road improved the resulting delay of nearing a v/c of 1.00. It is recommended that this intersection be studied as a part of the future buildout the northbound right turn; however, it will introduce added delay for mainline movements along Mamalahoa Highway that is currently not present in TWSC conditions, with the eastbound approach in collaboration with HDOT to assess the need for a traffic signal.

Waimea Nui EA – KOKO Health Clinic TIAR

# Future (2031) With Project Level of Service

## Future (2031) With Project Conditions

Future (2031) With Project intersection and movement, LOS and delay (in seconds per vehicle) was determined for the AM and PM peak hours using Synchro 10 traffic analysis software and are shown in Table 19 and reports can be found in Appendix E. The cycle length and phasing at Mamalahoa Highway and Kamamalu Street was optimized. Movements that operate at LOS E or worse or v/c > 1.0 are highlighted in yellow.

Table 19. Future (2031) With Project LOS

|                                    |                    | AM Peak |              |                    | PM Peak |              |
|------------------------------------|--------------------|---------|--------------|--------------------|---------|--------------|
| Approach and Movement              | Delay<br>(sec/veh) | v/c     | SOT          | Delay<br>(sec/veh) | v/c     | SOT          |
| Mamalahoa Hwy at Kamamalu St       | 14.2               | 08'0    | 8            | 72.2               | 06'0    | )            |
| Mamalahoa EB Through-Right         | 15.5               | 0.72    | 8            | 26.4               | 0.91    | )            |
| Mamalahoa WB Left-Through          | 11.0               | 0.73    | 8            | 9.4                | 0.44    | Α            |
| Kamamalu NB Left                   | 22.2               | 0.70    | )            | 46.6               | 0.91    | Q            |
| Kamamalu NB Right                  | 12.7               | 0.05    | В            | 17.5               | 0.04    | В            |
| Hiiaka St at "New Road"            | 5.6                | Unsign  | Unsignalized | 9.5                | Unsign  | Unsignalized |
| Hiiaka WB Left-Through             | 8.1                | 0.09    | ٧            | 7.9                | 0.03    | ٧            |
| "New Road" NB Left-Right           | 13.7               | 0.11    | 8            | 17.0               | 0.57    | )            |
| Hiiaka St at KOKA Main Dwy         | 2.0                | Unsign  | Unsignalized | 1.5                | Unsign  | Unsignalized |
| Hiiaka WB Left-Through             | 6.7                | 0.12    | ٧            | 7.7                | 0.03    | ٧            |
| KOKA Main Dwy NB Left-Right        | 0.0                | 0.00    | Α            | 6.6                | 0.01    | Α            |
| Ainahua Alanui St at KOKA East Dwy | 2.5                | Unsign  | Unsignalized | 1.1                | Unsign  | Unsignalized |
| Ainahua Alanui WB Left-Through     | 7.3                | 0.01    | Α            | 7.6                | 0.02    | Α            |
| KOKA East Dwy NB Left-Right        | 14.9               | 0.43    | В            | 0.0                | 0.00    | Α            |
| Mamalahoa Hwy at Mana Rd           | 11.9               | Unsign  | Unsignalized | 5.7                | Unsign  | Unsignalized |
| Mamalahoa WB Left                  | 9.7                | 0.25    | Α            | 12.2               | 0.16    | В            |
| Mana NB Left                       | 30.2               | 0.25    | Q            | 36.3               | 0.17    | 3            |
| Mana NB Right                      | 13.6               | 0.24    | 8            | 48.1               | 69.0    | 3            |

## Mamalahoa Highway at Kamamalu Street

a)

All movements at the intersection of Mamalahoa Highway at Kamamalu Street operate at a LOS D or better and v/c < 1.0 during both peak hours.

b) Hijaka Street at "New Road"
All movements at the intersection of Hijaka Street at "New Road" operate at a LOS C or better and v/c <</p> 1.0 during both peak hours.

 c) Hilaka Street at KOKA Main Driveway
 All movements at the intersection of Hiiaka Street at KOKA Main Driveway operate at a LOS A and v/c 1.0 during both peak hours.

33

# Ainahua Alanui Street at KOKA Eastern Driveway

All movements at the intersection of Ainahua Alanui Street at KOKA Eastern Driveway operate at a LOS B or better and v/c < 1.0 during both peak hours.

## Mamalahoa Highway at Mana Road

During the PM peak hour, the northbound Mana Road left and right turn lanes will operate at LOS E (v/c of 0.17 and 0.69, respectively). All other movements at the intersection of Mamalahoa Highway at Mana Road will operate at a LOS D or better and v/c < 1.0 during both peak hours.

## Future (2031) With Project Mitigation

During the PM peak hour, the northbound Mana Road left and right turn lanes will operate at LOS E (v/c of 0.17 and 0.69, respectively). Similar to the Future (2026) With Project Traffic Signal Warrant Analysis, the Peak Hour Warrant will pass in the PM peak hour. Table 20 shows a comparison of a TWSC intersection and a signalized intersection. Movements that operated at LOS E or worse or v/c > 1.0 are highlighted in Andrea

Table 20: Future (2031) With Project Intersection Comparison

|                                   |           | AM Peak |              |           | PM Peak |              |
|-----------------------------------|-----------|---------|--------------|-----------|---------|--------------|
| Approach and Movement             | Delay     | Jin     | 301          | Delay     | 2/11    | 301          |
|                                   | (sec/veh) | ۷/۲     | 52           | (sec/veh) | ۸/۲     | 5            |
| Mamalahoa Hwy at Mana Rd (TWSC)   | 11.9      | Unsign  | Unsignalized | 5.7       | Unsign  | Unsignalized |
| Mamalahoa WB Left                 | 2.6       | 0.25    | ٧            | 12.2      | 0.16    | В            |
| Mana NB Left                      | 30.2      | 0.25    | Q            | 36.3      | 0.17    | 3            |
| Mana NB Right                     | 13.6      | 0.24    | В            | 48.1      | 69.0    | 3            |
| Mamalahoa Hwy at Mana Rd (signal) | 10.4      | -       | В            | 26.1      |         | J            |
| Mamalahoa EB Through-Right        | 8.8       | 0.53    | Α            | 36.8      | 0.99    | Q            |
| Mamalahoa WB Left                 | 6.1       | 0.42    | Α            | 23.1      | 0.49    | )            |
| Mamalahoa WB Through              | 10.1      | 0.88    | В            | 3.8       | 0.43    | Α            |
| Mana NB Left                      | 25.8      | 0.26    | 3            | 32.0      | 0.11    | 3            |
| Mana NB Right                     | 22.2      | 0.41    | Э            | 32.7      | 0.59    | )            |

With the addition of a signal, the Mana Road approach and all other movements will operate at an acceptable LOS for both peak hours; however, it will introduce added delay for mainline movements along Mamalahoa Highway that is currently not present in TWSC conditions, with the eastbound approach nearing a v/c of 1.00. It is recommended that this intersection continue to be studied as a part of the future buildout in collaboration with HDOT to assess the need for a traffic signal or other appropriate mitigation.

# D. Future (2041) With Project Level of Service

## Future (2041) With Project Conditions

Future (2041) With Project intersection and movement, LOS and delay (in seconds per vehicle) was determined for the AM and PM peak hours using Synchro 10 traffic analysis software and are shown in Table 21 and reports can be found in Appendix E. The cycle length and phasing at Mamalahoa Highway and Kamamalu Street was optimized. Movements that operate at LOS E or worse or v/c > 1.0 are highlighted in yellow.

41

Waimea Nui EA – KOKO Health Clinic TIAR

Table 21. Future (2041) With Project LOS

|                                    |           | AM Peak |              |           | PM Peak |              |
|------------------------------------|-----------|---------|--------------|-----------|---------|--------------|
| Approach and Movement              | Delay     | 4       | 301          | Delay     | 7,"     | 301          |
|                                    | (sec/veh) | v/c     | 103          | (sec/veh) | v/c     | 9            |
| Mamalahoa Hwy at Kamamalu St       | 15.9      | 0.89    | В            | 31.2      | 96'0    | 3            |
| Mamalahoa EB Through-Right         | 16.0      | 0.76    | 8            | 32.5      | 96'0    | )            |
| Mamalahoa WB Left-Through          | 13.3      | 0.83    | 8            | 10.0      | 0.52    | ٧            |
| Kamamalu NB Left                   | 27.0      | 0.75    | )            | 0.99      | 0.98    | 3            |
| Kamamalu NB Right                  | 14.5      | 0.07    | В            | 21.6      | 0.05    | 8            |
| Hiiaka St at "New Road"            | 2.6       | Unsign  | Unsignalized | 5'6       | Unsigr  | Unsignalized |
| Hiiaka WB Left-Through             | 8.1       | 0.09    | Α            | 7.9       | 0.03    | ٧            |
| "New Road" NB Left-Right           | 13.7      | 0.11    | В            | 17.0      | 0.57    | Э            |
| Hiiaka St at KOKA Main Dwy         | 2.0       | Unsign  | Unsignalized | 1.5       | Unsigr  | Unsignalized |
| Hiiaka WB Left-Through             | 7.9       | 0.12    | Α            | 7.7       | 0.03    | ٧            |
| KOKA Main Dwy NB Left-Right        | 0.0       | 0.00    | Α            | 9.7       | 0.01    | ٧            |
| Ainahua Alanui St at KOKA East Dwy | 5.5       | Unsign  | Unsignalized | 1.1       | Unsign  | Unsignalized |
| Ainahua Alanui WB Left-Through     | 7.3       | 0.01    | Α            | 7.6       | 0.02    | ٧            |
| KOKA East Dwy NB Left-Right        | 14.9      | 0.43    | В            | 0.0       | 00.00   | ٧            |
| Mamalahoa Hwy at Mana Rd           | 21.6      | Unsign  | Unsignalized | 10.0      | Unsign  | Unsignalized |
| Mamalahoa WB Left                  | 10.2      | 0.27    | Α            | 14.1      | 0.20    | В            |
| Mana NB Left                       | 36.5      | 0.30    | E            | 53.3      | 0.25    | F            |
| Mana NB Right                      | 15.2      | 0.27    | 3            | 102.2     | 66.0    | Н            |

# a) Mamalahoa Highway at Kamamalu Street

The northbound left turn will operate at LOS E, with a v/c of 0.98 during the PM peak hour. All other movements will operate at a LOS C or better and v/c < 1.0 during both peak hours.

### Hiiaka Street at "New Road"

All movements at the intersection of Hiiaka Street at "New Road" operate at a LOS C or better and v/c < 1.0 during both peak hours.

## Hiiaka Street at KOKA Main Driveway

All movements at the intersection of Hiiaka Street at KOKA Main Driveway operate at a LOS A and v/c < 1.0 during both peak hours.

# ) Ainahua Alanui Street at KOKA Eastern Driveway

All movements at the intersection of Ainahua Alanui Street at KOKA Eastern Driveway operate at a LOS B or better and v/c < 1.0 during both peak hours.

## Mamalahoa Highway at Mana Road

During the PM peak hour, the northbound Mana Road left and right turn lanes will operate at LOS E (v/c of 0.25 and 0.93, respectively). Additionally, the northbound Mana Road left turn lane will operate at LOS E (v/c ratio of 0.30) during the AM peak hour. All other movements at the intersection of Mamalahoa Highway at Mana Road will operate at a LOS C or better and v/c < 1.0 during both peak hours.

## Future (2041) With Project Mitigation

## Mamalahoa Highway at Kamamalu Street

The northbound left turn at the intersection of Mamalahoa Highway and Kamamalu Street will operate at LOS E, with a v/c of 0.98 during the PM peak hour. The eastbound and westbound approaches along Mamalahoa Highway operate at LOS Cand LOS A, respectively. There is an opportunity at this intersection for the signal to provide more green time from the eastbound and westbound approaches to the northbound left turn if needed.

The northbound left turn volume in the PM peak hour is 339 vehicles per hour, or about 5.5 vehicles per minute. With an estimated cycle length of about 90 seconds, the northbound left turn would need to process approximately nine vehicles per cycle. Field observations and video recordings confirmed that this signal is actuated, and green time is provided to approaches that have heavier traffic. The northbound left turn was able to process more than nine vehicles in a traffic cycle. It is recommended that the phasing and actuated signal operation at this intersection remain as is.

## Mamalahoa Highway at Mana Road

During the AM Peak hour, the northbound left turn lane operates at LOS E (v/c of 0.30). During the PM Peak hour, the northbound Mana Road left and right turn lanes will operate at LOS F (v/c of 0.25 and 0.93, respectively). Similar to the Future (2031) With Project Traffic Signal Warrant Analysis, the Peak Hour Warrant will pass in the PM peak hour. Table 22 shows a comparison of a TWSC intersection and a signalized intersection. Movements that operated at LOS E or worse or v/c > 1.0 are highlighted in yellow.

Table 22: Future (2041) With Project Intersection Comparison

|                                                                                                     |                    | AM Peak    |              |                    | PM Peak   |              |
|-----------------------------------------------------------------------------------------------------|--------------------|------------|--------------|--------------------|-----------|--------------|
| Approach and Movement                                                                               | Delay<br>(sec/veh) | v/c        | SOT          | Delay<br>(sec/veh) | v/c       | S01          |
| Mamalahoa Hwy at Mana Rd (TWSC)                                                                     | 21.6               | Unsign     | Unsignalized | 10.0               | Unsign    | Unsignalized |
| Mamalahoa WB Left                                                                                   | 10.2               | 0.27       | Α            | 14.1               | 0.20      | В            |
| Mana NB Left                                                                                        | 36.5               | 0:30       | E            | 53.3               | 0.25      | F            |
| Mana NB Right                                                                                       | 15.2               | 0.27       | С            | 102.2              | 0.93      | F            |
| Mamalahoa Hwy at Mana Rd (signal)                                                                   | 18.0               |            | В            | 33.6               |           | J            |
| Mamalahoa EB Through-Right                                                                          | 7.7                | 0.50       | Α            | 41.4               | 1.00      | D            |
| Mamalahoa WB Left                                                                                   | 0.9                | 0.43       | Α            | 78.7               | 0.81      | E            |
| Mamalahoa WB Through                                                                                | 22.1               | 96.0       | C            | 4.1                | 0.47      | Α            |
| Mana NB Left                                                                                        | 41.6               | 0.28       | D            | 58.8               | 0.12      | E            |
| Mana NB Right                                                                                       | 38.8               | 0.50       | D            | 67.1               | 0.70      | E            |
| With the addition of a signal the easthound approach northbound left turn and northbound right turn | thound and         | roach nort | fel burodd   | ttiirn and r       | orthhound | right turn   |

with the addition of a signal, the eastbound approach, northbound entiturn, and northbound right turn will operate at LOS E (v/c of 0.81, 0.12, and 0.70, respectively) during the PM peak hour. The delay is due to the cycle length, and not due to the difficulty of northbound left turn vehicles to clear the intersection. The eastbound approach will experience a significant increase in delay, with the eastbound approach nearing a v/c of 1.00. It is recommended that this intersection continue to be studied as a part of the future buildout in collaboration with HDOT to assess the need for a traffic signal or other

43

appropriate mitigation.

Waimea Nui EA – KOKO Health Clinic TIAR

# SUMMARY AND RECOMMENDATIONS

WNCDC plans to develop the WNR-CDI on an existing vacant lot (TMK (3) 6-4-038:011) in Waimea, on the Island of Hawaii. Previously, the 2015 WNR-CDI 7IAR analyzed the WNR-CDI with proposed land uses including a cemetery, agriculture park, golf facility, equestrian center, and farmers' market. These have yet to be constructed. The WNCDC is now pursuing the relocation and upgrade of the existing KOKO Health Clinic from its current site within Uilani Plaza on Mamalahoa Highway to within the WNR-CDI. The primary access to the relocated KOKO Health Clinic will be off of the future "New Road" at Hilaka Street. An access exists through the west end of Poliahu Alanui Road, west of the intersection with Dakikoni Alanui and will be used in the interim as a temporary access. This will provide sole access to the KOKO Health Clinic is expected to generate 30 and 37 trips in the AM and PM peak hours, respectively. These low number of trips are not expected to have a significant impact on the surrounding roadway network. As a result, a separate analysis of the secondary access was not done. Both the previously proposed land uses, and the additional relocation of the KOKO Health Clinic constitute Phase 1 of the WNR-CDI developments that are not yet planned, and therefore was analyzed as a part of this TIAR.

This TIAR will supplement the previous 2015 WNR-CDI TIAR and only assess the impact of the proposed relocated KOKO Health Clinic on Future With Project analysis. As a part of this TIAR, the Future Without Project analysis will include the project-related trips from the 2015 WNR-CDI TIAR using updated background growth rates and intersection turning movement counts taken in September 2021. The overall size and traffic impact of the KOKO Health Clinic compared to the other land uses proposed in the 2015 WNR-CDI TIAR Phase 1 is minimal.

At Mamalahoa Highway and Mana Road, the northbound right approach will worsen to LOS E in Future (2026) With Project and LOS F in Future (2041) With Project in the PM peak hour. The northbound left turn also operates at LOS E during the Future (2041) With Project in the AM peak hour, and LOS E during the Future (2021) With Project in the PM peak hour. This intersection satisfied the Peak Hour Traffic Signal Warrant for Future (2026) With Project: With a traffic signal, the eastbound approach in the PM peak hour nears capacity (v/c = 1.00) in 2041 for conditions with and without the project which is likely due to the large through volumes along Mamalahoa Highway resulting from the forecasted regional growth. It is recommended that this intersection be studied as a part of the future buildout in collaboration with HDOT to assess the need for a traffic signal.

The northbound left turn during the PM peak hour at Mamalahoa Highway and Kamamalu Street worsens to LOS E in Future (2041) Without Project and Future (2041) With Project conditions. Future project volumes suggest that up to nine vehicles per cycle would be queued at this approach to the intersection. Video recordings and field observations show that the northbound left turn will be able to process the queue every cycle. The signal timing at this intersection should be monitored and adjusted if needed.

SSFM International

### REFERENCES

County of Hawaii. Hawaii Island Hele-On Bus, <a href="http://heleonbus.org">http://heleonbus.org</a>.

Institute of Transportation Engineers. Trip Generation, 11th Edition: An ITE Informational Report, September 2022.

Office of Environmental Review Program (ERP). EA and EIS Online Library, Accessed 2021, <a href="https://planning.hawaii.gov/erp/">https://planning.hawaii.gov/erp/</a>.

State of Hawaii, Department of Transportation. Historical Traffic Station Maps.

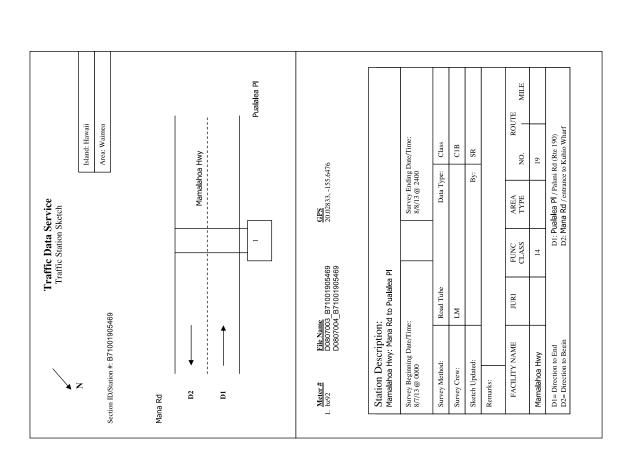
State of Hawaii, Department of Transportation. Federal-Aid Highways 2035 Transportation Plan for the District of Hawaii, July 2014.

State of Hawaii, Department of Transportation. Statewide Transportation Improvements Program, <a href="http://hawaii.gov/dot/highways/STIP">http://hawaii.gov/dot/highways/STIP</a>.

Transportation Research Board, National Research Council. Highway Capacity Manual, Washington, D.C., 2016 Edition.

Transportation Research Board, National Research Council. Highway Capacity Manual, Washington, D.C., 2000 Edition.

Traffic Management Consultant, Traffic Impact Analysis Report for Waimea Nui Regional Community


Wilson Okamoto, Waimea Middle School New Eight Classroom Building EA (2015).

Development Initiative (2015).

PRB Hawaii & Associates, Waimea Town Infrastructure Improvements EA (2017).

SSFM, Waimea Roadway Improvement Project EA (2021).

### Appendix A Historical and 2021 Traffic Data



Hawaii Department of Transportation Run Date: 2014/05/29 **Highways Division** Highways Planning Survey Section

2013 Program Count - Summary

Site ID: B71001905469
Functional Class: URBAN:PRINCIPAL ARTERIAL - OTHER Location: Mamalahoa Hwy - Mana Rd to Pualalea PI Final AADT: 15500 Route No: 19 Town: Hawaii Count Type: CLASS DIR 1: +MP DIR 2:-MP Counter Type: Tube

| TIME-AM     | DIR 1    | DIR 2 | TOTAL | TIME-AM     | DIR 1 | DIR 2 | TOTAL | TIME-PM     | DIR 1 | DIR 2 | TOTAL | TIME-PM     | DIR 1 | DIR 2 | TOTAL |
|-------------|----------|-------|-------|-------------|-------|-------|-------|-------------|-------|-------|-------|-------------|-------|-------|-------|
| DATE: 08    | /07/2013 |       |       |             |       |       |       |             |       |       |       |             |       |       |       |
| 12:00-12:15 | 5        | 18    | 23    | 06:00-06:15 | 160   | 29    | 189   | 12:00-12:15 | 123   | 138   | 261   | 06:00-06:15 | 97    | 154   | 251   |
| 12:15-12:30 | 2        | 11    | 13    | 06:15-06:30 | 168   | 39    | 207   | 12:15-12:30 | 117   | 130   | 247   | 06:15-06:30 | 116   | 123   | 239   |
| 12:30-12:45 | 10       | 12    | 22    | 06:30-06:45 | 213   | 44    | 257   | 12:30-12:45 | 130   | 131   | 261   | 06:30-06:45 | 81    | 120   | 201   |
| 12:45-01:00 | 1        | 10    | 11    | 06:45-07:00 | 170   | 51    | 221   | 12:45-01:00 | 128   | 134   | 262   | 06:45-07:00 | 90    | 119   | 209   |
| 01:00-01:15 | 3        | 7     | 10    | 07:00-07:15 | 193   | 51    | 244   | 01:00-01:15 | 169   | 130   | 299   | 07:00-07:15 | 73    | 82    | 155   |
| 01:15-01:30 | 2        | 7     | 9     | 07:15-07:30 | 186   | 85    | 271   | 01:15-01:30 | 110   | 147   | 257   | 07:15-07:30 | 64    | 115   | 179   |
| 01:30-01:45 | 4        | 6     | 10    | 07:30-07:45 | 247   | 88    | 335   | 01:30-01:45 | 104   | 181   | 285   | 07:30-07:45 | 45    | 98    | 143   |
| 01:45-02:00 | 0        | 6     | 6     | 07:45-08:00 | 215   | 125   | 340   | 01:45-02:00 | 106   | 145   | 251   | 07:45-08:00 | 30    | 83    | 113   |
| 02:00-02:15 | 6        | 0     | 6     | 08:00-08:15 | 165   | 109   | 274   | 02:00-02:15 | 121   | 126   | 247   | 08:00-08:15 | 43    | 103   | 146   |
| 02:15-02:30 | 3        | 4     | 7     | 08:15-08:30 | 139   | 107   | 246   | 02:15-02:30 | 110   | 129   | 239   | 08:15-08:30 | 40    | 77    | 117   |
| 02:30-02:45 | 6        | 9     | 15    | 08:30-08:45 | 142   | 84    | 226   | 02:30-02:45 | 109   | 155   | 264   | 08:30-08:45 | 26    | 75    | 101   |
| 02:45-03:00 | 10       | 2     | 12    | 08:45-09:00 | 182   | 100   | 282   | 02:45-03:00 | 118   | 150   | 268   | 08:45-09:00 | 35    | 58    | 93    |
| 03:00-03:15 | 13       | 2     | 15    | 09:00-09:15 | 105   | 119   | 224   | 03:00-03:15 | 124   | 173   | 297   | 09:00-09:15 | 29    | 52    | 81    |
| 03:15-03:30 | 16       | 6     | 22    | 09:15-09:30 | 149   | 121   | 270   | 03:15-03:30 | 138   | 175   | 313   | 09:15-09:30 | 21    | 45    | 66    |
| 03:30-03:45 | 19       | 3     | 22    | 09:30-09:45 | 141   | 117   | 258   | 03:30-03:45 | 125   | 188   | 313   | 09:30-09:45 | 35    | 64    | 99    |
| 03:45-04:00 | 30       | 4     | 34    | 09:45-10:00 | 129   | 101   | 230   | 03:45-04:00 | 138   | 185   | 323   | 09:45-10:00 | 33    | 43    | 76    |
| 04:00-04:15 | 33       | 3     | 36    | 10:00-10:15 | 105   | 139   | 244   | 04:00-04:15 | 120   | 202   | 322   | 10:00-10:15 | 28    | 43    | 71    |
| 04:15-04:30 | 49       | 5     | 54    | 10:15-10:30 | 115   | 106   | 221   | 04:15-04:30 | 127   | 199   | 326   | 10:15-10:30 | 27    | 43    | 70    |
| 04:30-04:45 | 39       | 3     | 42    | 10:30-10:45 | 103   | 114   | 217   | 04:30-04:45 | 121   | 258   | 379   | 10:30-10:45 | 20    | 58    | 78    |
| 04:45-05:00 | 59       | 5     | 64    | 10:45-11:00 | 124   | 102   | 226   | 04:45-05:00 | 114   | 245   | 359   | 10:45-11:00 | 11    | 52    | 63    |
| 05:00-05:15 | 85       | 11    | 96    | 11:00-11:15 | 131   | 128   | 259   | 05:00-05:15 | 122   | 192   | 314   | 11:00-11:15 | 7     | 38    | 45    |
| 05:15-05:30 | 92       | 25    | 117   | 11:15-11:30 | 104   | 165   | 269   | 05:15-05:30 | 120   | 195   | 315   | 11:15-11:30 | 12    | 37    | 49    |
|             |          |       |       |             |       |       |       |             |       |       |       |             |       |       |       |

| 05.45-06.00 146 29 17             | / 11.45-12.00        | 107 1    | 10 223         | 05.45-06.00 106 150           | 200 11.4       | 5-12.00 8      | 22          | 30       |
|-----------------------------------|----------------------|----------|----------------|-------------------------------|----------------|----------------|-------------|----------|
| AM COMMUTER PERIOD (05:00-09:00)  | DIR 1                | DIR 2    |                | PM COMMUTER PERIOD (15:00-19  | :00) DIR 1     |                | DIR 2       |          |
| TWO DIRECTIONAL PEAK              |                      |          |                | TWO DIRECTIONAL PEAK          |                |                |             |          |
| AM - PEAK HR TIME                 | 07:15 AM to 08:1     | 15 AM    |                | PM - PEAK HR TIME             |                | 04:00 PM to 0  | 5:00 PM     |          |
| AM - PEAK HR VOLUME               | 813                  | 407      | 1220           | PM - PEAK HR VOLUME           | 482            |                | 904         | 1386     |
| AM - K FACTOR (%)                 |                      |          | 7.33           | PM - K FACTOR (%)             |                |                |             | 8.32     |
| AM - D (%)                        | 66.64                | 33.36    | 100.00         | PM - D (%)                    | 34.78          |                | 65.22       | 100.00   |
| DIRECTIONAL PEAK                  |                      |          |                | DIRECTIONAL PEAK              |                |                |             |          |
| AM - PEAK HR TIME                 | 07:00 AM to 08:00 AM | 07:30 AN | If to 08:30 AM | PM - PEAK HR TIME             | 03:00          | PM to 04:00 PM | 04:00 PM to | 05:00 PM |
| AM - PEAK HR VOLUME               | 841                  | 429      |                | PM - PEAK HR VOLUME           | 525            |                | 904         |          |
| AM PERIOD (00:00-12:00)           |                      |          |                | PM PERIOD (12:00-24:00)       |                |                |             |          |
| TWO DIRECTIONAL PEAK              |                      |          |                | TWO DIRECTIONAL PEAK          |                |                |             |          |
| AM - PEAK HR TIME                 | 07:15 AM to 08:1     | 15 AM    |                | PM - PEAK HR TIME             |                | 04:00 PM to 0  | 5:00 PM     |          |
| AM - PEAK HR VOLUME               | 813                  | 407      | 1220           | PM - PEAK HR VOLUME           | 482            |                | 904         | 1386     |
| AM - K FACTOR (%)                 |                      |          | 7.33           | PM - K FACTOR (%)             |                |                |             | 8.32     |
| AM - D (%)                        | 66.64                | 33.36    | 100.00         | PM - D (%)                    | 34.78          |                | 65.22       | 100.00   |
| NON-COMMUTER PERIOD (09:00-15:00) |                      |          |                | 6-HR, 12-HR, 24-HR PERIODS    | D <b>I</b> R 1 | DIR 2          | Total       |          |
| TWO DIRECTIONAL PEAK              |                      |          |                | AM 6-HR PERIOD (06:00-12:00)  | 3,633          | 2,359          | 5,992       |          |
| PEAK HR TIME                      | 12:45 PM to 01:4     | 45 PM    |                | AM 12-HR PERIOD (00:00-12:00) | 4,390          | 2,583          | 6,973       |          |
| PEAK HR VOLUME                    | 511                  | 592      | 1103           | PM 6-HR PERIOD (12:00-18:00)  | 2,906          | 4,058          | 6,964       |          |
| DIRECTIONAL PEAK                  |                      |          |                | PM 12-HR PERIOD (12:00-24:00) | 3,881          | 5,800          | 9,681       |          |
| PEAK HR TIME                      | 12:15 PM to 01:15 PM | 01:00 PM | I to 02:00 PM  | 24 HOUR PERIOD                | 8,271          | 8,383          | 16,654      |          |
|                                   |                      |          |                |                               | -,             | ,              | ,           |          |

Run Date: 2014/05/29 Hawaii Department of Transportation **Highways Division** Highways Planning Survey Section

2013 Program Count - Summary fown: Hawaii DIR 1: +MP DIR 2:-MP Final AADT: 15500 Site ID: B71001905469 Town: Hawaii

|             | al Class            | : URBAN:      |       | AL ARTERIA<br>Rd to Pualale |          | ER        | Town:<br>Count T | Hawaii<br>Type: CLASS | 3                | DIR 1:<br>Counte | +MP D<br>erType:⊤ | IR 2:-MP<br>ube | Route    | No: 19 | 15500      |
|-------------|---------------------|---------------|-------|-----------------------------|----------|-----------|------------------|-----------------------|------------------|------------------|-------------------|-----------------|----------|--------|------------|
| TIME-AM     | DIR 1               | DIR 2         | TOTAL | TIME-AM                     | DIR 1    | DIR 2     | TOTAL            | TIME-PM               | DIR 1            | DIR 2            | TOTAL             | TIME-PM         | DIR 1    | DIR 2  | TOTAL      |
| DATE: 08    | 3/08/2013           |               |       |                             |          |           |                  |                       |                  |                  |                   |                 |          |        |            |
| 12:00-12:15 | 7                   | 33            | 40    | 06:00-06:15                 | 142      | 29        | 171              | 12:00-12:15           | 97               | 117              | 214               | 06:00-06:15     | 103      | 160    | 263        |
| 12:15-12:30 | 3                   | 14            | 17    | 06:15-06:30                 | 214      | 32        | 246              | 12:15-12:30           | 116              | 125              | 241               | 06:15-06:30     | 91       | 129    | 220        |
| 12:30-12:45 | 5                   | 14            | 19    | 06:30-06:45                 | 170      | 56        | 226              | 12:30-12:45           | 112              | 123              | 235               | 06:30-06:45     | 86       | 126    | 212        |
| 12:45-01:00 | 1                   | 11            | 12    | 06:45-07:00                 | 205      | 43        | 248              | 12:45-01:00           | 102              | 116              | 218               | 06:45-07:00     | 71       | 127    | 198        |
| 01:00-01:15 | 1                   | 6             | 7     | 07:00-07:15                 | 209      | 58        | 267              | 01:00-01:15           | 124              | 119              | 243               | 07:00-07:15     | 66       | 120    | 186        |
| 01:15-01:30 | 1                   | 10            | 11    | 07:15-07:30                 | 198      | 100       | 298              | 01:15-01:30           | 115              | 125              | 240               | 07:15-07:30     | 48       | 103    | 151        |
| 01:30-01:45 | 4                   | 6             | 10    | 07:30-07:45                 | 249      | 94        | 343              | 01:30-01:45           | 128              | 123              | 251               | 07:30-07:45     | 58       | 83     | 141        |
| 01:45-02:00 | 2                   | 2             | 4     | 07:45-08:00                 | 207      | 108       | 315              | 01:45-02:00           | 130              | 137              | 267               | 07:45-08:00     | 64       | 85     | 149        |
| 02:00-02:15 | 3                   | 3             | 6     | 08:00-08:15                 | 172      | 105       | 277              | 02:00-02:15           | 155              | 132              | 287               | 08:00-08:15     | 39       | 98     | 137        |
| 02:15-02:30 | 3                   | 4             | 7     | 08:15-08:30                 | 157      | 101       | 258              | 02:15-02:30           | 120              | 146              | 266               | 08:15-08:30     | 28       | 77     | 105        |
| 02:30-02:45 | 2                   | 5             | 7     | 08:30-08:45                 | 116      | 79        | 195              | 02:30-02:45           | 110              | 170              | 280               | 08:30-08:45     | 30       | 62     | 92         |
| 02:45-03:00 | 12                  | 0             | 12    | 08:45-09:00                 | 151      | 108       | 259              | 02:45-03:00           | 136              | 158              | 294               | 08:45-09:00     | 32       | 62     | 94         |
| 03:00-03:15 |                     | 5             | 18    | 09:00-09:15                 | 108      | 90        | 198              | 03:00-03:15           | 131              | 173              | 304               | 09:00-09:15     | 31       | 55     | 86         |
| 03:15-03:30 |                     | 3             | 17    | 09:15-09:30                 | 125      | 83        | 208              | 03:15-03:30           | 117              | 187              | 304               | 09:15-09:30     | 22       | 58     | 80         |
| 03:30-03:45 |                     | 2             | 22    | 09:30-09:45                 | 136      | 92        | 228              | 03:30-03:45           | 137              | 212              | 349               | 09:30-09:45     | 25       | 47     | 72         |
| 03:45-04:00 | 30                  | 3             | 33    | 09:45-10:00                 | 125      | 96        | 221              | 03:45-04:00           | 135              | 191              | 326               | 09:45-10:00     | 16       | 52     | 68         |
| 04:00-04:15 |                     | 5             | 43    | 10:00-10:15                 | 129      | 92        | 221              | 04:00-04:15           | 114              | 228              | 342               | 10:00-10:15     | 19       | 47     | 66         |
| 04:15-04:30 | 42                  | 7             | 49    | 10:15-10:30                 | 102      | 95        | 197              | 04:15-04:30           | 111              | 209              | 320               | 10:15-10:30     | 15       | 46     | 61         |
| 04:30-04:45 | 42                  | 3             | 45    | 10:30-10:45                 | 105      | 104       | 209              | 04:30-04:45           | 99               | 235              | 334               | 10:30-10:45     | 7        | 63     | 70         |
| 04:45-05:00 | 62                  | 4             | 66    | 10:45-11:00                 | 112      | 99        | 211              | 04:45-05:00           | 141              | 209              | 350               | 10:45-11:00     | 10       | 42     | 52         |
| 05:00-05:15 |                     | 11            | 80    | 11:00-11:15                 | 103      | 102       | 205              | 05:00-05:15           | 128              | 211              | 339               | 11:00-11:15     | 9        | 43     | 52         |
| 05:15-05:30 |                     | 31            | 126   | 11:15-11:30                 | 109      | 129       | 238              | 05:15-05:30           | 76               | 215              | 291               | 11:15-11:30     | 8        | 48     | 56         |
| 05:30-05:45 |                     | 33            | 172   | 11:30-11:45                 | 90       | 98        | 188              | 05:30-05:45           | 81               | 180              | 261               | 11:30-11:45     | 7        | 47     | 54         |
| 05:45-06:00 | 143                 | 20            | 163   | 11:45-12:00                 | 93       | 115       | 208              | 05:45-06:00           | 107              | 178              | 285               | 11:45-12:00     | 5        | 18     | 23         |
| AM COMMU    |                     | D (05:00-09:0 | 00) D | IR 1                        | DI       | ₹2        |                  | PM COMMU              |                  |                  | -19:00)           | DIR 1           |          | DIR 2  |            |
| AM - P      | EAK HR TI           | ME            |       | 07:15 AM to                 | 08:15 AM |           |                  | PM - I                | PEAK HR          | TIME             |                   | 04:00           | PM to 05 | :00 PM |            |
| AM - P      | EAK HR VO           | OLUME         | 8     | 26                          | 40       | 7         | 1233             | PM - I                | PEAK HR          | VOLUME           |                   | 465             |          | 881    | 1346       |
| AM - K      | FACTOR (            | %)            |       |                             |          |           | 7.63             | PM - I                | K FACTO          | R (%)            |                   |                 |          |        | 8.33       |
| AM - D      |                     |               | 6     | 6.99                        | 33.      | .01       | 100.00           | PM - I                |                  |                  |                   | 34.55           |          | 65.45  | 100.00     |
| DIRECTIO    | VAL PEAK            |               |       |                             |          |           |                  | DIRECTIO              | DNAL PEA         | ιK               |                   |                 |          |        |            |
|             | EAK HR T <b>I</b> M |               |       | 7:00 AM to 08:00            |          | :30 AM to | 08:30 AM         |                       | PEAK HR          |                  |                   | 03:00 PM to 04  | 1:00 PM  |        | o 05:00 PM |
| AM - P      | EAK HR VC           | DLUME         | 8     | 63                          | 40       | В         |                  | PM - F                | PEAK HR          | VOLUME           |                   | 520             |          | 881    |            |
| AM PERIOD   | (00:00-12:0         | 10)           |       |                             |          |           |                  | PM PERIOD             | (12:00-2         | 4:00)            |                   |                 |          |        |            |
| TWO DIRE    | CTIONAL F           | PEAK          |       |                             |          |           |                  | TWO DIRE              | ECT <b>I</b> ONA | L PEAK           |                   |                 |          |        |            |

| AM COMMUTER PERIOD (05:00-09:00)  | DIR 1                | DIR 2    |             | PM COMMUTER PERIOD (15:00-19:00) | DIR 1    |               | DIR 2       |          |
|-----------------------------------|----------------------|----------|-------------|----------------------------------|----------|---------------|-------------|----------|
| TWO DIRECTIONAL PEAK              |                      |          |             | TWO DIRECTIONAL PEAK             |          |               |             |          |
| AM - PEAK HR TIME                 | 07:15 AM to 08:1     | 5 AM     |             | PM - PEAK HR TIME                |          | 04:00 PM to 0 | 5:00 PM     |          |
| AM - PEAK HR VOLUME               | 826                  | 407      | 1233        | PM - PEAK HR VOLUME              | 465      |               | 881         | 1346     |
| AM - K FACTOR (%)                 |                      |          | 7.63        | PM - K FACTOR (%)                |          |               |             | 8.33     |
| AM - D (%)                        | 66.99                | 33.01    | 100.00      | PM - D (%)                       | 34.55    |               | 65.45       | 100.00   |
| DIRECTIONAL PEAK                  |                      |          |             | DIRECTIONAL PEAK                 |          |               |             |          |
| AM - PEAK HR TIME                 | 07:00 AM to 08:00 AM | 07:30 AM | to 08:30 AM | PM - PEAK HR TIME                | 03:00 Pf | M to 04:00 PM | 04:00 PM to | 05:00 PM |
| AM - PEAK HR VOLUME               | 863                  | 408      |             | PM - PEAK HR VOLUME              | 520      |               | 881         |          |
| AM PERIOD (00:00-12:00)           |                      |          |             | PM PERIOD (12:00-24:00)          |          |               |             |          |
| TWO DIRECTIONAL PEAK              |                      |          |             | TWO DIRECTIONAL PEAK             |          |               |             |          |
| AM - PEAK HR TIME                 | 07:15 AM to 08:1     | 5 AM     |             | PM - PEAK HR TIME                |          | 04:00 PM to 0 | 5:00 PM     |          |
| AM - PEAK HR VOLUME               | 826                  | 407      | 1233        | PM - PEAK HR VOLUME              | 465      |               | 881         | 1346     |
| AM - K FACTOR (%)                 |                      |          | 7.63        | PM - K FACTOR (%)                |          |               |             | 8.33     |
| AM - D (%)                        | 66.99                | 33.01    | 100.00      | PM - D (%)                       | 34.55    |               | 65.45       | 100.00   |
| NON-COMMUTER PERIOD (09:00-15:00) |                      |          |             | 6-HR, 12-HR, 24-HR PERIODS       | DIR 1    | DIR 2         | Total       |          |
| TWO DIRECTIONAL PEAK              |                      |          |             | AM 6-HR PERIOD (06:00-12:00)     | 3,527    | 2,108         | 5,635       |          |
| PEAK HR TIME                      | 02:00 PM to 03:0     | 0 PM     |             | AM 12-HR PERIOD (00:00-12:00)    | 4,278    | 2,343         | 6,621       |          |
| PEAK HR VOLUME                    | 521                  | 606      | 1127        | PM 6-HR PERIOD (12:00-18:00)     | 2,822    | 4,019         | 6,841       |          |
| DIRECTIONAL PEAK                  |                      |          |             | PM 12-HR PERIOD (12:00-24:00)    | 3,712    | 5,817         | 9,529       |          |
| PEAK HR TIME                      | 01:30 PM to 02:30 PM | 02:00 PM | to 03:00 PM | 24 HOUR PERIOD                   | 7,990    | 8,160         | 16,150      |          |
|                                   |                      | 606      |             | D (%)                            | 49.47    | 50.53         | 100.00      |          |

Run Date: 2014/05/29

Site ID: B71001905469

Hawaii Department of Transportation Highways Division Highways Planning Survey Section Vehicle Classification Data Summary Direction: +MP Route No: 19 2013

Functional Classification: 14 URBAN:PRINCIPAL ARTERIAL - OTHER **REPORT TOTALS - 48 HOURS RECORDED** VOLUME NUMBER OF AXLES

%

Location: Mamalahoa Hwy - Mana Rd to Pualalea Pl 
 Date From:
 2013/08/07 0:00

 Date To:
 2013/08/08 23:45

| nun Dat     | e: 2015                        | 103/09       |       | н                          | lighway  |            |          | artment of         | 110113      | •                  |       | ning Surve           | v Secti    | ion                           |            |
|-------------|--------------------------------|--------------|-------|----------------------------|----------|------------|----------|--------------------|-------------|--------------------|-------|----------------------|------------|-------------------------------|------------|
|             |                                |              |       | •                          | gu       | , o D. i i |          | Program            | Count       | • .                |       | iiig oui vo          | , 0001     |                               |            |
|             | al Class                       | : URBAN:     |       | AL ARTERIA<br>Rd to Pualak |          | ER         | Town:    | •                  |             | DIR 1:+<br>Counter | MP D  | IR 2:-MP<br>ube      |            | <b>AADT:</b><br><b>No:</b> 19 | 14200      |
| TIME-AM     | DIR 1                          | DIR 2        | TOTAL | TIME-AM                    | DIR 1    | DIR 2      | TOTAL    | TIME-PM            | DIR 1       | DIR 2              | TOTAL | TIME-PM              | DIR 1      | DIR 2                         | TOTAL      |
| DATE: 03/   | 05/2014                        |              |       |                            |          |            |          |                    |             |                    |       |                      |            |                               |            |
| 12:00-12:15 | 6                              | 22           | 28    | 06:00-06:15                | 171      | 28         | 199      | 12:00-12:15        | 101         | 116                | 217   | 06:00-06:15          | 87         | 158                           | 245        |
| 2:15-12:30  | 3                              | 7            | 10    | 06:15-06:30                | 189      | 26         | 215      | 12:15-12:30        | 116         | 132                | 248   | 06:15-06:30          | 92         | 158                           | 250        |
| 12:30-12:45 | 0                              | 7            | 7     | 06:30-06:45                | 178      | 39         | 217      | 12:30-12:45        | 115         | 116                | 231   | 06:30-06:45          | 86         | 135                           | 221        |
| 2:45-01:00  | 3                              | 13           | 16    | 06:45-07:00                | 207      | 40         | 247      | 12:45-01:00        | 123         | 100                | 223   | 06:45-07:00          | 74         | 140                           | 214        |
| 01:00-01:15 | 3                              | 8            | 11    | 07:00-07:15                | 194      | 54         | 248      | 01:00-01:15        | 120         | 126                | 246   | 07:00-07:15          | 56         | 138                           | 194        |
| 01:15-01:30 | 0                              | 3            | 3     | 07:15-07:30                | 238      | 81         | 319      | 01:15-01:30        | 92          | 144                | 236   | 07:15-07:30          |            | 99                            | 148        |
| 01:30-01:45 | 3                              | 6            | 9     | 07:30-07:45                | 256      | 98         | 354      | 01:30-01:45        | 110         | 121                | 231   | 07:30-07:45          |            | 86                            | 130        |
| 01:45-02:00 | 2                              | 1            | 3     | 07:45-08:00                | 233      | 84         | 317      | 01:45-02:00        | 103         | 133                | 236   | 07:45-08:00          |            | 98                            | 139        |
| 02:00-02:15 | 3                              | 3            | 6     | 08:00-08:15                | 166      | 123        | 289      | 02:00-02:15        | 119         | 120                | 239   | 08:00-08:15          |            | 80                            | 114        |
| 02:15-02:30 | 4                              | 0            | 4     | 08:15-08:30                | 126      | 95         | 221      | 02:15-02:30        | 111         | 144                | 255   | 08:15-08:30          |            | 84                            | 128        |
| 02:30-02:45 | 5                              | 2            | 7     | 08:30-08:45                | 117      | 90         | 207      | 02:30-02:45        | 134         | 144                | 278   | 08:30-08:45          |            | 81                            | 130        |
| 02:45-03:00 | 13                             | 0            | 13    | 08:45-09:00                | 131      | 76         | 207      | 02:45-03:00        | 129         | 160                | 289   | 08:45-09:00          |            | 71                            | 109        |
| 03:00-03:15 | 7                              | 4            | 11    | 09:00-09:15                | 116      | 86         | 202      | 03:00-03:15        | 153         | 159                | 312   | 09:00-09:15          |            | 62                            | 95         |
| 3:15-03:30  | 13                             | 1            | 14    | 09:15-09:30                | 138      | 66         | 204      | 03:15-03:30        | 128         | 160                | 288   | 09:15-09:30          |            | 52                            | 81         |
| 3:30-03:45  | 17                             | Ó            | 17    | 09:30-09:45                | 114      | 100        | 214      | 03:30-03:45        | 134         | 200                | 334   | 09:30-09:45          |            | 57                            | 81         |
| 3:45-04:00  | 29                             | 3            | 32    | 09:45-10:00                | 125      | 105        | 230      | 03:45-04:00        | 141         | 191                | 332   | 09:45-10:00          |            | 54                            | 81         |
|             |                                |              | 34    |                            |          |            |          |                    |             |                    |       |                      |            |                               | 59         |
| 04:00-04:15 | 32                             | 2            |       | 10:00-10:15                | 107      | 103        | 210      | 04:00-04:15        | 156         | 200                | 356   | 10:00-10:15          |            | 45                            |            |
| 04:15-04:30 | 45                             | 3            | 48    | 10:15-10:30                | 128      | 94         | 222      | 04:15-04:30        | 137         | 227                | 364   | 10:15-10:30          |            | 61                            | 89         |
| 04:30-04:45 | 46                             | 3            | 49    | 10:30-10:45                | 124      | 79         | 203      | 04:30-04:45        | 105         | 247                | 352   | 10:30-10:45          |            | 56                            | 63         |
| 04:45-05:00 | 63                             | 13           | 76    | 10:45-11:00                | 100      | 98         | 198      | 04:45-05:00        | 109         | 240                | 349   | 10:45-11:00          |            | 34                            | 44         |
| 05:00-05:15 | 82                             | 13           | 95    | 11:00-11:15                | 115      | 89         | 204      | 05:00-05:15        | 117         | 239                | 356   | 11:00-11:15          | 7          | 36                            | 43         |
| 05:15-05:30 | 96                             | 12           | 108   | 11:15-11:30                | 95       | 117        | 212      | 05:15-05:30        | 114         | 203                | 317   | 11:15-11:30          | 8          | 27                            | 35         |
| 05:30-05:45 | 113                            | 39           | 152   | 11:30-11:45                | 120      | 106        | 226      | 05:30-05:45        | 85          | 191                | 276   | 11:30-11:45          | 2          | 34                            | 36         |
| 05:45-06:00 | 138                            | 23           | 161   | 11:45-12:00                | 113      | 84         | 197      | 05:45-06:00        | 89          | 161                | 250   | 11:45-12:00          | 4          | 23                            | 27         |
|             |                                | D (05:00-09: | 00) D | IR 1                       | DIF      | R 2        |          |                    |             | RIOD (15:00-1      | 9:00) | DIR 1                |            | DIR 2                         |            |
| TWO DIREC   |                                |              |       |                            |          |            |          | TWO D <b>I</b> R   |             |                    |       |                      |            |                               |            |
|             | AK HR TIN                      |              |       | 07:15 AM to                |          |            |          |                    | PEAK HR     |                    |       |                      | 0 PM to 05 |                               |            |
|             | AK HR VC                       |              | 8     | 93                         | 386      | 3          | 1279     |                    |             | VOLUME             |       | 507                  |            | 914                           | 1421       |
|             | FACTOR (9                      | %)           |       |                            |          |            | 7.97     |                    | K FACTOR    | H (%)              |       |                      |            |                               | 8.86       |
| AM - D      |                                |              | 6     | 9.82                       | 30.      | 18         | 100.00   | PM -               |             |                    |       | 35.68                |            | 64.32                         | 100.0      |
| DIRECTION.  |                                |              |       |                            |          |            |          | DIRECTIO           |             |                    |       |                      |            |                               |            |
|             | AK HR T <b>I</b> M<br>AK HR VO |              |       | 7:00 AM to 08:00<br>21     | AM 07:   | 30 AM to 0 | 08:30 AM |                    | PEAK HR     |                    |       | 03:30 PM to 0<br>568 | 4:30 PM    | 04:15 PM t<br>953             | o 05:15 PM |
| M PERIOD (  | 00:00-12:00                    | 0)           |       |                            |          |            |          | PM PER <b>I</b> OE | ) (12:00-24 | 4:00)              |       |                      |            |                               |            |
| TWO DIREC   |                                |              |       |                            |          |            |          | TWO DIR            |             |                    |       |                      |            |                               |            |
|             | AK HR TIN                      |              |       | 07:15 AM to                | 08:15 AM |            |          |                    | PEAK HR     |                    |       | 04:0                 | 0 PM to 05 | 5:00 PM                       |            |
|             | AK HR VC                       |              | 8     | 93                         | 386      |            | 1279     |                    | PEAK HR     |                    |       | 507                  |            | 914                           | 1421       |
|             | FACTOR (9                      |              | -     |                            |          |            | 7.97     |                    | K FACTOR    |                    |       |                      |            |                               | 8.86       |
| AM - D      |                                |              | 6     | 9.82                       | 30.      | 18         | 100.00   | PM - I             |             |                    |       | 35.68                |            | 64.32                         | 100.0      |
| ON-COMMU    | TER PER                        | OD (09:00-1  | 5:00) | _                          |          |            |          | 6-HR, 12-H         | R. 24-HR    | PERIODS            |       | DIR1 D               | IR 2       | Total                         |            |
| TWO DIREC   |                                |              | ,     |                            |          |            |          |                    |             | (06:00-12:00)      |       |                      | .961       | 5,562                         |            |
|             | IR TIME                        | LAN          |       | 02:00 PM to                | 03:00 PM |            |          |                    |             | (00:00-12:00)      |       |                      | ,149       | 6,476                         |            |
|             |                                | _            |       |                            |          |            | 1001     |                    |             |                    | ,     |                      |            |                               |            |
|             | IR VOLUM                       | _            | 4     | 93                         | 568      | •          | 1061     |                    | ,           | (12:00-18:00)      |       |                      | ,974       | 6,815                         |            |
| DIRECTION   |                                |              |       |                            |          |            |          |                    |             | (12:00-24:00)      | )     |                      | ,843       | 9,571                         |            |
| PEAK H      | HR TIME                        |              | 0     | 9:00 AM to 10:00           |          | 00 PM to 0 | 03:00 PM | 24 HOUR            | PERIOD      |                    |       | 8,055 7              | ,992       | 16,047                        |            |
|             | HR VOLUM                       | 1E           | 4     | 93                         | 568      | 3          |          | D (%)              |             |                    |       | 50.20 4              | 9.80       | 100.00                        |            |

PEAK HOUR VOLUME: 1386 2013/08/07 16:00

% TOTAL PEAK HOUR VOLUME

24 HOUR TRUCK VOLUME

AADT

% OF

HPMS K-FACTOR (PEAK/AADT) (ITEM 66)

AXLE CORRECTION FACTOR (A/C) = 0.978

ROADTUBE EQUIVALENT(B/2) = 33560 (C)

CLASSIFIED VEHICLES TOTALS

32805 (A) -1

0.00%

67120 (B)

2.66% 0.01% 0.03%

21 27 871

45 12 147 ----3252

HEAVY VEHICLE TOTALS

UNCLASSIFIED VEHICLES TOTALS

MULTI-TRAILER TRUCKS
5A-MT
6A-MT

6A-ST 4A-ST 5A-ST

45 344 12

0.14% 1.05%

180 1720 72

0.04%

Bus
SINGLE UNIT TRUCK
2A-6T

HEAVY VEHICLES

159

0.48%

398

LIGHT VEHICLE TOTALS

31934 23208 8608 118

97.35% 0.36% 70.75% 26.24%

17216 ----63868 46416

2A-4T Cycles PC

3A-SU 4A-SU

163 112 4

0.50% 0.34% 0.01%

326 336 16

SINGLE-TRAILER TRUCKS

COMBINATION (TYPE 8-13) SINGLE UNIT TRUCKS (TYPE 4-7)

20

(65B-1) 0.58% (65A 1) 1 44%

216 219

15500

(65A-2) 1.41%

(65B-2) 1\_39%

8.94% 8.94% Run Date: 2015/03/09

### Hawaii Department of Transportation

**Highways Division** Highways Planning Survey Section

2014 Program Count - Summary

Site ID: B71001905469
Functional Class: URBAN:PRINCIPAL ARTERIAL - OTHER Location: Mamalahoa Hwy - Mana Rd to Pualalea PI Final AADT: 14200 Route No: 19 Town: Hawaii Count Type: CLASS DIR 1:+MP DIR 2:-MP Counter Type: Tube

PEAK HR VOLUME

D (%)

50.01

100.00

| TIME-AM     | DIR 1              | DIR 2         | TOTAL | TIME-AM          | DIR 1    | DIR 2      | TOTAL    | TIME-PM     | DIR 1            | DIR 2          | TOTAL | TIME-PM       | DIR 1      | DIR 2  | TOTAL      |
|-------------|--------------------|---------------|-------|------------------|----------|------------|----------|-------------|------------------|----------------|-------|---------------|------------|--------|------------|
| DATE: 03    | /06/2014           |               |       |                  |          |            |          |             |                  |                |       |               |            |        |            |
| 12:00-12:15 | 3                  | 25            | 28    | 06:00-06:15      | 178      | 32         | 210      | 12:00-12:15 | 99               | 99             | 198   | 06:00-06:15   | 103        | 163    | 266        |
| 12:15-12:30 | 1                  | 16            | 17    | 06:15-06:30      | 183      | 44         | 227      | 12:15-12:30 | 108              | 116            | 224   | 06:15-06:30   | 97         | 147    | 244        |
| 12:30-12:45 | 5                  | 10            | 15    | 06:30-06:45      | 165      | 38         | 203      | 12:30-12:45 | 100              | 120            | 220   | 06:30-06:45   | 64         | 129    | 193        |
| 12:45-01:00 | 4                  | 13            | 17    | 06:45-07:00      | 199      | 46         | 245      | 12:45-01:00 | 106              | 117            | 223   | 06:45-07:00   | 56         | 147    | 203        |
| 01:00-01:15 | 2                  | 7             | 9     | 07:00-07:15      | 188      | 59         | 247      | 01:00-01:15 | 103              | 115            | 218   | 07:00-07:15   | 62         | 132    | 194        |
| 01:15-01:30 | 3                  | 5             | 8     | 07:15-07:30      | 217      | 70         | 287      | 01:15-01:30 | 114              | 140            | 254   | 07:15-07:30   | 57         | 126    | 183        |
| 01:30-01:45 | 3                  | 4             | 7     | 07:30-07:45      | 279      | 79         | 358      | 01:30-01:45 | 117              | 114            | 231   | 07:30-07:45   | 38         | 117    | 155        |
| 01:45-02:00 | 2                  | 0             | 2     | 07:45-08:00      | 240      | 73         | 313      | 01:45-02:00 | 144              | 146            | 290   | 07:45-08:00   | 42         | 90     | 132        |
| 02:00-02:15 | 1                  | 4             | 5     | 08:00-08:15      | 140      | 141        | 281      | 02:00-02:15 | 113              | 123            | 236   | 08:00-08:15   | 43         | 81     | 124        |
| 02:15-02:30 | 7                  | 2             | 9     | 08:15-08:30      | 167      | 96         | 263      | 02:15-02:30 | 128              | 133            | 261   | 08:15-08:30   | 38         | 65     | 103        |
| 02:30-02:45 | 3                  | 6             | 9     | 08:30-08:45      | 164      | 91         | 255      | 02:30-02:45 | 119              | 168            | 287   | 08:30-08:45   | 31         | 65     | 96         |
| 02:45-03:00 | 8                  | 4             | 12    | 08:45-09:00      | 160      | 84         | 244      | 02:45-03:00 | 162              | 138            | 300   | 08:45-09:00   | 30         | 56     | 86         |
| 03:00-03:15 | 6                  | 3             | 9     | 09:00-09:15      | 117      | 84         | 201      | 03:00-03:15 | 124              | 178            | 302   | 09:00-09:15   | 28         | 49     | 77         |
| 03:15-03:30 | 16                 | 2             | 18    | 09:15-09:30      | 111      | 105        | 216      | 03:15-03:30 | 124              | 182            | 306   | 09:15-09:30   | 25         | 59     | 84         |
| 03:30-03:45 | 21                 | 3             | 24    | 09:30-09:45      | 119      | 87         | 206      | 03:30-03:45 | 131              | 199            | 330   | 09:30-09:45   | 21         | 59     | 80         |
| 03:45-04:00 | 35                 | 0             | 35    | 09:45-10:00      | 111      | 101        | 212      | 03:45-04:00 | 141              | 206            | 347   | 09:45-10:00   | 30         | 52     | 82         |
| 04:00-04:15 | 34                 | 1             | 35    | 10:00-10:15      | 116      | 101        | 217      | 04:00-04:15 | 110              | 218            | 328   | 10:00-10:15   | 11         | 50     | 61         |
| 04:15-04:30 | 47                 | 3             | 50    | 10:15-10:30      | 139      | 102        | 241      | 04:15-04:30 | 139              | 204            | 343   | 10:15-10:30   | 21         | 42     | 63         |
| 04:30-04:45 | 41                 | 5             | 46    | 10:30-10:45      | 96       | 103        | 199      | 04:30-04:45 | 121              | 230            | 351   | 10:30-10:45   | 8          | 46     | 54         |
| 04:45-05:00 | 64                 | 8             | 72    | 10:45-11:00      | 116      | 97         | 213      | 04:45-05:00 | 119              | 217            | 336   | 10:45-11:00   | 10         | 46     | 56         |
| 05:00-05:15 | 72                 | 15            | 87    | 11:00-11:15      | 88       | 99         | 187      | 05:00-05:15 | 118              | 209            | 327   | 11:00-11:15   | 8          | 41     | 49         |
| 05:15-05:30 | 99                 | 10            | 109   | 11:15-11:30      | 121      | 96         | 217      | 05:15-05:30 | 100              | 211            | 311   | 11:15-11:30   | 5          | 33     | 38         |
| 05:30-05:45 | 117                | 41            | 158   | 11:30-11:45      | 107      | 105        | 212      | 05:30-05:45 | 87               | 195            | 282   | 11:30-11:45   | 6          | 25     | 31         |
| 05:45-06:00 | 137                | 34            | 171   | 11:45-12:00      | 114      | 90         | 204      | 05:45-06:00 | 102              | 166            | 268   | 11:45-12:00   | 6          | 23     | 29         |
| AM COMMUT   | ER PERIC           | D (05:00-09:0 | 0) [  | OIR 1            | DIF      | R 2        |          | PM COMMU    | JTER PER         | RIOD (15:00-19 | 9:00) | DIR 1         |            | DIR 2  |            |
| TWO DIREC   | CTIONAL F          | PEAK          |       |                  |          |            |          | TWO DIR     | ECT <b>I</b> ONA | L PEAK         |       |               |            |        |            |
| AM - PE     | EAK HR TI          | ME            |       | 07:15 AM to      | 08:15 AM |            |          | PM -        | PEAK HR          | TIME           |       | 03:4          | 5 PM to 04 | :45 PM |            |
| AM - PE     | EAK HR V           | DLUME         | 8     | 376              | 360      |            | 1239     | PM -        | PEAK HR          | VOLUME         |       | 511           |            | 858    | 1369       |
| AM - K      | FACTOR (           | %)            |       |                  |          |            | 7.71     | PM -        | K FACTOR         | R (%)          |       |               |            |        | 8.52       |
| AM - D      | (%)                |               | 7     | 0.70             | 29.      | 30         | 100.00   | PM -        | D (%)            |                |       | 37.33         |            | 62.67  | 100.00     |
| DIRECTION   |                    |               |       |                  |          |            |          | DIRECTIO    |                  |                |       |               |            |        |            |
|             | AK HR TIN          |               |       | 7:00 AM to 08:00 |          | 00 AM to 0 | 9:00 AM  |             | PEAK HR          |                |       | 03:30 PM to 0 | 4:30 PM    |        | o 05:00 PM |
| AM - PE     | AK HR VC           | LUME          | 5     | 924              | 412      | 2          |          | PM - F      | PEAK HR          | VOLUME         |       | 521           |            | 869    |            |
| AM PERIOD ( | (00:00-12:0        | 0)            |       |                  |          |            |          | PM PERIOD   | (12:00-2         | 4:00)          |       |               |            |        |            |
| TWO DIREC   | CT <b>I</b> ONAL F | PEAK          |       |                  |          |            |          | TWO DIR     | ECTIONAL         | L PEAK         |       |               |            |        |            |
|             | EAK HR T           |               |       | 07:15 AM to      |          |            |          |             | PEAK HR          |                |       |               | 5 PM to 04 |        |            |
|             | EAK HR V           |               | 8     | 376              | 360      | 3          | 1239     |             |                  | VOLUME         |       | 511           |            | 858    | 1369       |
|             | FACTOR (           | %)            |       |                  |          |            | 7.71     |             | K FACTOR         | ₹ (%)          |       |               |            |        | 8.52       |
| AM - D      | 1 /                |               |       | 0.70             | 29.      | 30         | 100.00   | PM - I      |                  |                |       | 37.33         |            | 62.67  | 100.00     |
| NON-COMMU   | JTER PERI          | IOD (09:00-15 | :00)  |                  |          |            |          | 6-HR, 12-H  | R, 24-HR         | PERIODS        |       | DIR 1 D       | IR 2       | Total  |            |
| TWO DIREC   | CTIONAL F          | PEAK          |       |                  |          |            |          | AM 6-HR     | PERIOD (         | 06:00-12:00)   |       | 3,635 2       | 023        | 5,658  |            |
| PEAK H      | HR TIME            |               |       | 02:00 PM to      | 03:00 PM |            |          | AM 12-HF    | R PERIOD         | (00:00-12:00)  |       | 4,366 2       | 244        | 6,610  |            |
| PEAK H      | HR VOLUM           | 1E            | 5     | 522              | 562      | 2          | 1084     | PM 6-HR     | PERIOD (         | 12:00-18:00)   |       | 2,829 3       | 944        | 6,773  |            |
| DIRECTION   | NAL PEAK           |               |       |                  |          |            |          | PM 12-HF    | PERIOD           | (12:00-24:00)  |       | 3,669 5       | 787        | 9,456  |            |
| PEAK I      | HR TIME            |               | 0     | 2:00 PM to 03:00 | PM 01:   | 45 PM to 0 | 02:45 PM | 24 HOUR     | PERIOD           |                |       | 8,035 8       | 031        | 16,066 |            |
| PEAKI       | HR VOLUM           | ΛE            |       | 322              | 570      | 1          |          | D (%)       |                  |                |       | 50.01 4       | 99         | 100.00 |            |

| SINGLE UNIT<br>TRUCKS (TYPE 4-7)<br>COMBINATION<br>(TYPE 8-13) | PEAK HOUR<br>VOLUME: 1421<br>2014/03/05 16:00 | AXLE CORRECTION FACTOR (A/C) = 0.972 | UNCLASSIFIED VEHICLES TOTALS | CLASSIFIED VEHICLES TOTALS | HEAVY VEHICLE TOTALS | 7A-MT | 6A-MT | MULTI-IRAILER INCOMO | 6A-ST | 5A-ST | 4A-ST | SINGLE-TRAILER TRUCKS | 4A-SU | 3A-SU |       | SINGLE UNIT TRUCK | Bus   |                | LIGHT VEHICLE TOTALS | 2A-4T  | PC     | Cycles |                 |                                                      | Location: Mamalahoa Hwy - Mana Rd to Pualalea Pl | Town: Hawaii     | Site ID: B71001905469 |                                          | Run Date: 2015/03/19                                                                   |   |
|----------------------------------------------------------------|-----------------------------------------------|--------------------------------------|------------------------------|----------------------------|----------------------|-------|-------|----------------------|-------|-------|-------|-----------------------|-------|-------|-------|-------------------|-------|----------------|----------------------|--------|--------|--------|-----------------|------------------------------------------------------|--------------------------------------------------|------------------|-----------------------|------------------------------------------|----------------------------------------------------------------------------------------|---|
| 9 ==                                                           | PEAK<br>HOUR<br>TRUCK<br>VOLUME               | 372                                  | IICLES TOTALS                | LES TOTALS                 | TALS                 |       |       | OCK5                 |       |       |       | RUCKS                 |       |       |       | Ι <del>Χ</del>    |       |                | TALS                 |        |        |        |                 | Functional Classification:<br>REPORT TOTALS - 48     | na Rd to Pualalea                                | Dir              | Roi                   | Vehicle                                  | Hawaii<br>Highw                                                                        |   |
| (65A-1)<br>0.77%<br>(65B-1)<br>0.63%                           | % TOTAL PEAK HOUR VOLUME                      |                                      | <u>.</u>                     | 32114 (A)                  | 964                  | 37    |       |                      | 20    | 423   | 43    |                       |       | 152   | 161   |                   | 117   | <u>HEAV</u>    | 31150                | 5268   | 25721  | 161    | VOLUME          | I                                                    | P                                                | Direction: +MP   | Route No: 19          | Vehicle Classification Data Summary 2014 | Hawaii Department of Transportation Highways Division Highways Planning Survey Section |   |
| 217                                                            | 24 HOUR<br>TRUCK<br>VOLUME                    | EQUI                                 |                              | 4 (A) 100.00%              |                      |       | 0.    | 5 0.                 |       |       |       |                       | 5 0.  |       |       |                   |       | HEAVY VEHICLES |                      |        |        |        | %               | 14 URBAN:PRINCIPAL ARTERIAL - OTHER<br>OURS RECORDED |                                                  |                  |                       | n Data Sum<br>4                          | of Transpor<br>Division<br>  Survey Sec                                                |   |
| 14200                                                          | AADT                                          | ROADTUBE<br>EQUIVALENT(B/2) =        | 0.00%                        | 00%                        | 3.00%                | 0.12% | 0.00% | 0.02%                | 0.06% | 1.32% | 0.13% |                       | 0.02% | 0.47% | 0.50% |                   | 0.36% |                | 97.00%               | 16.40% | 80.10% | 0.50%  | z               | NCIPAL AF                                            |                                                  | D                | Date                  | imary                                    | tation                                                                                 | • |
| (65A-2)<br>1.53%<br>(65B-2)<br>1.86%                           | % OF<br>AADT                                  |                                      |                              | 66087                      | 3787                 | 259   |       |                      | 120   | 2115  | 172   |                       |       | 456   | ω     |                   | 292   |                | 62299                | 10536  | 51442  | 321    | NUMBER OF AXLES | RTERIAL - C                                          |                                                  | Date To: 20      | Date From: 20         |                                          |                                                                                        |   |
| 10.01%                                                         | K-FACTOR<br>(PEAK/AADT)<br>(ITEM 66)          | 33043 (C)                            |                              | 87 (B)                     | 37                   | 59    | 6     | 25                   | 20    | 15    | 72    |                       | 20    | 56    | 322   |                   | 32    |                | 99                   | 36     | 12     | 21     | = AXLES         | OTHER                                                |                                                  | 2014/03/06 23:45 | 2014/03/05 0:00       |                                          |                                                                                        |   |

### Hawaii Department of Transportation Run Date: 2015/07/22

**Highways Division** Highways Planning Survey Section

### 2014 Program Count - Summary

Site ID: B71001905469
Functional Class: URBAN:PRINCIPAL ARTERIAL - OTHER Location: Mamalahoa Hwy - Mana Rd to Pualalea PI Final AADT: 14200 Route No: 19 DIR 1:+MP Town: Hawaii DIR 2:-MP Count Type: CLASS Counter Type: Tube

| TIME-AM     | DIR 1    | DIR 2 | TOTAL | TIME-AM     | DIR 1 | DIR 2 | TOTAL | TIME-PM     | DIR 1 | DIR 2 | TOTAL | TIME-PM     | DIR 1 | DIR 2 | TOTAL |
|-------------|----------|-------|-------|-------------|-------|-------|-------|-------------|-------|-------|-------|-------------|-------|-------|-------|
| DATE: 05    | /07/2014 |       |       |             |       |       |       |             |       |       |       |             |       |       |       |
| 12:00-12:15 | 7        | 9     | 16    | 06:00-06:15 | 179   | 50    | 229   | 12:00-12:15 | 65    | 100   | 165   | 06:00-06:15 | 48    | 106   | 154   |
| 12:15-12:30 | 3        | 4     | 7     | 06:15-06:30 | 172   | 51    | 223   | 12:15-12:30 | 103   | 113   | 216   | 06:15-06:30 | 33    | 110   | 143   |
| 12:30-12:45 | 4        | 4     | 8     | 06:30-06:45 | 227   | 62    | 289   | 12:30-12:45 | 94    | 125   | 219   | 06:30-06:45 | 38    | 94    | 132   |
| 12:45-01:00 | 6        | 0     | 6     | 06:45-07:00 | 190   | 64    | 254   | 12:45-01:00 | 121   | 104   | 225   | 06:45-07:00 | 30    | 85    | 115   |
| 01:00-01:15 | 4        | 7     | 11    | 07:00-07:15 | 183   | 66    | 249   | 01:00-01:15 | 127   | 112   | 239   | 07:00-07:15 | 26    | 71    | 97    |
| 01:15-01:30 | 5        | 1     | 6     | 07:15-07:30 | 147   | 85    | 232   | 01:15-01:30 | 108   | 96    | 204   | 07:15-07:30 | 21    | 63    | 84    |
| 01:30-01:45 | 9        | 4     | 13    | 07:30-07:45 | 133   | 55    | 188   | 01:30-01:45 | 123   | 129   | 252   | 07:30-07:45 | 31    | 61    | 92    |
| 01:45-02:00 | 3        | 7     | 10    | 07:45-08:00 | 123   | 60    | 183   | 01:45-02:00 | 118   | 127   | 245   | 07:45-08:00 | 16    | 49    | 65    |
| 02:00-02:15 | 9        | 3     | 12    | 08:00-08:15 | 117   | 80    | 197   | 02:00-02:15 | 113   | 124   | 237   | 08:00-08:15 | 24    | 57    | 81    |
| 02:15-02:30 | 17       | 2     | 19    | 08:15-08:30 | 135   | 75    | 210   | 02:15-02:30 | 98    | 165   | 263   | 08:15-08:30 | 21    | 65    | 86    |
| 02:30-02:45 | 16       | 2     | 18    | 08:30-08:45 | 94    | 91    | 185   | 02:30-02:45 | 101   | 173   | 274   | 08:30-08:45 | 19    | 34    | 53    |
| 02:45-03:00 | 32       | 3     | 35    | 08:45-09:00 | 123   | 78    | 201   | 02:45-03:00 | 92    | 173   | 265   | 08:45-09:00 | 24    | 45    | 69    |
| 03:00-03:15 | 32       | 3     | 35    | 09:00-09:15 | 106   | 87    | 193   | 03:00-03:15 | 84    | 159   | 243   | 09:00-09:15 | 19    | 40    | 59    |
| 03:15-03:30 | 42       | 5     | 47    | 09:15-09:30 | 81    | 98    | 179   | 03:15-03:30 | 83    | 170   | 253   | 09:15-09:30 | 13    | 31    | 44    |
| 03:30-03:45 | 52       | 5     | 57    | 09:30-09:45 | 75    | 85    | 160   | 03:30-03:45 | 76    | 179   | 255   | 09:30-09:45 | 8     | 47    | 55    |
| 03:45-04:00 | 60       | 8     | 68    | 09:45-10:00 | 86    | 91    | 177   | 03:45-04:00 | 64    | 224   | 288   | 09:45-10:00 | 3     | 37    | 40    |
| 04:00-04:15 | 60       | 9     | 69    | 10:00-10:15 | 104   | 88    | 192   | 04:00-04:15 | 91    | 179   | 270   | 10:00-10:15 | 8     | 35    | 43    |
| 04:15-04:30 | 87       | 9     | 96    | 10:15-10:30 | 103   | 75    | 178   | 04:15-04:30 | 78    | 183   | 261   | 10:15-10:30 | 4     | 42    | 46    |
| 04:30-04:45 | 107      | 20    | 127   | 10:30-10:45 | 98    | 86    | 184   | 04:30-04:45 | 70    | 167   | 237   | 10:30-10:45 | 1     | 36    | 37    |
| 04:45-05:00 | 120      | 35    | 155   | 10:45-11:00 | 96    | 99    | 195   | 04:45-05:00 | 64    | 168   | 232   | 10:45-11:00 | 3     | 23    | 26    |
| 05:00-05:15 | 169      | 26    | 195   | 11:00-11:15 | 76    | 109   | 185   | 05:00-05:15 | 58    | 160   | 218   | 11:00-11:15 | 3     | 17    | 20    |
| 05:15-05:30 | 184      | 29    | 213   | 11:15-11:30 | 84    | 98    | 182   | 05:15-05:30 | 77    | 136   | 213   | 11:15-11:30 | 1     | 7     | 8     |
| 05:30-05:45 | 161      | 27    | 188   | 11:30-11:45 | 77    | 98    | 175   | 05:30-05:45 | 44    | 119   | 163   | 11:30-11:45 | 4     | 7     | 11    |
| 05:45-06:00 | 182      | 36    | 218   | 11:45-12:00 | 78    | 119   | 197   | 05:45-06:00 | 61    | 95    | 156   | 11:45-12:00 | 0     | 11    | 11    |

| AM COMMUTER PERIOD (05:00-09:00) TWO DIRECTIONAL PEAK AM - PEAK HR TIME | DIR 1<br>06:30 AM to 07:3 | DIR 2       |            | PM COMMUTER PERIOD (15:00-19:00) TWO DIRECTIONAL PEAK PM - PEAK HR TIME | D <b>I</b> R 1 | 03:30 PM to 0 | D <b>I</b> R 2<br>4:30 PM |          |
|-------------------------------------------------------------------------|---------------------------|-------------|------------|-------------------------------------------------------------------------|----------------|---------------|---------------------------|----------|
| AM - PEAK HR VOLUME                                                     | 747                       | 277         | 1024       | PM - PEAK HR VOLUME                                                     | 309            |               | 765                       | 1074     |
| AM - K FACTOR (%)                                                       |                           |             | 7.51       | PM - K FACTOR (%)                                                       |                |               |                           | 7.88     |
| AM - D (%)                                                              | 72.95                     | 27.05       | 100.00     | PM - D (%)                                                              | 28.77          |               | 71.23                     | 100.00   |
| DIRECTIONAL PEAK                                                        |                           |             |            | DIRECTIONAL PEAK                                                        |                |               |                           |          |
| AM - PEAK HR TIME                                                       | 06:15 AM to 07:15 AM      | 08:00 AM to | 09:00 AM   | PM - PEAK HR TIME                                                       | 03:15 PN       | I to 04:15 PM | 03:30 PM to               | 04:30 PM |
| AM - PEAK HR VOLUME                                                     | 772                       | 324         |            | PM - PEAK HR VOLUME                                                     | 314            |               | 765                       |          |
| AM PERIOD (00:00-12:00)                                                 |                           |             |            | PM PERIOD (12:00-24:00)                                                 |                |               |                           |          |
| TWO DIRECTIONAL PEAK                                                    |                           |             |            | TWO DIRECTIONAL PEAK                                                    |                |               |                           |          |
| AM - PEAK HR TIME                                                       | 06:30 AM to 07:30         | D AM        |            | PM - PEAK HR TIME                                                       |                | 03:30 PM to 0 | 4:30 PM                   |          |
| AM - PEAK HR VOLUME                                                     | 747                       | 277         | 1024       | PM - PEAK HR VOLUME                                                     | 309            |               | 765                       | 1074     |
| AM - K FACTOR (%)                                                       |                           |             | 7.51       | PM - K FACTOR (%)                                                       |                |               |                           | 7.88     |
| AM - D (%)                                                              | 72.95                     | 27.05       | 100.00     | PM - D (%)                                                              | 28.77          |               | 71.23                     | 100.00   |
| NON-COMMUTER PERIOD (09:00-15:00)                                       |                           |             |            | 6-HR, 12-HR, 24-HR PERIODS                                              | DIR 1          | DIR 2         | Total                     |          |
| TWO DIRECTIONAL PEAK                                                    |                           |             |            | AM 6-HR PERIOD (06:00-12:00)                                            | 2,887          | 1,950         | 4,837                     |          |
| PEAK HR TIME                                                            | 02:00 PM to 03:0          | 0 PM        |            | AM 12-HR PERIOD (00:00-12:00)                                           | 4,258          | 2,208         | 6,466                     |          |
| PEAK HR VOLUME                                                          | 404                       | 635         | 1039       | PM 6-HR PERIOD (12:00-18:00)                                            | 2,113          | 3,480         | 5,593                     |          |
| DIRECTIONAL PEAK                                                        |                           |             |            | PM 12-HR PERIOD (12:00-24:00)                                           | 2.511          | 4.653         | 7.164                     |          |
| PEAK HR TIME                                                            | 12:45 PM to 01:45 PM      | 02:00 PM t  | o 03:00 PM | 24 HOUR PERIOD                                                          | 6,769          | 6,861         | 13,630                    |          |
| PEAK HR VOLUME                                                          | 479                       | 635         |            | D (%)                                                                   | 49.66          | 50.34         | 100.00                    |          |
|                                                                         |                           |             |            |                                                                         |                |               |                           |          |

Run Date: 2015/07/22 Hawaii Department of Transportation Highways Planning Survey Section **Highways Division** 

2014 Program Count - Summary

Site ID: B71001905469
Functional Class: URBAN:PRINCIPAL ARTERIAL - OTHER Location: Mamalahoa Hwy - Mana Rd to Pualalea PI Town: Hawaii Count Type: CLASS Final AADT: 14200 Route No: 19 DIR 1: +MP DIR 2:-MP Counter Type: Tube

| TIME AM     | DIR 1    | DIR 2 | TOTAL | TIME-AM     | DIR 1 | DIR 2 | TOTAL | TIME DM     | DIR 1 | DIR 2 | TOTAL | TIME DM     | DIR 1 | DIR 2 | TOTAL |
|-------------|----------|-------|-------|-------------|-------|-------|-------|-------------|-------|-------|-------|-------------|-------|-------|-------|
| TIME-AM     |          | DIR 2 | TOTAL | HIME-AM     | DIK   | DIR 2 | IOIAL | TIME-PM     | DIK   | DIR 2 | TOTAL | TIME-PM     | DIK   | DIR 2 | TOTAL |
| DATE: 05    | /08/2014 |       |       |             |       |       |       |             |       |       |       |             |       |       |       |
| 12:00-12:15 | 2        | 8     | 10    | 06:00-06:15 | 183   | 32    | 215   | 12:00-12:15 | 109   | 101   | 210   | 06:00-06:15 | 42    | 85    | 127   |
| 12:15-12:30 | 3        | 5     | 8     | 06:15-06:30 | 214   | 55    | 269   | 12:15-12:30 | 100   | 109   | 209   | 06:15-06:30 | 34    | 88    | 122   |
| 12:30-12:45 | 5        | 1     | 6     | 06:30-06:45 | 251   | 51    | 302   | 12:30-12:45 | 79    | 114   | 193   | 06:30-06:45 | 28    | 85    | 113   |
| 12:45-01:00 | 5        | 1     | 6     | 06:45-07:00 | 203   | 48    | 251   | 12:45-01:00 | 99    | 115   | 214   | 06:45-07:00 | 27    | 75    | 102   |
| 01:00-01:15 | 4        | 1     | 5     | 07:00-07:15 | 172   | 69    | 241   | 01:00-01:15 | 112   | 103   | 215   | 07:00-07:15 | 23    | 69    | 92    |
| 01:15-01:30 | 6        | 3     | 9     | 07:15-07:30 | 136   | 84    | 220   | 01:15-01:30 | 85    | 133   | 218   | 07:15-07:30 | 21    | 62    | 83    |
| 01:30-01:45 | 10       | 1     | 11    | 07:30-07:45 | 128   | 94    | 222   | 01:30-01:45 | 114   | 87    | 201   | 07:30-07:45 | 26    | 56    | 82    |
| 01:45-02:00 | 8        | 1     | 9     | 07:45-08:00 | 119   | 73    | 192   | 01:45-02:00 | 102   | 110   | 212   | 07:45-08:00 | 26    | 55    | 81    |
| 02:00-02:15 | 10       | 1     | 11    | 08:00-08:15 | 123   | 92    | 215   | 02:00-02:15 | 97    | 149   | 246   | 08:00-08:15 | 33    | 60    | 93    |
| 02:15-02:30 | 12       | 2     | 14    | 08:15-08:30 | 115   | 66    | 181   | 02:15-02:30 | 100   | 130   | 230   | 08:15-08:30 | 25    | 62    | 87    |
| 02:30-02:45 | 15       | 1     | 16    | 08:30-08:45 | 107   | 82    | 189   | 02:30-02:45 | 93    | 164   | 257   | 08:30-08:45 | 19    | 53    | 72    |
| 02:45-03:00 | 28       | 3     | 31    | 08:45-09:00 | 115   | 80    | 195   | 02:45-03:00 | 87    | 175   | 262   | 08:45-09:00 | 21    | 47    | 68    |
| 03:00-03:15 | 29       | 2     | 31    | 09:00-09:15 | 105   | 88    | 193   | 03:00-03:15 | 95    | 191   | 286   | 09:00-09:15 | 19    | 53    | 72    |
| 03:15-03:30 | 36       | 1     | 37    | 09:15-09:30 | 110   | 84    | 194   | 03:15-03:30 | 77    | 184   | 261   | 09:15-09:30 | 11    | 43    | 54    |
| 03:30-03:45 | 46       | 9     | 55    | 09:30-09:45 | 80    | 108   | 188   | 03:30-03:45 | 89    | 174   | 263   | 09:30-09:45 | 10    | 54    | 64    |
| 03:45-04:00 | 60       | 4     | 64    | 09:45-10:00 | 101   | 73    | 174   | 03:45-04:00 | 79    | 211   | 290   | 09:45-10:00 | 4     | 40    | 44    |
| 04:00-04:15 | 67       | 15    | 82    | 10:00-10:15 | 94    | 81    | 175   | 04:00-04:15 | 91    | 179   | 270   | 10:00-10:15 | 10    | 32    | 42    |
| 04:15-04:30 | 87       | 17    | 104   | 10:15-10:30 | 73    | 84    | 157   | 04:15-04:30 | 76    | 183   | 259   | 10:15-10:30 | 9     | 23    | 32    |
| 04:30-04:45 | 108      | 23    | 131   | 10:30-10:45 | 92    | 91    | 183   | 04:30-04:45 | 72    | 167   | 239   | 10:30-10:45 | 2     | 49    | 51    |
| 04:45-05:00 | 132      | 34    | 166   | 10:45-11:00 | 100   | 85    | 185   | 04:45-05:00 | 76    | 149   | 225   | 10:45-11:00 | 5     | 23    | 28    |
| 05:00-05:15 | 147      | 19    | 166   | 11:00-11:15 | 84    | 106   | 190   | 05:00-05:15 | 56    | 151   | 207   | 11:00-11:15 | 5     | 23    | 28    |
| 05:15-05:30 | 178      | 30    | 208   | 11:15-11:30 | 86    | 84    | 170   | 05:15-05:30 | 87    | 129   | 216   | 11:15-11:30 | 2     | 10    | 12    |
| 05:30-05:45 | 171      | 25    | 196   | 11:30-11:45 | 78    | 95    | 173   | 05:30-05:45 | 61    | 135   | 196   | 11:30-11:45 | 2     | 11    | 13    |
| 05:45-06:00 | 179      | 39    | 218   | 11:45-12:00 | 96    | 95    | 191   | 05:45-06:00 | 55    | 125   | 180   | 11:45-12:00 | 0     | 12    | 12    |

| 05:45-06:00 179 39       | ) 2        | 18 11:45-12:00       | 96     | 95 191         | 05:45-06:00 55        | 125 1            | 80 11:45-1 | 12:00 0       | 12         | 12         |
|--------------------------|------------|----------------------|--------|----------------|-----------------------|------------------|------------|---------------|------------|------------|
| AM COMMUTER PERIOD (05:0 | 0-09:00)   | DIR 1                | DIR 2  |                | PM COMMUTER PERK      | OD (15:00-19:00) | DIR 1      |               | DIR 2      |            |
| TWO DIRECTIONAL PEAK     |            |                      |        |                | TWO DIRECTIONAL       | PEAK             |            |               |            |            |
| AM - PEAK HR TIME        |            | 06:15 AM to 07:      | 15 AM  |                | PM - PEAK HR T        | IME              |            | 03:00 PM to 0 | 4:00 PM    |            |
| AM - PEAK HR VOLUME      |            | 840                  | 223    | 1063           | PM - PEAK HR V        | OLUME            | 340        |               | 760        | 1100       |
| AM - K FACTOR (%)        |            |                      |        | 7.82           | PM - K FACTOR         | (%)              |            |               |            | 8.09       |
| AM - D (%)               |            | 79.02                | 20.98  | 100.00         | PM - D (%)            |                  | 30.91      |               | 69.09      | 100.00     |
| DIRECTIONAL PEAK         |            |                      |        |                | DIRECTIONAL PEAK      |                  |            |               |            |            |
| AM - PEAK HR TIME        |            | 06:00 AM to 07:00 AM | 07:15  | AM to 08:15 AM | PM - PEAK HR TI       | IME              | 03:00 PN   | I to 04:00 PM | 03:00 PM t | o 04:00 PM |
| AM - PEAK HR VOLUME      |            | 851                  | 343    |                | PM - PEAK HR V        | OLUME            | 340        |               | 760        |            |
| AM PERIOD (00:00-12:00)  |            |                      |        |                | PM PERIOD (12:00-24:0 | 00)              |            |               |            |            |
| TWO DIRECTIONAL PEAK     |            |                      |        |                | TWO DIRECTIONAL I     | PEAK             |            |               |            |            |
| AM - PEAK HR TIME        |            | 06:15 AM to 07:      | 15 AM  |                | PM - PEAK HR TI       | IME              |            | 03:00 PM to 0 | 4:00 PM    |            |
| AM - PEAK HR VOLUME      |            | 840                  | 223    | 1063           | PM - PEAK HR V        | OLUME            | 340        |               | 760        | 1100       |
| AM - K FACTOR (%)        |            |                      |        | 7.82           | PM - K FACTOR         | (%)              |            |               |            | 8.09       |
| AM - D (%)               |            | 79.02                | 20.98  | 100.00         | PM - D (%)            |                  | 30.91      |               | 69.09      | 100.00     |
| NON-COMMUTER PERIOD (09  | :00-15:00) |                      |        |                | 6-HR, 12-HR, 24-HR PE | ER <b>I</b> ODS  | DIR 1      | DIR 2         | Total      |            |
| TWO DIRECTIONAL PEAK     |            |                      |        |                | AM 6-HR PERIOD (06    | 6:00-12:00)      | 2,965      | 1,900         | 4,865      |            |
| PEAK HR TIME             |            | 02:00 PM to 03       | :00 PM |                | AM 12-HR PERIOD (0    | 00:00-12:00)     | 4,313      | 2,146         | 6,459      |            |
| PEAK HR VOLUME           |            | 377                  | 618    | 995            | PM 6-HR PERIOD (12    | 2:00-18:00)      | 2,091      | 3,468         | 5,559      |            |
| DIRECTIONAL PEAK         |            |                      |        |                | PM 12-HR PERIOD (1    | 12:00-24:00)     | 2,495      | 4,638         | 7,133      |            |
| PEAK HR TIME             |            | 01:00 PM to 02:00 PM | 02:00  | PM to 03:00 PM | 24 HOUR PERIOD        |                  | 6,808      | 6,784         | 13,592     |            |
| PEAK HR VOLUME           |            | 413                  | 618    |                | D (%)                 |                  | 50.09      | 49.91         | 100.00     |            |

Run Date: 2015/07/22

B71001905469

Site ID:

Mamalahoa Hwy Rd to Pualalea Pl

Hawaii Department of Transportation Highways Division Highways Planning Survey Section Vehicle Classification Data Summary Direction: Route No: 19 ± P Date From:

2014/05/07 0:00

Functional Classification: REPORT TOTALS - 48 HOURS RECORDED 14 URBAN:PRINCIPAL ARTERIAL OTHER

**VOLUME** 

NUMBER OF AXLES

19157

38314 9788

381

191

4894

17.98% 70.37%

89.05%

Date To: 2014/05/08 23:45

Run Date: 2016/05/18 Hawaii Department of Transportation Highways Planning Survey Section **Highways Division** 2015 Program Count - Summary Site ID: B71001905469 Town: Hawaii DIR 1:+MP DIR 2:-MP Final AADT: 14700 Route No: 19 Functional Class: URBAN:PRINCIPAL ARTERIAL - OTHER Count Type: CLASS Counter Type: Tube Location: Mamalahoa Hwy - Mana Rd to Pualalea Pl TIME-AM DIR 1 TOTAL DIR 2 TOTAL TIME-PM DIR 1 DIR 1 DIR 2 TIME-AM DIR 2 TOTAL TIME-PM DIR 2 TOTAL DATE: 08/27/2015 12:00-12:15 12:15-12:30 12:30-12:45 06:00-06:15 12:00-12:15 06:00-06:15 15 20 06:15-06:30 06:30-06:45 205 193 232 246 12:15-12:30 12:30-12:45 80 114 87 122 104 136 95 113 123 104 107 138 159 169 172 203 207 198 209 264 194 237 181 202 218 06:15-06:30 06:30-06:45 143 139 217 14 16 8 27 53 48 54 78 97 74 68 77 73 51 41 37 26 37 31 29 24 20 26 11 13 12 11 9 12:45-01:00 12 06:45-07:00 221 269 12:45-01:00 223 06:45-07:00 117 194 190 195 173 244 273 270 92 106 118 187 219 241 01:00-01:15 07:00-07:15 07:15-07:30 01:00-01:15 01:15-01:30 07:00-07:15 07:15-07:30 175 163 102 87 77 65 75 52 57 61 52 32 47 47 52 53 36 24 22 01:15-01:30 01:30-01:45 07:30-07:45 01:30-01:45 07:30-07:45 128 01:45-02:00 07:45-08:00 168 161 271 166 131 118 114 74 116 113 101 104 74 69 81 65 99 97 75 79 85 93 93 86 269 265 345 235 212 183 213 171 191 192 191 186 205 180 01:45-02:00 103 207 07:45-08:00 114 91 112 83 86 85 72 78 43 60 59 63 62 53 27 32 02:00-02:15 02:15-02:30 08:00-08:15 08:15-08:30 02:00-02:15 02:15-02:30 230 270 08:00-08:15 08:15-08:30 123 132 101 125 115 103 117 104 105 02:30-02:45 08:30-08:45 02:30-02:45 260 08:30-08:45 02:45-03:00 03:00-03:15 03:15-03:30 08:45-09:00 09:00-09:15 02:45-03:00 03:00-03:15 03:15-03:30 294 287 306 08:45-09:00 09:00-09:15 09:15-09:30 09:15-09:30 20 16 34 29 54 52 61 79 25 03:30-03:45 03:45-04:00 04:00-04:15 09:30-09:45 09:45-10:00 10:00-10:15 03:30-03:45 09:30-09:45 324 302 294 325 364 324 20 39 34 57 55 70 87 03:45-04:00 04:00-04:15 09:45-10:00 10:00-10:15 106 93 112 04:15-04:30 10:15-10:30 04:15-04:30 116 10:15-10:30 04:30-04:45 04:45-05:00 05:00-05:15 10:30-10:45 10:45-11:00 04:30-04:45 04:45-05:00 10:30-10:45 10:45-11:00 100 130 11:00-11:15 94 05:00-05:15 98 90 83 335 11:00-11:15 115 164 109 101 05:15-05:30 05:30-05:45 11:15-11:30 11:30-11:45 05:15-05:30 106 126 11:15-11:30 271 05:30-05:45 11:30-11:45 05:45-06:00 11:45-12:00 05:45-06:00 11:45-12:00 35 AM COMMUTER PERIOD (05:00-09:00) PM COMMUTER PERIOD (15:00-19:00) TWO DIRECTIONAL PEAK TWO DIRECTIONAL PEAK AM - PEAK HR TIME AM - PEAK HR VOLUME AM - K FACTOR (%) PM - PEAK HR TIME PM - PEAK HR VOLUME PM - K FACTOR (%) 07:30 AM to 08:30 AM 04:15 PM to 05:15 PM 773 1149 7.54 444 1348 8.84 67.28 32.72 100.00 32.94 67.06 100.00 AM - D (%) DIRECTIONAL PEAK PM - D (%) DIRECTIONAL PEAK AM - PEAK HR TIME AM - PEAK HR VOLUME 07:15 AM to 08:15 AM 380 PM - PEAK HR TIME PM - PEAK HR VOLUME 06:15 AM to 07:15 AM AM PERIOD (00:00-12:00) TWO DIRECTIONAL PEAK PM PERIOD (12:00-24:00) TWO DIRECTIONAL PEAK AM - PEAK HR TIME 07:30 AM to 08:30 AM PM - PEAK HR TIME PM - PEAK HR VOLUME 04:15 PM to 05:15 PM AM - PEAK HR VOLUME 773 1149 444 1348 AM - K FACTOR (%) AM - D (%) PM - K FACTOR (%) PM - D (%) 8 84 100.00 32.94 67.06 NON-COMMUTER PERIOD (09:00-15:00) 6-HR, 12-HR, 24-HR PERIODS DIR 1 DIR 2 Total TWO DIRECTIONAL PEAK AM 6-HR PERIOD (06:00-12:00) 3,477 1.896 5.373 PEAK HR TIME PEAK HR VOLUME 02:00 PM to 03:00 PM AM 12-HR PERIOD (00:00-12:00 PM 6-HR PERIOD (12:00-18:00) 4,287 2,507 2,095 1054 573 3,885 6,392 DIRECTIONAL PEAK PEAK HR TIME PM 12-HR PERIOD (12:00-24:00 3,287 7,574 5,578 7,673 8,865 15,247 24 HOUR PERIOD 02:00 PM to 03:00 PM 02:00 PM to 03:00 PM PEAK HR VOLUME 481 573 D (%) 49.68 50.32 100.00

SINGLE UNIT TRUCKS (TYPE 4-7) 2014/05/08 15:00

(65B-1) 1.00% (65A-1) 8-64%

286 1204

14200

(65A-2) 8.48%

7.75% 7.75%

(65B-2) 2.01%

24 HOUR TRUCK VOLUME

AADT

AADT

K-FACTOR (PEAK/AADT) (ITEM 66)

ROADTUBE EQUIVALENT(B/2) =

28220

0

MULTI: 5A-MT 6A-MT

TRAILER TRUCKS

4

205

CLASSIFIED VEHICLES TOTALS

27223 -1

Œ

100.00%

56440

æ

7957

-0.00% 10.95%

2981

0.00%

0.00%

HEAVY VEHICLE TOTALS

UNCLASSIFIED VEHICLES TOTALS

4A-ST 5A-ST 6A-ST

250 276

0.01%

1.01%

1000 1380 24

3A-SU

1469 95 1

5.40%

2938 285 4

0.00%

UNIT TRUCK

HEAVY VEHICLES

843

3.10%

4A-SU 2A-6T

TRAILER TRUCKS

2A-4T R

LIGHT VEHICLE TOTALS

Run Date: 2016/05/18

Hawaii Department of Transportation Division Highways Planning Survey Section **Highways Division** 

2015 Program Count - Summary

Site ID: B71001905469
Functional Class: URBAN:PRINCIPAL ARTERIAL - OTHER Location: Mamalahoa Hwy - Mana Rd to Pualalea PI

Town: Hawaii Count Type: CLASS

DIR 1: +MP DIR 2:-MP Final AADT: 14700
Counter Type: Tube Route No: 19

| TIME-AM                    | DIR 1                         | DIR 2       | TOTAL    | TIME-AM                    | DIR 1      | DIR 2      | TOTAL      | TIME-PM                    | DIR 1     | DIR 2       | TOTAL      | TIME-PM                    | DIR 1      | DIR 2      | TOTAL      |
|----------------------------|-------------------------------|-------------|----------|----------------------------|------------|------------|------------|----------------------------|-----------|-------------|------------|----------------------------|------------|------------|------------|
| DATE: 08/2                 | 28/2015                       |             |          |                            |            |            |            |                            |           |             |            |                            |            |            |            |
| 12:00-12:15                | 4                             | 27          | 31       | 06:00-06:15                | 155        | 28         | 183        | 12:00-12:15                | 105       | 103         | 208        | 06:00-06:15                | 118        | 160        | 278        |
| 12:15-12:30                | 6                             | 16          | 22       | 06:15-06:30                | 184        | 40         | 224        | 12:15-12:30                | 65        | 125         | 190        | 06:15-06:30                | 94         | 135        | 229        |
| 12:30-12:45                | 10                            | 9           | 19       | 06:30-06:45                | 197        | 42         | 239        | 12:30-12:45                | 101       | 122         | 223        | 06:30-06:45                | 93         | 150        | 243        |
| 12:45-01:00                | 1                             | 14          | 15       | 06:45-07:00                | 201        | 44         | 245        | 12:45-01:00                | 63        | 69          | 132        | 06:45-07:00                | 93         | 121        | 214        |
| 01:00-01:15                | 6                             | 8           | 14       | 07:00-07:15                | 179        | 41         | 220        | 01:00-01:15                | 0         | 0           | 0          | 07:00-07:15                | 63         | 126        | 189        |
| 01:15-01:30                | 6                             | 10          | 16       | 07:15-07:30                | 238        | 58         | 296        | 01:15-01:30                | 0         | 0           | 0          | 07:15-07:30                | 60         | 120        | 180        |
| 01:30-01:45                | 4                             | 4           | 8        | 07:30-07:45                | 231        | 81         | 312        | 01:30-01:45                | 79        | 97          | 176        | 07:30-07:45                | 55         | 92         | 147        |
| 01:45-02:00                | 7                             | 5           | 12       | 07:45-08:00                | 238        | 112        | 350        | 01:45-02:00                | 132       | 128         | 260        | 07:45-08:00                | 51         | 95         | 146        |
| 02:00-02:15                | 6                             | 4           | 10       | 08:00-08:15                | 157        | 95         | 252        | 02:00-02:15                | 150       | 118         | 268        | 08:00-08:15                | 38         | 84         | 122        |
| 02:15-02:30                | 2                             | 3           | 5        | 08:15-08:30                | 133        | 88         | 221        | 02:15-02:30                | 109       | 144         | 253        | 08:15-08:30                | 41         | 81         | 122        |
| 02:30-02:45                | 2                             | 1           | 3        | 08:30-08:45                | 131        | 72         | 203        | 02:30-02:45                | 101       | 198         | 299        | 08:30-08:45                | 28         | 83         | 111        |
| 02:45-03:00                | 8                             | 3           | 11       | 08:45-09:00                | 134        | 81         | 215        | 02:45-03:00                | 133       | 134         | 267        | 08:45-09:00                | 29         | 78         | 107        |
| 03:00-03:15                | 5                             | 2           | 7        | 09:00-09:15                | 136        | 99         | 235        | 03:00-03:15                | 120       | 174         | 294        | 09:00-09:15                | 22         | 80         | 102        |
| 03:15-03:30                | 18                            | 3           | 21       | 09:15-09:30                | 137        | 98         | 235        | 03:15-03:30                | 128       | 156         | 284        | 09:15-09:30                | 30         | 43         | 73         |
| 03:30-03:45                | 21                            | 5           | 26       | 09:30-09:45                | 100        | 77         | 177        | 03:30-03:45                | 111       | 197         | 308        | 09:30-09:45                | 35         | 79         | 114        |
| 03:45-04:00                | 33                            | 4           | 37       | 09:45-10:00                | 143        | 93         | 236        | 03:45-04:00                | 119       | 187         | 306        | 09:45-10:00                | 34         | 74         | 108        |
| 04:00-04:15                | 31                            | 2           | 33       | 10:00-10:15                | 131        | 96         | 227        | 04:00-04:15                | 133       | 209         | 342        | 10:00-10:15                | 24         | 73         | 97         |
| 04:15-04:30                | 45                            | 5<br>9      | 50<br>73 | 10:15-10:30                | 105        | 94<br>92   | 199        | 04:15-04:30                | 119       | 184         | 303        | 10:15-10:30                | 17         | 81<br>67   | 98<br>91   |
| 04:30-04:45                | 64                            | 5           | 73<br>61 | 10:30-10:45                | 135        | 112        | 227<br>228 | 04:30-04:45                | 95<br>112 | 227         | 322<br>313 | 10:30-10:45                | 24         | 47         | 91<br>55   |
| 04:45-05:00<br>05:00-05:15 | 56<br>75                      | 12          | 87       | 10:45-11:00<br>11:00-11:15 | 116<br>112 | 108        | 228        | 04:45-05:00<br>05:00-05:15 | 131       | 201<br>211  | 342        | 10:45-11:00<br>11:00-11:15 | 8<br>7     | 47         | 55<br>51   |
| 05:00-05:15                | 75<br>90                      | 7           | 97       | 11:15-11:15                | 83         | 108        | 191        | 05:00-05:15                | 90        | 182         | 272        | 11:15-11:15                | 11         | 44         | 60         |
| 05:30-05:45                | 124                           | 19          | 143      | 11:30-11:45                | 102        | 104        | 206        | 05:30-05:45                | 90        | 171         | 261        | 11:30-11:45                | 7          | 49         | 55         |
| 05:45-06:00                | 143                           | 9           | 152      | 11:45-12:00                | 97         | 121        | 218        | 05:45-06:00                | 95        | 151         | 246        | 11:45-12:00                | 12         | 30         | 42         |
|                            |                               |             |          |                            |            |            | 210        |                            |           |             |            |                            |            |            |            |
| AM COMMUTE                 |                               |             | :00) D   | IR 1                       | DI         | ₹2         |            | PM COMMU                   |           |             | -19:00)    | DIR 1                      |            | DIR 2      |            |
| TWO DIREC                  |                               |             |          |                            |            |            |            | TWO DIRI                   |           |             |            |                            |            |            |            |
|                            | AK HR TIN                     |             |          | 07:15 AM to                |            |            |            |                            | PEAK HR   |             |            |                            | ) PM to 05 |            |            |
|                            | AK HR VC                      |             | 86       | 64                         | 34         | 3          | 1210       |                            |           | VOLUME      |            | 459                        |            | 821        | 1280       |
|                            | FACTOR (9                     | 6)          | 7.       | 4 40                       | -00        | 00         | 7.85       |                            | K FACTO   | H (%)       |            | 05.00                      |            | 0444       | 8.30       |
| AM - D (                   |                               |             | /        | 1.40                       | 28         | 60         | 100.00     | PM - I                     |           | V           |            | 35.86                      |            | 64.14      | 100.00     |
|                            | AL PEAR<br>AK HR T <b>I</b> M | _           | 0.       | 7:00 AM to 08:00           | AM 07      | 30 AM to 0 | NA 00-00   |                            | PEAK HR   |             |            | 03:15 PM to 0              | 1:15 DM    | 04:15 PM t | 0.0E:1E DM |
|                            | AK HR VO                      |             |          | 36                         | 37         |            | O.SU AIVI  |                            |           | VOLUME      |            | 491                        | +. 13 F W  | 823        | 0 03.13 FW |
| AM PERIOD (C               | 00:00-12:00                   | ))          |          |                            |            |            |            | PM PERIOD                  | (12:00-2  | 1:00)       |            |                            |            |            |            |
| TWO DIREC                  |                               | ,           |          |                            |            |            |            | TWO DIRE                   |           |             |            |                            |            |            |            |
|                            | AK HR TIN                     |             |          | 07:15 AM to                | 08:15 AM   |            |            |                            | PEAK HR   |             |            | 04:0                       | ) PM to 05 | 5:00 PM    |            |
|                            | AK HR VC                      |             | 86       |                            | 34         |            | 1210       |                            |           | VOLUME      |            | 459                        |            | 821        | 1280       |
| AM - K F                   | ACTOR (9                      | 6)          |          |                            |            |            | 7.85       | PM - F                     | K FACTOR  | R (%)       |            |                            |            |            | 8.30       |
| AM - D (                   | %)                            |             | 7        | 1.40                       | 28         | 60         | 100.00     | PM - 0                     | O (%)     |             |            | 35.86                      |            | 64.14      | 100.00     |
| NON-COMMU.                 | TER PERI                      | OD (09:00-1 | 5:00)    |                            |            |            |            | 6-HR, 12-HF                | R, 24-HR  | PERIODS     |            | DIR 1 D                    | IR 2       | Total      |            |
| TWO DIREC                  | TIONAL P                      | EAK         |          |                            |            |            |            | AM 6-HR                    | PERIOD (  | 06:00-12:00 | )          | 3,575 1.                   | 984        | 5.559      |            |
| PEAK H                     |                               |             |          | 02:00 PM to                | 03:00 PM   |            |            |                            |           | (00:00-12:0 |            |                            | 170        | 6.512      |            |
|                            | R VOLUM                       | E           | 49       | 93                         | 59         |            | 1087       |                            |           | 12:00-18:00 |            |                            | 488        | 5.869      |            |
| DIRECTION                  |                               | _           | .,       |                            |            |            |            |                            |           | (12:00-24:0 |            |                            | 528        | 8,903      |            |
| PEAK H                     |                               |             | n        | 9:00 AM to 10:00           | AM no      | 00 PM to 0 | 13:00 PM   | 24 HOUR                    |           | ,.2.00 24.0 | ٠,         |                            | 698        | 15.415     |            |
|                            | IR VOLUM                      | F           |          | 16                         | 59         |            | ,0,00 i Wi | D (%)                      |           |             |            |                            | 9.94       | 100.00     |            |
|                            | III VOLUIV                    | _           | 5        | 10                         | 59         | T          |            |                            |           |             |            |                            |            |            |            |

| COMBINATION (TYPE 8-13) | SINGLE UNIT<br>TRUCKS (TYPE 4-7) | PEAK HOUR<br>VOLUME: 1307<br>2015/08/27 16:00 | AXLE<br>CORRECTION<br>FACTOR (A/C) = 0.987 | UNCLASSIFIED VEHICLES TOTALS | CLASSIFIED VEHICLES TOTALS | HEAVY VEHICLE TOTALS | 7A-MT | 6A-MT                                   | MOLIT-INALER INCOME | 6A-ST | 5A-ST | 4A-ST | SINGLE-TRAILER TRUCKS | 4A-SU | 3A-SU     |       | SINGLE UNIT TRUCK | Bus   |                | LIGHT VEHICLE TOTALS | 2A-4T  | PC     | Cycles |                 |                                                                              | Location: Mamalahoa Hwy - Mana Rd to Pualalea Pl | Town: Hawaii     | Site ID: B71001905469 |      |                                     |                                               | Run Date: 2016/05/19                |
|-------------------------|----------------------------------|-----------------------------------------------|--------------------------------------------|------------------------------|----------------------------|----------------------|-------|-----------------------------------------|---------------------|-------|-------|-------|-----------------------|-------|-----------|-------|-------------------|-------|----------------|----------------------|--------|--------|--------|-----------------|------------------------------------------------------------------------------|--------------------------------------------------|------------------|-----------------------|------|-------------------------------------|-----------------------------------------------|-------------------------------------|
| ω                       | 19                               | PEAK<br>HOUR<br>TRUCK<br>VOLUME               |                                            | LES TOTALS                   | S TOTALS                   | LS                   |       |                                         | 2                   | 5     |       |       | CKS                   |       |           |       |                   |       |                | S                    |        |        |        |                 | Functional C<br>REPORT                                                       | Rd to Pualale                                    | Dir              | Ro                    |      | Vehicle                             | Highw                                         | Hawaii                              |
| (65B-1)<br>0.23%        | (65A-1)<br>1.45%                 | % TOTAL<br>PEAK<br>HOUR<br>VOLUME             |                                            | <u>.</u>                     | 30663 (A)                  | 838                  | _     | ======================================= | 21                  | O     | 57    | 169   |                       | 20    | 113       | 309   |                   | 150   | HEAVY          | 29825                | 6485   | 23257  | 83     | VOLUME          | Functional Classification: 14 URBAN:PRINCI REPORT TOTALS - 48 HOURS RECORDED | a P                                              | Direction: +MP   | Route No: 19          | 2015 | Vehicle Classification Data Summary | Highways Division<br>Highways Planning Survey | Hawaii Department of Transportation |
| 132                     | 287                              | 24 HOUR<br>TRUCK<br>VOLUME                    | EQL                                        |                              |                            |                      |       |                                         |                     |       |       |       |                       |       |           |       |                   |       | HEAVY VEHICLES |                      |        |        |        | %               | 14 URBAN:PRINCIPAL ARTERIAL - OTHER<br>OURS RECORDED                         |                                                  |                  |                       | O,   | n Data Sur                          | Division<br>Survey Se                         | of Transpo                          |
|                         | 14700                            | AADT                                          | ROADTUBE<br>EQUIVALENT(B/2) =              | -0.00%                       | 100.00%                    | 2.73%                | 0.00% | 0.04%                                   | 0.07%               | 0.02% | 0.19% | 0.55% |                       | 0.01% | 0.37%     | 1.01% |                   | 0.49% |                | 97.27%               | 21.15% | 75.85% | 0.27%  | z               | INCIPAL AF                                                                   |                                                  | Da               | Date                  |      | nmary                               | Section                                       | rtation                             |
| (65B-2)<br>0.90%        | (65A-2)<br>1.95%                 | % OF<br>AADT                                  |                                            |                              | 6215                       | 2509                 |       | 66                                      | 105                 | 30    | 285   | 676   |                       |       | 339       | 618   |                   | 375   |                | 59650                | 12970  | 46514  | 166    | NUMBER OF AXLES | RTERIAL - C                                                                  |                                                  | Date To: 20      | Date From: 20         |      |                                     |                                               |                                     |
| 8.89%                   | 8.89%                            | K-FACTOR<br>(PEAK/AADT)<br>(ITEM 66)          | 31079 (C)                                  |                              | 62159 (B)                  | 19                   | 7     | ō                                       | σī                  | ő     | ŏ     | Ó     |                       | 8     | <b>79</b> | 8     |                   | Сij   |                | 0                    | 0      | 4      | ði     | : AXLES         | THER                                                                         |                                                  | 2015/08/28 23:45 | 2015/08/27 0:00       |      |                                     |                                               |                                     |

### Run Date: 2017/07/26

### Hawaii Department of Transportation

### **Highways Division** Highways Planning Survey Section

2016 Program Count - Summary

Site ID: B71001905469
Functional Class: URBAN:PRINCIPAL ARTERIAL - OTHER Location: Mamalahoa Hwy - Mana Rd to Pualalea PI Final AADT: 15100 Route No: 19 DIR 1:+MP Town: Hawaii DIR 2:-MP Count Type: CLASS Counter Type: Tube

| TIME-AM     | DIR 1    | DIR 2 | TOTAL | TIME-AM     | DIR 1 | DIR 2 | TOTAL | TIME-PM     | DIR 1 | DIR 2 | TOTAL | TIME-PM     | DIR 1 | DIR 2 | TOTAL |
|-------------|----------|-------|-------|-------------|-------|-------|-------|-------------|-------|-------|-------|-------------|-------|-------|-------|
| DATE: 04    | /19/2016 |       |       |             |       |       |       |             |       |       |       |             |       |       |       |
| 12:00-12:15 | 3        | 21    | 24    | 06:00-06:15 | 186   | 21    | 207   | 12:00-12:15 | 114   | 124   | 238   | 06:00-06:15 | 72    | 170   | 242   |
| 12:15-12:30 | 5        | 10    | 15    | 06:15-06:30 | 215   | 25    | 240   | 12:15-12:30 | 125   | 124   | 249   | 06:15-06:30 | 79    | 131   | 210   |
| 12:30-12:45 | 2        | 10    | 12    | 06:30-06:45 | 185   | 53    | 238   | 12:30-12:45 | 118   | 113   | 231   | 06:30-06:45 | 71    | 121   | 192   |
| 12:45-01:00 | 2        | 7     | 9     | 06:45-07:00 | 217   | 40    | 257   | 12:45-01:00 | 98    | 97    | 195   | 06:45-07:00 | 67    | 107   | 174   |
| 01:00-01:15 | 5        | 3     | 8     | 07:00-07:15 | 201   | 56    | 257   | 01:00-01:15 | 116   | 111   | 227   | 07:00-07:15 | 59    | 121   | 180   |
| 01:15-01:30 | 0        | 7     | 7     | 07:15-07:30 | 232   | 58    | 290   | 01:15-01:30 | 98    | 109   | 207   | 07:15-07:30 | 45    | 108   | 153   |
| 01:30-01:45 | 6        | 6     | 12    | 07:30-07:45 | 286   | 76    | 362   | 01:30-01:45 | 113   | 108   | 221   | 07:30-07:45 | 35    | 101   | 136   |
| 01:45-02:00 | 2        | 2     | 4     | 07:45-08:00 | 238   | 88    | 326   | 01:45-02:00 | 124   | 128   | 252   | 07:45-08:00 | 29    | 56    | 85    |
| 02:00-02:15 | 5        | 4     | 9     | 08:00-08:15 | 149   | 123   | 272   | 02:00-02:15 | 132   | 143   | 275   | 08:00-08:15 | 33    | 56    | 89    |
| 02:15-02:30 | 10       | 1     | 11    | 08:15-08:30 | 145   | 92    | 237   | 02:15-02:30 | 143   | 150   | 293   | 08:15-08:30 | 27    | 75    | 102   |
| 02:30-02:45 | 4        | 2     | 6     | 08:30-08:45 | 150   | 78    | 228   | 02:30-02:45 | 105   | 173   | 278   | 08:30-08:45 | 24    | 57    | 81    |
| 02:45-03:00 | 4        | 2     | 6     | 08:45-09:00 | 159   | 91    | 250   | 02:45-03:00 | 110   | 163   | 273   | 08:45-09:00 | 25    | 69    | 94    |
| 03:00-03:15 | 9        | 4     | 13    | 09:00-09:15 | 127   | 80    | 207   | 03:00-03:15 | 121   | 186   | 307   | 09:00-09:15 | 19    | 49    | 68    |
| 03:15-03:30 | 13       | 2     | 15    | 09:15-09:30 | 148   | 87    | 235   | 03:15-03:30 | 126   | 161   | 287   | 09:15-09:30 | 14    | 55    | 69    |
| 03:30-03:45 | 22       | 2     | 24    | 09:30-09:45 | 111   | 91    | 202   | 03:30-03:45 | 102   | 216   | 318   | 09:30-09:45 | 14    | 62    | 76    |
| 03:45-04:00 | 34       | 1     | 35    | 09:45-10:00 | 128   | 106   | 234   | 03:45-04:00 | 122   | 217   | 339   | 09:45-10:00 | 15    | 48    | 63    |
| 04:00-04:15 | 42       | 5     | 47    | 10:00-10:15 | 109   | 102   | 211   | 04:00-04:15 | 100   | 259   | 359   | 10:00-10:15 | 17    | 47    | 64    |
| 04:15-04:30 | 70       | 4     | 74    | 10:15-10:30 | 108   | 81    | 189   | 04:15-04:30 | 107   | 247   | 354   | 10:15-10:30 | 13    | 39    | 52    |
| 04:30-04:45 | 53       | 2     | 55    | 10:30-10:45 | 118   | 105   | 223   | 04:30-04:45 | 118   | 264   | 382   | 10:30-10:45 | 10    | 49    | 59    |
| 04:45-05:00 | 59       | 4     | 63    | 10:45-11:00 | 115   | 105   | 220   | 04:45-05:00 | 98    | 264   | 362   | 10:45-11:00 | 10    | 34    | 44    |
| 05:00-05:15 | 89       | 6     | 95    | 11:00-11:15 | 90    | 113   | 203   | 05:00-05:15 | 95    | 241   | 336   | 11:00-11:15 | 6     | 33    | 39    |
| 05:15-05:30 | 104      | 16    | 120   | 11:15-11:30 | 112   | 104   | 216   | 05:15-05:30 | 89    | 238   | 327   | 11:15-11:30 | 4     | 24    | 28    |
| 05:30-05:45 | 151      | 27    | 178   | 11:30-11:45 | 107   | 101   | 208   | 05:30-05:45 | 85    | 232   | 317   | 11:30-11:45 | 2     | 32    | 34    |
| 05:45-06:00 | 165      | 33    | 198   | 11:45-12:00 | 98    | 99    | 197   | 05:45-06:00 | 84    | 165   | 249   | 11:45-12:00 | 9     | 21    | 30    |

| AM COMMUTER PERIOD (05:00-09:00)  | DIR 1                | DIR 2    |             | PM COMMUTER PERIOD (15:00-19:00) | DIR 1    |                | DIR 2       |          |
|-----------------------------------|----------------------|----------|-------------|----------------------------------|----------|----------------|-------------|----------|
| TWO DIRECTIONAL PEAK              | DITT                 | DITE     |             | TWO DIRECTIONAL PEAK             | DIN I    |                | DITE        |          |
|                                   | 07.45.4141.00.4      |          |             |                                  |          | 04:00 PM to 0  | E-00 DM     |          |
| AM - PEAK HR TIME                 | 07:15 AM to 08:1     |          |             | PM - PEAK HR TIME                |          | 04.00 FW 10 0  |             |          |
| AM - PEAK HR VOLUME               | 905                  | 345      | 1250        | PM - PEAK HR VOLUME              | 423      |                | 1034        | 1457     |
| AM - K FACTOR (%)                 |                      |          | 7.82        | PM - K FACTOR (%)                |          |                |             | 9.11     |
| AM - D (%)                        | 72.40                | 27.60    | 100.00      | PM - D (%)                       | 29.03    |                | 70.97       | 100.00   |
| DIRECTIONAL PEAK                  |                      |          |             | DIRECTIONAL PEAK                 |          |                |             |          |
| AM - PEAK HR TIME                 | 07:00 AM to 08:00 AM | 08:00 AM | to 09:00 AM | PM - PEAK HR TIME                | 03:00 PM | If to 04:00 PM | 04:00 PM to | 05:00 PM |
| AM - PEAK HR VOLUME               | 957                  | 384      |             | PM - PEAK HR VOLUME              | 471      |                | 1034        |          |
| AM PERIOD (00:00-12:00)           |                      |          |             | PM PERIOD (12:00-24:00)          |          |                |             |          |
| TWO DIRECTIONAL PEAK              |                      |          |             | TWO DIRECTIONAL PEAK             |          |                |             |          |
| AM - PEAK HR TIME                 | 07:15 AM to 08:1     | 5 AM     |             | PM - PEAK HR TIME                |          | 04:00 PM to 0  | 5:00 PM     |          |
| AM - PEAK HR VOLUME               | 905                  | 345      | 1250        | PM - PEAK HR VOLUME              | 423      |                | 1034        | 1457     |
| AM - K FACTOR (%)                 |                      |          | 7.82        | PM - K FACTOR (%)                |          |                |             | 9.11     |
| AM - D (%)                        | 72.40                | 27.60    | 100.00      | PM - D (%)                       | 29.03    |                | 70.97       | 100.00   |
| NON-COMMUTER PERIOD (09:00-15:00) |                      |          |             | 6-HR, 12-HR, 24-HR PERIODS       | DIR 1    | DIR 2          | Total       |          |
| TWO DIRECTIONAL PEAK              |                      |          |             | AM 6-HR PERIOD (06:00-12:00)     | 3,734    | 1,975          | 5,709       |          |
| PEAK HR TIME                      | 02:00 PM to 03:0     | 00 PM    |             | AM 12-HR PERIOD (00:00-12:00)    | 4,593    | 2,156          | 6,749       |          |
| PEAK HR VOLUME                    | 490                  | 629      | 1119        | PM 6-HR PERIOD (12:00-18:00)     | 2,643    | 4,233          | 6,876       |          |
| DIRECTIONAL PEAK                  |                      |          |             | PM 12-HR PERIOD (12:00-24:00)    | 3,342    | 5,898          | 9,240       |          |
| PEAK HR TIME                      | 09:00 AM to 10:00 AM | 02:00 PM | to 03:00 PM | 24 HOUR PERIOD                   | 7,935    | 8,054          | 15,989      |          |
| PEAK HR VOLUME                    | 514                  | 629      |             | D (%)                            | 49.63    | 50.37          | 100.00      |          |

Run Date: 2017/07/26 Hawaii Department of Transportation **Highways Division** Highways Planning Survey Section

2016 Program Count - Summary

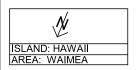
Final AADT: 15100 Route No: 19 Site ID: B71001905469
Functional Class: URBAN:PRINCIPAL ARTERIAL - OTHER Location: Mamalahoa Hwy - Mana Rd to Pualalea PI Town: Hawaii Count Type: CLASS DIR 1: +MP DIR 2:-MP Counter Type: Tube

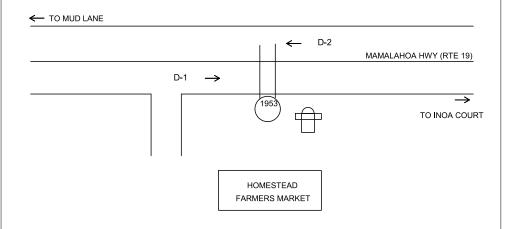
| TIME-AM    | DIR 1   | DIR 2 | TOTAL | TIME-AM     | DIR 1 | DIR 2 | TOTAL | TIME-PM     | DIR 1 | DIR 2 | TOTAL | TIME-PM     | DIR 1 | DIR 2 | TOTAL |
|------------|---------|-------|-------|-------------|-------|-------|-------|-------------|-------|-------|-------|-------------|-------|-------|-------|
| DATE: 04   | 20/2016 |       |       |             |       |       |       |             |       |       |       |             |       |       |       |
| 2:00-12:15 | 4       | 14    | 18    | 06:00-06:15 | 178   | 28    | 206   | 12:00-12:15 | 96    | 139   | 235   | 06:00-06:15 | 64    | 146   | 210   |
| 2:15-12:30 | 3       | 12    | 15    | 06:15-06:30 | 208   | 37    | 245   | 12:15-12:30 | 106   | 117   | 223   | 06:15-06:30 | 90    | 113   | 203   |
| 2:30-12:45 | 0       | 8     | 8     | 06:30-06:45 | 192   | 34    | 226   | 12:30-12:45 | 109   | 111   | 220   | 06:30-06:45 | 78    | 176   | 254   |
| 2:45-01:00 | 1       | 7     | 8     | 06:45-07:00 | 188   | 52    | 240   | 12:45-01:00 | 121   | 109   | 230   | 06:45-07:00 | 79    | 137   | 216   |
| 1:00-01:15 | 1       | 1     | 2     | 07:00-07:15 | 222   | 59    | 281   | 01:00-01:15 | 117   | 96    | 213   | 07:00-07:15 | 53    | 115   | 168   |
| 1:15-01:30 | 1       | 7     | 8     | 07:15-07:30 | 243   | 62    | 305   | 01:15-01:30 | 104   | 127   | 231   | 07:15-07:30 | 40    | 101   | 141   |
| 1:30-01:45 | 1       | 3     | 4     | 07:30-07:45 | 259   | 81    | 340   | 01:30-01:45 | 111   | 160   | 271   | 07:30-07:45 | 41    | 85    | 126   |
| 1:45-02:00 | 4       | 1     | 5     | 07:45-08:00 | 259   | 81    | 340   | 01:45-02:00 | 121   | 146   | 267   | 07:45-08:00 | 46    | 75    | 121   |
| 2:00-02:15 | 4       | 5     | 9     | 08:00-08:15 | 177   | 123   | 300   | 02:00-02:15 | 140   | 119   | 259   | 08:00-08:15 | 28    | 70    | 98    |
| 2:15-02:30 | 7       | 3     | 10    | 08:15-08:30 | 177   | 87    | 264   | 02:15-02:30 | 126   | 129   | 255   | 08:15-08:30 | 34    | 79    | 113   |
| 2:30-02:45 | 7       | 3     | 10    | 08:30-08:45 | 149   | 76    | 225   | 02:30-02:45 | 129   | 146   | 275   | 08:30-08:45 | 42    | 81    | 123   |
| 2:45-03:00 | 8       | 0     | 8     | 08:45-09:00 | 161   | 82    | 243   | 02:45-03:00 | 113   | 146   | 259   | 08:45-09:00 | 25    | 69    | 94    |
| 3:00-03:15 | 13      | 0     | 13    | 09:00-09:15 | 122   | 77    | 199   | 03:00-03:15 | 129   | 170   | 299   | 09:00-09:15 | 15    | 69    | 84    |
| 3:15-03:30 | 13      | 2     | 15    | 09:15-09:30 | 152   | 109   | 261   | 03:15-03:30 | 124   | 177   | 301   | 09:15-09:30 | 15    | 61    | 76    |
| 3:30-03:45 | 25      | 1     | 26    | 09:30-09:45 | 113   | 116   | 229   | 03:30-03:45 | 133   | 207   | 340   | 09:30-09:45 | 12    | 51    | 63    |
| 3:45-04:00 | 30      | 4     | 34    | 09:45-10:00 | 120   | 93    | 213   | 03:45-04:00 | 118   | 215   | 333   | 09:45-10:00 | 20    | 45    | 65    |
| 4:00-04:15 | 38      | 4     | 42    | 10:00-10:15 | 111   | 105   | 216   | 04:00-04:15 | 89    | 222   | 311   | 10:00-10:15 | 13    | 49    | 62    |
| 4:15-04:30 | 54      | 5     | 59    | 10:15-10:30 | 124   | 90    | 214   | 04:15-04:30 | 144   | 214   | 358   | 10:15-10:30 | 10    | 40    | 50    |
| 4:30-04:45 | 43      | 1     | 44    | 10:30-10:45 | 109   | 105   | 214   | 04:30-04:45 | 104   | 293   | 397   | 10:30-10:45 | 12    | 62    | 74    |
| 4:45-05:00 | 58      | 4     | 62    | 10:45-11:00 | 106   | 90    | 196   | 04:45-05:00 | 138   | 253   | 391   | 10:45-11:00 | 6     | 44    | 50    |
| 5:00-05:15 | 102     | 15    | 117   | 11:00-11:15 | 117   | 124   | 241   | 05:00-05:15 | 95    | 237   | 332   | 11:00-11:15 | 4     | 30    | 34    |
| 5:15-05:30 | 91      | 14    | 105   | 11:15-11:30 | 89    | 117   | 206   | 05:15-05:30 | 104   | 200   | 304   | 11:15-11:30 | 6     | 29    | 35    |
| 5:30-05:45 | 141     | 25    | 166   | 11:30-11:45 | 95    | 121   | 216   | 05:30-05:45 | 84    | 196   | 280   | 11:30-11:45 | 8     | 35    | 43    |
| 5:45-06:00 | 187     | 34    | 221   | 11:45-12:00 | 116   | 123   | 239   | 05:45-06:00 | 80    | 149   | 229   | 11:45-12:00 | 8     | 26    | 3-    |

| 05:45-06:00  | 187                | 34             | 221 | 11:45-12:00         | 116      | 123       | 239      | 05:45-06:00 | 80        | 149          | 229   | 11:45-12:   | 8 00         | 26          | 34       |
|--------------|--------------------|----------------|-----|---------------------|----------|-----------|----------|-------------|-----------|--------------|-------|-------------|--------------|-------------|----------|
| AM COMMUTER  | R PER <b>I</b> OD  | (05:00-09:00)  | 1   | DIR 1               | DIR      | 2         |          | PM COMMUT   | ER PER    | OD (15:00-1  | 9:00) | DIR 1       |              | DIR 2       |          |
| TWO DIRECT   | ONAL PE            | AK             |     |                     |          |           |          | TWO DIRE    | CTIONAL   | PEAK         |       |             |              |             |          |
| AM - PEA     | K HR T <b>I</b> MI | Ē              |     | 07:15 AM to 0       | 08:15 AM |           |          | PM - P      | AK HR T   | IME          |       | 04          | 1:15 PM to 0 | 5:15 PM     |          |
| AM - PEA     | K HR VOL           | UME            | 9   | 938                 | 347      |           | 1285     | PM - P      | EAK HR \  | /OLUME       |       | 481         |              | 997         | 1478     |
| AM - K FA    | CTOR (%            |                |     |                     |          |           | 7.92     | PM - K      | FACTOR    | (%)          |       |             |              |             | 9.11     |
| AM - D (%    | s)                 |                | 7   | 73.00               | 27.0     | 0         | 100.00   | PM - D      | (%)       |              |       | 32.54       |              | 67.46       | 100.00   |
| DIRECTIONAL  | . PEAK             |                |     |                     |          |           |          | DIRECTION   | AL PEAK   | (            |       |             |              |             |          |
| AM - PEAI    | K HR TIME          |                | (   | 7:00 AM to 08:00 A  | AM 07:3  | 0 AM to 0 | 08:30 AM | PM - PE     | AK HR T   | IME          |       | 03:00 PM to | 04:00 PM     | 04:15 PM to | 05:15 PM |
| AM - PEAI    | K HR VOL           | UME            | 9   | 983                 | 372      |           |          | PM - PE     | AK HR V   | OLUME        |       | 504         |              | 997         |          |
| M PERIOD (00 | :00-12:00)         |                |     |                     |          |           |          | PM PERIOD ( | 12:00-24: | 00)          |       |             |              |             |          |
| TWO DIRECT   | ONAL PE            | AK             |     |                     |          |           |          | TWO DIREC   | TIONAL    | PEAK         |       |             |              |             |          |
| AM - PEA     | K HR T <b>I</b> MI | Ē              |     | 07:15 AM to 0       | 08:15 AM |           |          | PM - PI     | AK HR T   | IME          |       | 04          | 1:15 PM to 0 | 5:15 PM     |          |
| AM - PEA     | K HR VOL           | UME            | 9   | 938                 | 347      |           | 1285     | PM - PI     | AK HR V   | OLUME        |       | 481         |              | 997         | 1478     |
| AM - K FA    | CTOR (%            |                |     |                     |          |           | 7.92     | PM - K      | ACTOR     | (%)          |       |             |              |             | 9.11     |
| AM - D (%    | s)                 |                |     | 73.00               | 27.0     | 0         | 100.00   | PM - D      | (%)       |              |       | 32.54       |              | 67.46       | 100.00   |
| ON-COMMUTI   | ER PERIO           | D (09:00-15:00 | 0)  |                     |          |           |          | 6-HR, 12-HR | 24-HR P   | ERIODS       |       | DIR 1       | DIR 2        | Total       |          |
| TWO DIRECT   | ONAL PE            | AK             |     |                     |          |           |          | AM 6-HR P   | ERIOD (0  | 6:00-12:00)  |       | 3,787       | 2,072        | 5,859       |          |
| PEAK HR      | TIME               |                |     | 01:45 PM to 0       | 02:45 PM |           |          | AM 12-HR I  | ERIOD (   | 00:00-12:00) |       | 4,623       | 2,245        | 6,868       |          |
| PEAK HR      | VOLUME             |                |     | 516                 | 540      |           | 1056     | PM 6-HR P   | ERIOD (1  | 2:00-18:00)  |       | 2,735       | 4,078        | 6,813       |          |
| DIRECTIONA   | L PEAK             |                |     |                     |          |           |          | PM 12-HR I  | ERIOD (   | 12:00-24:00) |       | 3,484       | 5,866        | 9,350       |          |
| PEAK HE      | TIME               |                | (   | 01:45 PM to 02:45 F | PM 01:3  | 0 PM to   | 02:30 PM | 24 HOUR F   | ERIOD     |              |       | 8,107       | 8,111        | 16,218      |          |
|              |                    |                |     |                     |          |           |          |             |           |              |       |             |              |             |          |

Run Date: 2017/07/26

Hawaii Department of Transportation Highways Division Highways Planning Survey Section


Vehicle Classification Data Summary 2016


| Site ID:   | B71001905469                                     | Route No:      | 19  | Date From: | 2016/04/19 0:00           |  |
|------------|--------------------------------------------------|----------------|-----|------------|---------------------------|--|
| Town:      | Town: Hawaii                                     | Direction: +MP | +MP | Date To:   | Date To: 2016/04/20 23:45 |  |
| l ocation. | Location: Mamalaboa Hunt - Mana Dd to Dualaba DI | Id cold        |     |            |                           |  |

Functional Classification: 14 URBAN:PRINCIPAL ARTERIAL - OTHER REPORT TOTALS - 48 HOURS RECORDED

| VOLUME            | 89        | 20876        | "            | 31420        | HEAVY VEHICLES | 149       | 205       | 26        | 16       | 28        | 255        | 13       | 7        | -       | 21        | 787        | 32207 (A) 11      | 0     |
|-------------------|-----------|--------------|--------------|--------------|----------------|-----------|-----------|-----------|----------|-----------|------------|----------|----------|---------|-----------|------------|-------------------|-------|
| % NUMBER OF AXLES | 0.21% 135 | 64.82% 41752 | 32.53% 20952 | 97.56% 62839 |                | 0.46% 372 | 0.64% 410 | 0.30% 291 | 0.05% 64 | 0.09% 112 | 0.79% 1275 | 0.04% 78 | 0.01% 10 | 9 %00.0 | 0.07% 147 | 2.44% 2765 | 100.00% 65605 (B) | 0.00% |

| 32802 (C)                                  | HPMS<br>K-FACTOR<br>(PEAK/AADT)<br>(ITEM 66)  | 9.65%                                                          |
|--------------------------------------------|-----------------------------------------------|----------------------------------------------------------------|
|                                            | % OF<br>AADT                                  | (65A-2)<br>1.54%<br>(65B-2)<br>1.06%                           |
| ROADTUBE<br>EQUIVALENT(B/2) =              | AADT                                          | 15100                                                          |
| EQUI                                       | 24 HOUR<br>TRUCK<br>VOLUME                    | 233                                                            |
|                                            | % TOTAL<br>PEAK<br>HOUR<br>VOLUME             | (65A-1)<br>0.75%<br>(65B-1)<br>0.34%                           |
| .982                                       | PEAK<br>HOUR<br>TRUCK<br>VOLUME               | <del>.</del> 2                                                 |
| AXLE<br>CORRECTION<br>FACTOR (A/C) = 0.982 | PEAK HOUR<br>VOLUME: 1457<br>2016/04/20 16:00 | SINGLE UNIT<br>TRUCKS (TYPE 4-7)<br>COMBINATION<br>(TYPE 8-13) |





Station No: B71 0019 05469

| Station Location:   |         |         |              |               |         |       |           |       |
|---------------------|---------|---------|--------------|---------------|---------|-------|-----------|-------|
| Mamalahoa High      | nway be | tween M | ana Road and | Pualalea Plac | е       |       |           |       |
| Station Mileage:    |         | 55.2    | 25           | GPS Coord (L  | atitude | ):    | 20.0283   | 33    |
|                     |         |         |              | GPS Coord (L  | ongitud | le):  | 155.647   | 60    |
| Begin Survey (Date/ | Time):  | 4-26    | -16 0000     | End Survey (D | ate/Tin | ne):  | 4-29-16 0 | 000   |
| Survey Method: LC   | OOP     | HOSE    | OTHER        | Survey Type:  | VOL     | CLASS | SPEED     | OTHER |
| Survey Crew:        | FIE     | ELD CRE | W            | Module No.:   |         |       |           |       |

### HPMS DATA Segment Description: MAMALAHOA HIGHWAY - MUD LANE TO INOA COURT Segment End LRS Segment Begin LRS 54.69 55.27 Length 0.58 Route D-1 = Direction to End of Route Func Area Facility Name Juris Class Type No. Mile D-2 = Direction to Beginning of Route D-1 TO PALANI ROAD MAMALAHOA HIGHWAY 55.25 S 14 2 19 D-2 TO KUHIO WHARF (HILO) Sketch By: RG Date: 3/21/2016 SLD: 2003

Run Date: 2017/07/06

### Hawaii Department of Transportation

**Highways Division** Highways Planning Survey Section

2016 Program Count - Summary

Site ID: B71001905469
Functional Class: URBAN:PRINCIPAL ARTERIAL - OTHER Location: Mamalahoa Hwy - Mana Rd to Pualalea PI Final AADT: 15100 Route No: 19 Town: Hawaii Count Type: CLASS DIR 1:+MP DIR 2:-MP Counter Type: Tube

| TIME-AM     | DIR 1    | DIR 2 | TOTAL | TIME-AM     | DIR 1 | DIR 2 | TOTAL | TIME-PM     | DIR 1 | DIR 2 | TOTAL | TIME-PM     | DIR 1 | DIR 2 | TOTAL |
|-------------|----------|-------|-------|-------------|-------|-------|-------|-------------|-------|-------|-------|-------------|-------|-------|-------|
| DATE: 04    | /27/2016 |       |       |             |       |       |       |             |       |       |       |             |       |       |       |
| 12:00-12:15 | 1        | 25    | 26    | 06:00-06:15 | 184   | 21    | 205   | 12:00-12:15 | 89    | 111   | 200   | 06:00-06:15 | 84    | 150   | 234   |
| 12:15-12:30 | 5        | 17    | 22    | 06:15-06:30 | 182   | 31    | 213   | 12:15-12:30 | 109   | 88    | 197   | 06:15-06:30 | 81    | 140   | 221   |
| 12:30-12:45 | 2        | 3     | 5     | 06:30-06:45 | 181   | 31    | 212   | 12:30-12:45 | 100   | 121   | 221   | 06:30-06:45 | 67    | 129   | 196   |
| 12:45-01:00 | 2        | 9     | 11    | 06:45-07:00 | 206   | 39    | 245   | 12:45-01:00 | 60    | 103   | 163   | 06:45-07:00 | 41    | 111   | 152   |
| 01:00-01:15 | 3        | 6     | 9     | 07:00-07:15 | 201   | 48    | 249   | 01:00-01:15 | 91    | 95    | 186   | 07:00-07:15 | 51    | 99    | 150   |
| 01:15-01:30 | 4        | 7     | 11    | 07:15-07:30 | 215   | 39    | 254   | 01:15-01:30 | 74    | 102   | 176   | 07:15-07:30 | 46    | 99    | 145   |
| 01:30-01:45 | 2        | 6     | 8     | 07:30-07:45 | 222   | 47    | 269   | 01:30-01:45 | 82    | 107   | 189   | 07:30-07:45 | 31    | 87    | 118   |
| 01:45-02:00 | 3        | 6     | 9     | 07:45-08:00 | 234   | 55    | 289   | 01:45-02:00 | 108   | 109   | 217   | 07:45-08:00 | 33    | 83    | 116   |
| 02:00-02:15 | 6        | 4     | 10    | 08:00-08:15 | 186   | 80    | 266   | 02:00-02:15 | 111   | 108   | 219   | 08:00-08:15 | 26    | 66    | 92    |
| 02:15-02:30 | 4        | 6     | 10    | 08:15-08:30 | 146   | 91    | 237   | 02:15-02:30 | 129   | 120   | 249   | 08:15-08:30 | 32    | 62    | 94    |
| 02:30-02:45 | 8        | 3     | 11    | 08:30-08:45 | 130   | 69    | 199   | 02:30-02:45 | 69    | 158   | 227   | 08:30-08:45 | 21    | 76    | 97    |
| 02:45-03:00 | 9        | 7     | 16    | 08:45-09:00 | 130   | 76    | 206   | 02:45-03:00 | 106   | 166   | 272   | 08:45-09:00 | 25    | 77    | 102   |
| 03:00-03:15 | 13       | 0     | 13    | 09:00-09:15 | 114   | 68    | 182   | 03:00-03:15 | 98    | 150   | 248   | 09:00-09:15 | 13    | 63    | 76    |
| 03:15-03:30 | 12       | 3     | 15    | 09:15-09:30 | 130   | 87    | 217   | 03:15-03:30 | 118   | 148   | 266   | 09:15-09:30 | 18    | 54    | 72    |
| 03:30-03:45 | 17       | 0     | 17    | 09:30-09:45 | 126   | 65    | 191   | 03:30-03:45 | 83    | 146   | 229   | 09:30-09:45 | 19    | 51    | 70    |
| 03:45-04:00 | 30       | 3     | 33    | 09:45-10:00 | 123   | 93    | 216   | 03:45-04:00 | 101   | 182   | 283   | 09:45-10:00 | 21    | 48    | 69    |
| 04:00-04:15 | 26       | 6     | 32    | 10:00-10:15 | 95    | 97    | 192   | 04:00-04:15 | 103   | 174   | 277   | 10:00-10:15 | 19    | 34    | 53    |
| 04:15-04:30 | 58       | 3     | 61    | 10:15-10:30 | 108   | 88    | 196   | 04:15-04:30 | 101   | 185   | 286   | 10:15-10:30 | 14    | 55    | 69    |
| 04:30-04:45 | 54       | 3     | 57    | 10:30-10:45 | 105   | 88    | 193   | 04:30-04:45 | 85    | 217   | 302   | 10:30-10:45 | 10    | 47    | 57    |
| 04:45-05:00 | 69       | 10    | 79    | 10:45-11:00 | 111   | 87    | 198   | 04:45-05:00 | 87    | 245   | 332   | 10:45-11:00 | 4     | 36    | 40    |
| 05:00-05:15 | 100      | 9     | 109   | 11:00-11:15 | 82    | 96    | 178   | 05:00-05:15 | 74    | 205   | 279   | 11:00-11:15 | 4     | 20    | 24    |
| 05:15-05:30 | 92       | 14    | 106   | 11:15-11:30 | 94    | 93    | 187   | 05:15-05:30 | 76    | 207   | 283   | 11:15-11:30 | 8     | 24    | 32    |
| 05:30-05:45 | 127      | 30    | 157   | 11:30-11:45 | 86    | 96    | 182   | 05:30-05:45 | 78    | 199   | 277   | 11:30-11:45 | 5     | 34    | 39    |
| 05:45-06:00 | 172      | 20    | 192   | 11:45-12:00 | 79    | 108   | 187   | 05:45-06:00 | 73    | 171   | 244   | 11:45-12:00 | 7     | 28    | 35    |

| AM COMMUTER PERIOD (05:00-09:00) TWO DIRECTIONAL PEAK AM - PEAK HR TIME | DIR 1<br>07:15 AM to 08:1   | DIR 2                |              | PM COMMUTER PERIOD (15:00-19:00) TWO DIRECTIONAL PEAK PM - PEAK HR TIME | D <b>I</b> R 1  | 04:15 PM to 0 | DIR 2<br>5:15 PM   |              |  |
|-------------------------------------------------------------------------|-----------------------------|----------------------|--------------|-------------------------------------------------------------------------|-----------------|---------------|--------------------|--------------|--|
| AM - PEAK HR VOLUME<br>AM - K FACTOR (%)                                | 857                         | 221                  | 1078<br>7.51 | PM - PEAK HR VOLUME<br>PM - K FACTOR (%)                                | 347             |               | 852                | 1199<br>8.35 |  |
| AM - D (%)<br>DIRECTIONAL PEAK                                          | 79.50                       | 20.50                | 100.00       | PM - D (%)<br>DIRECTIONAL PEAK                                          | 28.94           |               | 71.06              | 100.00       |  |
| AM - PEAK HR TIME<br>AM - PEAK HR VOLUME                                | 07:00 AM to 08:00 AM<br>872 | 08:00 AM<br>316      | to 09:00 AM  | PM - PEAK HR TIME<br>PM - PEAK HR VOLUME                                | 03:15 PN<br>405 | I to 04:15 PM | 04:30 PM to<br>874 | 05:30 PM     |  |
| AM PERIOD (00:00-12:00)<br>TWO DIRECTIONAL PEAK                         |                             |                      |              | PM PERIOD (12:00-24:00)<br>TWO DIRECTIONAL PEAK                         |                 |               |                    |              |  |
| AM - PEAK HR TIME<br>AM - PEAK HR VOLUME                                | 07:15 AM to 08:1<br>857     | 5 AM<br>221          | 1078         | PM - PEAK HR TIME<br>PM - PEAK HR VOLUME                                | 347             | 04:15 PM to 0 | 5:15 PM<br>852     | 1199         |  |
| AM - K FACTOR (%)                                                       |                             |                      | 7.51         | PM - K FACTOR (%)                                                       |                 |               |                    | 8.35         |  |
| AM - D (%)                                                              | 79.50                       | 20.50                | 100.00       | PM - D (%)                                                              | 28.94           |               | 71.06              | 100.00       |  |
| NON-COMMUTER PERIOD (09:00-15:00)                                       |                             |                      |              | 6-HR, 12-HR, 24-HR PERIODS                                              | DIR 1           | DIR 2         | Total              |              |  |
| TWO DIRECTIONAL PEAK                                                    |                             |                      |              | AM 6-HR PERIOD (06:00-12:00)                                            | 3,470           | 1,693         | 5,163              |              |  |
| PEAK HR TIME                                                            | 02:00 PM to 03:0            | 00 PM                |              | AM 12-HR PERIOD (00:00-12:00)                                           | 4,289           | 1,893         | 6,182              |              |  |
| PEAK HR VOLUME                                                          | 415                         | 552                  | 967          | PM 6-HR PERIOD (12:00-18:00)                                            | 2,205           | 3,617         | 5,822              |              |  |
| DIRECTIONAL PEAK                                                        |                             |                      |              | PM 12-HR PERIOD (12:00-24:00)                                           | 2,885           | 5,290         | 8,175              |              |  |
| PEAK HR TIME                                                            | 09:00 AM to 10:00 AM        | 02:00 PM to 03:00 PM |              | 24 HOUR PERIOD                                                          | 7,174           | 7,183         | 14,357             |              |  |
| PEAK HR VOLUME                                                          | 493                         | 552                  |              | D (%)                                                                   | 49.97           | 50.03         | 100.00             |              |  |

Run Date: 2017/07/06 Hawaii Department of Transportation Highways Planning Survey Section **Highways Division** 

2016 Program Count - Summary

Final AADT: 15100 Route No: 19 Site ID: B71001905469
Functional Class: URBAN:PRINCIPAL ARTERIAL - OTHER Location: Mamalahoa Hwy - Mana Rd to Pualalea PI Town: Hawaii Count Type: CLASS DIR 1: +MP DIR 2:-MP Counter Type: Tube

| TIME-AM     | DIR 1    | DIR 2 | TOTAL | TIME-AM     | DIR 1 | DIR 2 | TOTAL | TIME-PM     | DIR 1 | DIR 2 | TOTAL | TIME-PM     | DIR 1 | DIR 2 | TOTAL |
|-------------|----------|-------|-------|-------------|-------|-------|-------|-------------|-------|-------|-------|-------------|-------|-------|-------|
| DATE: 04    | /28/2016 |       |       |             |       |       |       |             |       |       |       |             |       |       |       |
| 12:00-12:15 | 3        | 15    | 18    | 06:00-06:15 | 169   | 25    | 194   | 12:00-12:15 | 95    | 106   | 201   | 06:00-06:15 | 74    | 138   | 212   |
| 12:15-12:30 | 6        | 19    | 25    | 06:15-06:30 | 185   | 18    | 203   | 12:15-12:30 | 100   | 111   | 211   | 06:15-06:30 | 76    | 129   | 205   |
| 12:30-12:45 | 1        | 16    | 17    | 06:30-06:45 | 201   | 38    | 239   | 12:30-12:45 | 83    | 101   | 184   | 06:30-06:45 | 66    | 123   | 189   |
| 12:45-01:00 | 3        | 6     | 9     | 06:45-07:00 | 203   | 41    | 244   | 12:45-01:00 | 99    | 108   | 207   | 06:45-07:00 | 55    | 98    | 153   |
| 01:00-01:15 | 2        | 11    | 13    | 07:00-07:15 | 188   | 40    | 228   | 01:00-01:15 | 91    | 87    | 178   | 07:00-07:15 | 37    | 107   | 144   |
| 01:15-01:30 | 6        | 5     | 11    | 07:15-07:30 | 244   | 49    | 293   | 01:15-01:30 | 98    | 96    | 194   | 07:15-07:30 | 59    | 91    | 150   |
| 01:30-01:45 | 3        | 5     | 8     | 07:30-07:45 | 245   | 65    | 310   | 01:30-01:45 | 83    | 139   | 222   | 07:30-07:45 | 47    | 91    | 138   |
| 01:45-02:00 | 3        | 2     | 5     | 07:45-08:00 | 209   | 66    | 275   | 01:45-02:00 | 96    | 121   | 217   | 07:45-08:00 | 49    | 77    | 126   |
| 02:00-02:15 | 5        | 3     | 8     | 08:00-08:15 | 158   | 90    | 248   | 02:00-02:15 | 111   | 109   | 220   | 08:00-08:15 | 22    | 86    | 108   |
| 02:15-02:30 | 2        | 3     | 5     | 08:15-08:30 | 127   | 101   | 228   | 02:15-02:30 | 74    | 138   | 212   | 08:15-08:30 | 25    | 86    | 111   |
| 02:30-02:45 | 8        | 1     | 9     | 08:30-08:45 | 113   | 69    | 182   | 02:30-02:45 | 78    | 134   | 212   | 08:30-08:45 | 31    | 82    | 113   |
| 02:45-03:00 | 7        | 9     | 16    | 08:45-09:00 | 138   | 80    | 218   | 02:45-03:00 | 122   | 131   | 253   | 08:45-09:00 | 27    | 56    | 83    |
| 03:00-03:15 | 14       | 2     | 16    | 09:00-09:15 | 122   | 73    | 195   | 03:00-03:15 | 92    | 142   | 234   | 09:00-09:15 | 25    | 67    | 92    |
| 03:15-03:30 | 14       | 1     | 15    | 09:15-09:30 | 109   | 83    | 192   | 03:15-03:30 | 99    | 153   | 252   | 09:15-09:30 | 24    | 59    | 83    |
| 03:30-03:45 | 20       | 3     | 23    | 09:30-09:45 | 105   | 83    | 188   | 03:30-03:45 | 106   | 165   | 271   | 09:30-09:45 | 18    | 58    | 76    |
| 03:45-04:00 | 30       | 2     | 32    | 09:45-10:00 | 111   | 93    | 204   | 03:45-04:00 | 109   | 191   | 300   | 09:45-10:00 | 20    | 48    | 68    |
| 04:00-04:15 | 26       | 2     | 28    | 10:00-10:15 | 109   | 85    | 194   | 04:00-04:15 | 94    | 215   | 309   | 10:00-10:15 | 24    | 44    | 68    |
| 04:15-04:30 | 68       | 5     | 73    | 10:15-10:30 | 90    | 89    | 179   | 04:15-04:30 | 93    | 203   | 296   | 10:15-10:30 | 12    | 52    | 64    |
| 04:30-04:45 | 47       | 5     | 52    | 10:30-10:45 | 87    | 116   | 203   | 04:30-04:45 | 71    | 217   | 288   | 10:30-10:45 | 17    | 49    | 66    |
| 04:45-05:00 | 65       | 7     | 72    | 10:45-11:00 | 109   | 80    | 189   | 04:45-05:00 | 73    | 203   | 276   | 10:45-11:00 | 7     | 37    | 44    |
| 05:00-05:15 | 93       | 4     | 97    | 11:00-11:15 | 103   | 96    | 199   | 05:00-05:15 | 67    | 221   | 288   | 11:00-11:15 | 6     | 21    | 27    |
| 05:15-05:30 | 110      | 16    | 126   | 11:15-11:30 | 105   | 83    | 188   | 05:15-05:30 | 62    | 180   | 242   | 11:15-11:30 | 7     | 34    | 41    |
| 05:30-05:45 | 144      | 27    | 171   | 11:30-11:45 | 88    | 102   | 190   | 05:30-05:45 | 82    | 182   | 264   | 11:30-11:45 | 8     | 37    | 45    |
| 05:45-06:00 | 165      | 25    | 190   | 11:45-12:00 | 97    | 104   | 201   | 05:45-06:00 | 95    | 152   | 247   | 11:45-12:00 | 5     | 24    | 29    |

| 05:45-06:00 165 25                | 190 11:45-12:00      | 97      | 104 201       | 05:45-06:00 95 152            | 247   | 11:45-12:0     | 0 5         | 24          | 29       |
|-----------------------------------|----------------------|---------|---------------|-------------------------------|-------|----------------|-------------|-------------|----------|
| AM COMMUTER PERIOD (05:00-09:00)  | DIR 1                | DIR 2   |               | PM COMMUTER PERIOD (15:00-1   | 9:00) | D <b>I</b> R 1 |             | DIR 2       |          |
| TWO DIRECTIONAL PEAK              |                      |         |               | TWO DIRECTIONAL PEAK          |       |                |             |             |          |
| AM - PEAK HR TIME                 | 07:15 AM to 08:      | 15 AM   |               | PM - PEAK HR TIME             |       | 03             | :45 PM to 0 | 4:45 PM     |          |
| AM - PEAK HR VOLUME               | 856                  | 270     | 1126          | PM - PEAK HR VOLUME           | 3     | 67             |             | 826         | 1193     |
| AM - K FACTOR (%)                 |                      |         | 7.80          | PM - K FACTOR (%)             |       |                |             |             | 8.26     |
| AM - D (%)                        | 76.02                | 23.98   | 100.00        | PM - D (%)                    | 3     | 0.76           |             | 69.24       | 100.00   |
| DIRECTIONAL PEAK                  |                      |         |               | DIRECTIONAL PEAK              |       |                |             |             |          |
| AM - PEAK HR TIME                 | 07:00 AM to 08:00 AM | 08:00 A | M to 09:00 AM | PM - PEAK HR TIME             | 0     | 3:15 PM to     | 04:15 PM    | 04:15 PM to | 05:15 PM |
| AM - PEAK HR VOLUME               | 886                  | 340     |               | PM - PEAK HR VOLUME           | 4     | 08             |             | 844         |          |
| AM PERIOD (00:00-12:00)           |                      |         |               | PM PERIOD (12:00-24:00)       |       |                |             |             |          |
| TWO DIRECTIONAL PEAK              |                      |         |               | TWO DIRECTIONAL PEAK          |       |                |             |             |          |
| AM - PEAK HR TIME                 | 07:15 AM to 08:      | 15 AM   |               | PM - PEAK HR TIME             |       | 03             | :45 PM to 0 | 4:45 PM     |          |
| AM - PEAK HR VOLUME               | 856                  | 270     | 1126          | PM - PEAK HR VOLUME           |       | 67             |             | 826         | 1193     |
| AM - K FACTOR (%)                 |                      |         | 7.80          | PM - K FACTOR (%)             |       |                |             |             | 8.26     |
| AM - D (%)                        | 76.02                | 23.98   | 100.00        | PM - D (%)                    | 3     | 0.76           |             | 69.24       | 100.00   |
| NON-COMMUTER PERIOD (09:00-15:00) |                      |         |               | 6-HR, 12-HR, 24-HR PERIODS    |       | IR 1           | DIR 2       | Total       |          |
| TWO DIRECTIONAL PEAK              |                      |         |               | AM 6-HR PERIOD (06:00-12:00)  | 3     | ,415           | 1,769       | 5,184       |          |
| PEAK HR TIME                      | 02:00 PM to 03:      | 00 PM   |               | AM 12-HR PERIOD (00:00-12:00) | ) 4   | ,260           | 1,963       | 6,223       |          |
| PEAK HR VOLUME                    | 385                  | 512     | 897           | PM 6-HR PERIOD (12:00-18:00)  | 2     | ,173           | 3,605       | 5,778       |          |
| DIRECTIONAL PEAK                  |                      |         |               | PM 12-HR PERIOD (12:00-24:00) | ) 2   | ,914           | 5,299       | 8,213       |          |
| PEAK HR TIME                      | 09:00 AM to 10:00 AM | 02:00 F | M to 03:00 PM | 24 HOUR PERIOD                | 7     | ,174           | 7,262       | 14,436      |          |
| PEAK HR VOLUME                    | 447                  | 512     |               | D (%)                         | 4     | 9.70           | 50.30       | 100.00      |          |

Run Date: 2017/07/06

Hawaii Department of Transportation Highways Division Highways Planning Survey Section

Vehicle Classification Data Summary 2016

Location: Mamalahoa Hwy - Mana Rd to Pualalea Pl Functional Classification: 14 URBAN:PRINCIPAL ARTERIAL - OTHER Direction: +MP

**REPORT TOTALS - 48 HOURS RECORDED** 

VOLUME

NUMBER OF AXLES

20615 5071

507 41230 10142 ----51879

90.09% 71.60% 17.61%

Route No: 19

Site ID: B71001905469

 Date From:
 2016/04/27 0:00

 Date To:
 2016/04/28 23:45

12/1/21, 9:36 AM

15 Minute Report

HDOT RIMS Traffic Station Analyzer (v47)

PEAK HOUR VOLUME: 1197 2016/04/27 16:00

% TOTAL PEAK HOUR VOLUME

24 HOUR TRUCK VOLUME

AADT

% OF

K-FACTOR (PEAK/AADT) (ITEM 66)

AXLE CORRECTION FACTOR (A/C) = 0.963

ROADTUBE EQUIVALENT(B/2) = 29886 (C)

**UNCLASSIFIED VEHICLES TOTALS** CLASSIFIED VEHICLES TOTALS HEAVY VEHICLE TOTALS

28794 (A) -1

0.00%

59772 (B)

9.92% 0.01% 0.20%

290 18 35 7894

MULTI-TRAILER TRUCKS
5A-MT
6A-MT
7A-MT

4A-ST 5A-ST 6A-ST

238 277 5

952 1385 30

0.02%

SINGLE UNIT TRUCK 2A-6T 3A-SU 4A-SU

1115 125 4

3.87% 0.43% 0.01%

2230 375 16

LIGHT VEHICLE TOTALS

HEAVY VEHICLES

1025

2563

2A-4T

COMBINATION (TYPE 8-13) SINGLE UNIT TRUCKS (TYPE 4-7)

23

(65B-1) 1.92% (65A 1) 11 70%

140

1134 293

15100

(65A-2) 7.51% (65B-2) 1.94%

7.93% 7.93%

Log Out 🖨 Print RS

| Run Date                                                                           | e: 01-DEC-2               | :1         |                                                    |                         | Stat                       |                         | vaii, Depart<br>Highway<br>5 Minute V      | s Division                    | -                         | tion,              |                            |               |      |                                    |      |  |
|------------------------------------------------------------------------------------|---------------------------|------------|----------------------------------------------------|-------------------------|----------------------------|-------------------------|--------------------------------------------|-------------------------------|---------------------------|--------------------|----------------------------|---------------|------|------------------------------------|------|--|
| Site ID: B71001905469 Functional Class: URBAN:PRINCIPAL ARTERIAL - OTHER Location: |                           |            |                                                    |                         |                            | Coun                    | ı: Hawaii<br>ıt Type: CLAS<br>:: 01-AUG-17 | iS                            | DIR 1: +MP<br>Counter Typ |                    | DIR 2: -MP Final A/Route N |               |      | <b>ADT:</b> 16000<br><b>No:</b> 19 |      |  |
| 09:00)                                                                             | IMUTER PE                 |            | 0- DIR 1                                           | D                       | IR 2                       | TOTA                    | <b>AL</b>                                  | 19:00)                        | JTER PERIOD               | ,                  | DIR 1                      | DIR 2         |      | TOTAL                              |      |  |
|                                                                                    | DIRECTIONA<br>PEAK HR TII |            | 08:00 A                                            | M to 09:00              |                            |                         |                                            |                               | CTIONAL PE                | AK.                | 4:45 PM                    | to 5:45       |      |                                    |      |  |
| AW -                                                                               | PEAK FIK III              | VIE        |                                                    | ΛM                      |                            |                         | PM - PEAK HR TIME                          |                               |                           |                    |                            | PM            |      |                                    |      |  |
|                                                                                    | PEAK HR VO                |            | 818                                                | 24                      | 48                         | 1,066<br>6.29           | 5                                          |                               | AK HR VOLUN<br>ACTOR(%)   | ИE                 | 516                        | 926           |      | 1,442<br>8.51                      |      |  |
| AM -                                                                               | D(%)                      |            | 6.29 PM - K FACTOR(%)<br>76.74 23.26 100 PM - D(%) |                         |                            |                         |                                            | 35.78                         | 64.22                     |                    | 100                        |               |      |                                    |      |  |
| DIRECT                                                                             | TIONAL PEA                | K          |                                                    |                         |                            |                         |                                            | DIRECTIO                      | NAL PEAK                  |                    |                            |               |      |                                    |      |  |
| AM - PEAK HR TIME 08:00 AM to                                                      |                           |            |                                                    | 8:00 AM to 0<br>.M      | 9:00                       |                         | PM - PEA                                   | AK HR TIME                    |                           | 4:15 PM to 5<br>PM | :15 4:45 P<br>PM           | M to 5:45     |      |                                    |      |  |
| AM -                                                                               | PEAK HR VO                | DLUME      | 818                                                | 24                      | 48                         |                         |                                            | PM - PEA                      | AK HR VOLUN               | ИE                 | 525                        | 926           |      |                                    |      |  |
| AM PERIOD (00:00-12:00) DIR 1                                                      |                           | D          | IR 2                                               | TOTAL                   |                            | PM PERIOD (12:00-24:00) |                                            |                               | DIR 1                     | DIR 2              |                            | TOTAL         |      |                                    |      |  |
| TWO D                                                                              | DIRECTIONA                | L PEAK     |                                                    |                         |                            |                         |                                            | TWO DIRE                      | CTIONAL PE                | ΑK                 |                            |               |      |                                    |      |  |
| AM - PEAK HR TIME                                                                  |                           |            | 08:15 A                                            | 08:15 AM to 09:15<br>AM |                            |                         | PM - PEAK HR TIME                          |                               |                           |                    | 4:45 PM                    | to 5:45<br>PM |      |                                    |      |  |
| AM -                                                                               | PEAK HR VO                | DLUME      | 818                                                | 8                       | 18                         | 1,087                   | ,                                          | PM - PEA                      | AK HR VOLUN               | 4E                 | 516                        | 525           |      | 1,442                              |      |  |
| AM -                                                                               | K FACTOR(%                | 6)         |                                                    |                         |                            | 6.41                    |                                            | PM - K F                      | PM - K FACTOR(%)          |                    |                            |               |      | 8.51                               | 8.51 |  |
| AM -                                                                               | D(%)                      |            | 76.74                                              | 2                       | 3.26                       | 100                     |                                            | PM -D(%                       | n)                        |                    | 35.78                      | 64.22         |      | 100                                |      |  |
| NON CO<br>15:00)                                                                   | MMUTER P                  | ERIOD (09: | 00- DIR 1                                          | D                       | OIR 2                      | TOTA                    | <b>NL</b>                                  | 6-HR, 12-HI                   | R, 24-HR PEF              | RIODS              | DIR 1                      | DIR 2         |      | TOTAL                              |      |  |
| TWO                                                                                | DIRECTIONA                | L PEAK     |                                                    |                         |                            |                         |                                            | AM 6-HR                       | PERIOD (06:0              | 0-12:00)           | 3,897                      | 1,630         |      | 5,527                              |      |  |
| PEAK                                                                               | HR TIME                   |            | 1:00                                               | PM to 2:00<br>PM        |                            |                         |                                            | AM 12-HR                      | R PERIOD (00:             | 00-12:00)          | 4,294 1,885                |               |      | 6,179                              |      |  |
| PEAK                                                                               | HR VOLUMI                 | E          | 506                                                |                         | 43                         | 1,049                   |                                            | PM 6-HR PERIOD (12:00-18:00)  |                           |                    | 2.878 3.907                |               |      | 6,785                              |      |  |
| DIRECT                                                                             | TIONAL PEA                | K          |                                                    |                         |                            |                         |                                            | PM 12-HR PERIOD (12:00-24:00) |                           |                    | 4,166                      | 6,600         |      | 10,766                             |      |  |
| PEAK HR TIME 09:00 AM to 10:00 0:30 PM AM PM                                       |                           |            | 30                                                 |                         | 24-HR PERIOD (12:00-24:00) |                         |                                            | 8,460                         | 8,485                     |                    | 16,945                     |               |      |                                    |      |  |
| PEAK HR VOLUME 689                                                                 |                           |            | 51                                                 |                         |                            | D%                      |                                            | 49.93                         | 50.07                     |                    | 100                        |               |      |                                    |      |  |
| IME                                                                                |                           | DIR        |                                                    | TIME                    |                            | DIR                     |                                            | TIME                          |                           | DIR                |                            | TIME          |      | DIR                                |      |  |
| AM                                                                                 | DIR1                      | 2          | TOTAL                                              | - AM                    | DIR1                       | 2                       | TOTAL                                      | - PM                          | DIR1                      | 2                  | TOTAL                      | - PM          | DIR1 | 2                                  | TOT  |  |
| 12:00                                                                              |                           |            |                                                    | 06:00                   |                            |                         |                                            | 12:00                         |                           |                    |                            | 06:00         |      |                                    |      |  |
| -                                                                                  | 10                        | 47         | 57                                                 | -                       | 84                         | 6                       | 90                                         |                               | 118                       | 111                | 229                        | _             | 92   | 220                                |      |  |
| 12:15                                                                              |                           |            |                                                    | 06:15                   |                            |                         |                                            | 12:15                         |                           |                    |                            | 06:15         |      |                                    |      |  |

| 21, 9:36 AM    |         |          |          |            |     |    |      | 15 Minute      | Report |     |     |         |        |      |       |      |
|----------------|---------|----------|----------|------------|-----|----|------|----------------|--------|-----|-----|---------|--------|------|-------|------|
| IDOT RI        | IMS Tra | ffic Sta | tion Ana | alyzer (v4 | 7)  |    |      |                |        |     |     |         | Log Ou | ıt 🖨 | Print | R    |
| 12:15          | 6       | 30       | 36       | 06:15      | 100 | 12 | 112  | 12:15          | 120    | 130 | 250 | 06:15   | 126    | 234  | 3     | 360  |
| 12:30          |         |          |          | 06:30      |     |    |      | 12:30          |        |     |     | 06:30   |        |      |       |      |
| 12:30          |         |          |          | 06:30      |     |    |      | 12:30          |        |     |     | 06:30   |        |      |       |      |
|                | 2       | 34       | 36       |            | 130 | 18 | 148  |                | 112    | 136 | 248 |         | 99     | 206  | 3     | 305  |
| 12:45          |         |          |          | 06:45      |     |    |      | 12:45          |        |     |     | 06:45   |        |      |       |      |
| 12:45          | 7       | 21       | 28       | 06:45      | 191 | 24 | 215  | 12:45          | 116    | 133 | 249 | 06:45   | 110    | 153  |       | 263  |
| 01:00          | ,       | 21       | 20       | 07:00      | 131 | 24 | 213  | 01:00          | 110    | 133 | 243 | 07:00   | 110    | 133  | -     | .03  |
| 01:00          |         |          |          | 07:00      |     |    |      | 01:00          |        |     |     | 07:00   |        |      |       |      |
| -              | 8       | 22       | 30       | -          | 184 | 22 | 206  | -              | 115    | 147 | 262 | -       | 85     | 189  | 2     | 274  |
| 01:15          |         |          |          | 07:15      |     |    |      | 01:15          |        |     |     | 07:15   |        |      |       |      |
| 01:15          |         |          |          | 07:15      |     |    |      | 01:15          |        |     |     | 07:15   |        |      |       |      |
| -              | 3       | 21       | 24       | -          | 213 | 36 | 249  | -              | 117    | 135 | 252 | -       | 92     | 163  | 2     | 255  |
| 01:30          |         |          |          | 07:30      |     |    |      | 01:30          |        |     |     | 07:30   |        |      |       |      |
| 01:30          |         | 4.3      | 4.0      | 07:30      | 400 | 25 | 222  | 01:30          | 400    | 404 | 250 | 07:30   |        | 450  |       |      |
| 01:45          | 3       | 13       | 16       | 07:45      | 198 | 35 | 233  | 01:45          | 129    | 121 | 250 | 07:45   | 84     | 160  | -     | 244  |
| 01:45          |         |          |          | 07:45      |     |    |      | 01:45          |        |     |     | 07:45   |        |      |       |      |
| 01.45          | 5       | 13       | 18       | - 07.45    | 210 | 39 | 249  |                | 145    | 140 | 285 | - 07.43 | 70     | 109  | 1     | 179  |
| 02:00          |         |          |          | 08:00      | 2.0 | 33 | 2.13 | 02:00          |        |     | 203 | 08:00   |        | .05  |       |      |
| 02:00          |         |          |          | 08:00      |     |    |      | 02:00          |        |     |     | 08:00   |        |      |       |      |
| -              | 1       | 5        | 6        | -          | 183 | 54 | 237  |                | 106    | 131 | 237 | -       | 75     | 111  | 1     | 186  |
| 02:15          |         |          |          | 08:15      |     |    |      | 02:15          |        |     |     | 08:15   |        |      |       |      |
| 02:15          |         |          |          | 08:15      |     |    |      | 02:15          |        |     |     | 08:15   |        |      |       |      |
|                | 6       | 9        | 15       |            | 218 | 58 | 276  |                | 130    | 127 | 257 |         | 46     | 110  | 1     | 156  |
| 02:30          |         |          |          | 08:30      |     |    |      | 02:30          |        |     |     | 08:30   |        |      |       |      |
| 02:30          | 4       | 7        | 11       | 08:30      | 198 | 65 | 263  | 02:30          | 96     | 132 | 228 | 08:30   | 54     | 101  |       | 155  |
| 02:45          | 4       | ′        | "        | 08:45      | 190 | 65 | 203  | 02:45          | 96     | 132 | 220 | 08:45   | 54     | 101  | · '   | . 22 |
| 02:45          |         |          |          | 08:45      |     |    |      | 02:45          |        |     |     | 08:45   |        |      |       |      |
| -              | 4       | 5        | 9        | -          | 219 | 71 | 290  | -              | 128    | 137 | 265 | -       | 43     | 133  | 1     | 176  |
| 03:00          |         |          |          | 09:00      |     |    |      | 03:00          |        |     |     | 09:00   |        |      |       |      |
| 03:00          |         |          |          | 09:00      |     |    |      | 03:00          |        |     |     | 09:00   |        |      |       |      |
| -              | 4       | 2        | 6        | -          | 183 | 75 | 258  |                | 116    | 131 | 247 | -       | 46     | 98   | 1     | 144  |
| 03:15          |         |          |          | 09:15      |     |    |      | 03:15          |        |     |     | 09:15   |        |      |       |      |
| 03:15          | 40      |          | 4.0      | 09:15      | 400 |    | 257  | 03:15          | 103    | 457 | 262 | 09:15   |        | 70   |       |      |
| 02:20          | 12      | 4        | 16       | 00:20      | 180 | 77 | 257  |                | 103    | 157 | 260 | 09:30   | 47     | 70   | 1     | 117  |
| 03:30<br>03:30 |         |          |          | 09:30      |     |    |      | 03:30<br>03:30 |        |     |     | 09:30   |        |      |       |      |
| 03:30          | 10      | 4        | 14       | 09:30      | 167 | 96 | 263  | 03:30          | 126    | 154 | 280 | 09:30   | 33     | 82   | 1     | 115  |
| 03:45          | 10      | -        |          | 09:45      | .07 | 30 | 203  | 03:45          | .20    | .54 | 200 | 09:45   | 33     | J.L  |       |      |

hwypdc07:8080/ords/f?p=101:8:6778511449429::NO:RP:P8\_COUNT\_NUMBER,P8\_SURVEY\_DAY:32840,1

2/4

| OOT RI              | MS Tra | ffic Sta | tion Ana | alyzer (v4          | .7) |     |     |                     |     |     |     |                     | Log Out | -  | rint |
|---------------------|--------|----------|----------|---------------------|-----|-----|-----|---------------------|-----|-----|-----|---------------------|---------|----|------|
| 03:45               | 12     | 3        | 15       | 09:45<br>-<br>10:00 | 159 | 104 | 263 | 03:45<br>-<br>04:00 | 108 | 179 | 287 | 09:45<br>-<br>10:00 | 28      | 74 |      |
| 04:00<br>-<br>04:15 | 6      | 2        | 8        | 10:00<br>-<br>10:15 | 158 | 105 | 263 | 04:00<br>-<br>04:15 | 110 | 183 | 293 | 10:00<br>-<br>10:15 | 28      | 72 |      |
| 04:15<br>-<br>04:30 | 8      | 1        | 9        | 10:15<br>-<br>10:30 | 144 | 86  | 230 | 04:15<br>-<br>04:30 | 131 | 177 | 308 | 10:15<br>-<br>10:30 | 26      | 79 |      |
| 04:30<br>-<br>04:45 | 23     | 0        | 23       | 10:30<br>-<br>10:45 | 135 | 103 | 238 | 04:30<br>-<br>04:45 | 142 | 214 | 356 | 10:30<br>-<br>10:45 | 19      | 57 |      |
| 04:45<br>-<br>05:00 | 40     | 2        | 42       | 10:45<br>-<br>11:00 | 127 | 117 | 244 | 04:45<br>-<br>05:00 | 123 | 211 | 334 | 10:45<br>-<br>11:00 | 19      | 60 |      |
| 05:00<br>-<br>05:15 | 39     | 2        | 41       | 11:00<br>-<br>11:15 | 116 | 115 | 231 | 05:00<br>-<br>05:15 | 129 | 250 | 379 | 11:00<br>-<br>11:15 | 20      | 58 |      |
| 05:15<br>-<br>05:30 | 53     | 3        | 56       | 11:15<br>-<br>11:30 | 131 | 102 | 233 | 05:15<br>-<br>05:30 | 129 | 235 | 364 | 11:15<br>-<br>11:30 | 19      | 51 |      |
| 05:30<br>-<br>05:45 | 55     | 2        | 57       | 11:30<br>-<br>11:45 | 122 | 109 | 231 | 05:30<br>-<br>05:45 | 135 | 230 | 365 | 11:30<br>-<br>11:45 | 16      | 50 |      |
| 05:45<br>-<br>06:00 | 76     | 3        | 79       | 11:45<br>-<br>12:00 | 147 | 101 | 248 | 05:45<br>-<br>06:00 | 94  | 206 | 300 | 11:45<br>-<br>12:00 | 11      | 53 |      |



HDOT RIMS Traffic Station Analyzer (v47)

Log Out

Print

RS

1/4

## State of Hawaii, Department of Transportation, Highways Division 15 Minute Volume Report Run Date: 01-DEC-21 Site ID: B71001905469 Town: Hawaii DIR 1: +MP DIR 2: -MP Final AADT: 16000 Functional Class: URBAN:PRINCIPAL ARTERIAL - OTHER Count Type: CLASS Counter Type: Tube Route No: 19 Location: DATE: 02-AUG-17 PM COMMUTER PERIOD (15:00-AM COMMUTER PERIOD (05:00-DIR 1 DIR 2 TOTAL DIR 1 DIR 2 TOTAL 09:00) TWO DIRECTIONAL PEAK TWO DIRECTIONAL PEAK 08:00 AM to 09:00 5:00 PM to 6:00 AM - PEAK HR TIME PM - PEAK HR TIME AM - PEAK HR VOLUME 1,041 PM - PEAK HR VOLUME 1,413 465 AM - K FACTOR(%) 6.19 PM - K FACTOR(%) 76.56 23.44 100 32.91 67.09 100 AM - D(%) PM -D(%) DIRECTIONAL PEAK DIRECTIONAL PEAK 07:00 AM to 08:00 08:00 AM to 09:00 4:00 PM to 5:00 5:00 PM to 6:00 AM - PEAK HR TIME PM - PEAK HR TIME PM PM AM - PEAK HR VOLUME 835 244 PM - PEAK HR VOLUME 543 948 AM PERIOD (00:00-12:00) DIR 1 DIR 2 TOTAL PM PERIOD (12:00-24:00) DIR 1 DIR 2 TOTAL TWO DIRECTIONAL PEAK TWO DIRECTIONAL PEAK 08:30 AM to 09:30 5:00 PM to 6:00 AM - PEAK HR TIME PM - PEAK HR TIME AM PM AM - PEAK HR VOLUME 835 1,088 PM - PEAK HR VOLUME 465 543 1,413 AM - K FACTOR(%) 6.47 PM - K FACTOR(%) 84 100 100 AM - D(%) 76.56 23.44 PM -D(%) 32.91 67.09 NON COMMUTER PERIOD (09:00-DIR 1 6-HR, 12-HR, 24-HR PERIODS DIR 2 TOTAL TOTAL 15:00) TWO DIRECTIONAL PEAK AM 6-HR PERIOD (06:00-12:00) 3,813 1,737 5,550 09:15 AM to 10:15 PEAK HR TIME AM 12-HR PERIOD (00:00-12:00) 4,187 2,040 6,227 PEAK HR VOLUME PM 6-HR PERIOD (12:00-18:00) 646 398 1,044 2 915 3.879 6.794 DIRECTIONAL PEAK PM 12-HR PERIOD (12:00-24:00) 4,154 6,443 10,597 09:00 AM to 10:00 2:00 PM to 3:00 PEAK HR TIME 24-HR PERIOD (12:00-24:00) 8,483 16,824 8,341 PEAK HR VOLUME 657 565 D% 49.58 50.42 100 TIME TIME TIME DIR TIME DIR DIR DIR - AM DIR1 2 TOTAL - AM DIR1 TOTAL - PM DIR1 2 TOTAL DIR1 TOTAL 2 - PM 12:00 06:00 12:00 06:00 59 62 76 82 129 112 241 108 237 345 12:15 06:15 12:15 06:15

hwypdc07:8080/ords/f?p=101:8:6778511449429::NO:RP:P8\_COUNT\_NUMBER,P8\_SURVEY\_DAY:32840,2

| OT D                | MC T   | cc - c+- | 41 a.a. A | ali a u 7 - 4       | 7)  |     |     |                     |     |     |     |                     |        |       | D.:   |
|---------------------|--------|----------|-----------|---------------------|-----|-----|-----|---------------------|-----|-----|-----|---------------------|--------|-------|-------|
| OLKI                | MS Ira | ffic Sta | tion Ana  | alyzer (v4          | -/) |     |     |                     |     |     |     |                     | Log Ou | t   👄 | Print |
| 12:15               | 7      | 36       | 43        | 06:15               | 94  | 12  | 106 | 12:15               | 127 | 108 | 235 | 06:15               | 88     | 200   |       |
| 12:30               |        |          |           | 06:30               |     |     |     | 12:30               |     |     |     | 06:30               |        |       |       |
| 12:30<br>-<br>12:45 | 10     | 43       | 53        | 06:30<br>-<br>06:45 | 136 | 17  | 153 | 12:30<br>-<br>12:45 | 113 | 113 | 226 | 06:30<br>-<br>06:45 | 114    | 176   |       |
| 12:45<br>-<br>01:00 | 7      | 24       | 31        | 06:45<br>-<br>07:00 | 172 | 23  | 195 | 12:45<br>-<br>01:00 | 128 | 150 | 278 | 06:45<br>-<br>07:00 | 89     | 164   |       |
| 01:00<br>-<br>01:15 | 3      | 20       | 23        | 07:00<br>-<br>07:15 | 201 | 32  | 233 | 01:00<br>-<br>01:15 | 116 | 123 | 239 | 07:00<br>-<br>07:15 | 94     | 152   | :     |
| 01:15               | 3      | 24       | 27        | 07:15<br>-<br>07:30 | 197 | 34  | 231 | 01:15<br>-<br>01:30 | 99  | 154 | 253 | 07:15<br>-<br>07:30 | 87     | 169   | ;     |
| 01:30<br>-<br>01:45 | 7      | 17       | 24        | 07:30<br>-<br>07:45 | 212 | 41  | 253 | 01:30<br>-<br>01:45 | 125 | 122 | 247 | 07:30<br>-<br>07:45 | 84     | 142   | ;     |
| 01:45               | 4      | 13       | 17        | 07:45<br>-<br>08:00 | 225 | 35  | 260 | 01:45<br>-<br>02:00 | 120 | 128 | 248 | 07:45<br>-<br>08:00 | 87     | 133   | ;     |
| 02:00<br>-<br>02:15 | 0      | 10       | 10        | 08:00<br>-<br>08:15 | 176 | 43  | 219 | 02:00<br>-<br>02:15 | 113 | 123 | 236 | 08:00<br>-<br>08:15 | 71     | 118   |       |
| 02:15<br>-<br>02:30 | 3      | 9        | 12        | 08:15<br>-<br>08:30 | 193 | 63  | 256 | 02:15<br>-<br>02:30 | 116 | 116 | 232 | 08:15<br>-<br>08:30 | 50     | 121   |       |
| 02:30<br>-<br>02:45 | 2      | 4        | 6         | 08:30<br>-<br>08:45 | 227 | 62  | 289 | 02:30<br>-<br>02:45 | 118 | 168 | 286 | 08:30<br>-<br>08:45 | 68     | 83    |       |
| 02:45               | 5      | 3        | 8         | 08:45<br>-<br>09:00 | 201 | 76  | 277 | 02:45<br>-<br>03:00 | 108 | 158 | 266 | 08:45<br>-<br>09:00 | 50     | 106   |       |
| 03:00<br>-<br>03:15 | 10     | 5        | 15        | 09:00<br>-<br>09:15 | 171 | 82  | 253 | 03:00<br>-<br>03:15 | 109 | 141 | 250 | 09:00<br>-<br>09:15 | 31     | 89    |       |
| 03:15<br>-<br>03:30 | 7      | 5        | 12        | 09:15<br>-<br>09:30 | 167 | 102 | 269 | 03:15<br>-<br>03:30 | 127 | 139 | 266 | 09:15<br>-<br>09:30 | 37     | 85    |       |
| 03:30<br>-<br>03:45 | 3      | 2        | 5         | 09:30<br>-<br>09:45 | 142 | 97  | 239 | 03:30<br>-<br>03:45 | 124 | 156 | 280 | 09:30<br>-<br>09:45 | 29     | 69    |       |

| 3:45    |    |   |    | 09:45 |     |     |     | 03:45   |     |     |     | 09:45   |    |    |   |
|---------|----|---|----|-------|-----|-----|-----|---------|-----|-----|-----|---------|----|----|---|
| -       | 7  | 2 | 9  |       | 177 | 98  | 275 |         | 135 | 143 | 278 | -       | 22 | 75 | 9 |
| 4:00    |    |   |    | 10:00 |     |     |     | 04:00   |     |     |     | 10:00   |    |    |   |
| 04:00   |    |   |    | 10:00 |     |     |     | 04:00   |     |     |     | 10:00   |    |    |   |
| -       | 6  | 5 | 11 | -     | 160 | 101 | 261 | -       | 153 | 181 | 334 | -       | 20 | 64 | 8 |
| 14:15   |    |   |    | 10:15 |     |     |     | 04:15   |     |     |     | 10:15   |    |    |   |
| 14:15   |    |   |    | 10:15 |     |     |     | 04:15   |     |     |     | 10:15   |    |    |   |
| -       | 13 | 3 | 16 | -     | 114 | 105 | 219 | -       | 115 | 190 | 305 | -       | 18 | 67 |   |
| 04:30   |    |   |    | 10:30 |     |     |     | 04:30   |     |     |     | 10:30   |    |    |   |
| 04:30   |    |   |    | 10:30 |     |     |     | 04:30   |     |     |     | 10:30   |    |    |   |
| -       | 20 | 3 | 23 |       | 137 | 101 | 238 |         | 134 | 199 | 333 |         | 22 | 54 |   |
| 04:45   |    |   |    | 10:45 |     |     |     | 04:45   |     |     |     | 10:45   |    |    |   |
| )4:45   | 25 | 0 | 25 | 10:45 | 105 | 114 | 220 | 04:45   | 141 | 207 | 240 | 10:45   | 10 |    |   |
| - 05:00 | 35 | 0 | 35 | 11:00 | 125 | 114 | 239 | 05:00   | 141 | 207 | 348 | 11:00   | 19 | 53 |   |
| 5:00    |    |   |    | 11:00 |     |     |     | 05:00   |     |     |     | 11:00   |    |    |   |
| -       | 46 | 4 | 50 | -     | 132 | 123 | 255 | - 05.00 | 111 | 253 | 364 | - 11.00 | 17 | 51 |   |
| 5:15    | 40 | 7 | 30 | 11:15 | 132 | 123 | 233 | 05:15   |     | 233 | 304 | 11:15   | "  | 31 |   |
| 5:15    |    |   |    | 11:15 |     |     |     | 05:15   |     |     |     | 11:15   |    |    |   |
| -       | 45 | 4 | 49 | -     | 134 | 128 | 262 | -       | 120 | 227 | 347 |         | 17 | 51 |   |
| 5:30    |    |   |    | 11:30 |     |     |     | 05:30   |     |     |     | 11:30   |    |    |   |
| 5:30    |    |   |    | 11:30 |     |     |     | 05:30   |     |     |     | 11:30   |    |    |   |
| -       | 64 | 2 | 66 | -     | 129 | 126 | 255 |         | 106 | 234 | 340 | -       | 10 | 59 |   |
| 5:45    |    |   |    | 11:45 |     |     |     | 05:45   |     |     |     | 11:45   |    |    |   |
| 5:45    |    |   |    | 11:45 |     |     |     | 05:45   |     |     |     | 11:45   |    |    |   |
| -       | 64 | 6 | 70 | -     | 115 | 116 | 231 | -       | 128 | 234 | 362 | -       | 7  | 46 |   |
| 06:00   |    |   |    | 12:00 |     |     |     | 06:00   |     |     |     | 12:00   |    |    |   |



hwypdc07:8080/ords/f?p=101:8:6778511449429::NO:RP:P8\_COUNT\_NUMBER,P8\_SURVEY\_DAY:32840,2

3/4

12/1/21, 9:36 AM

15 Minute Report

HDOT RIMS Traffic Station Analyzer (v47)

Log Ou

₽ Pri

| Run Date: 01-DEC                                  | -21                                                   |               |                  | Stat                 |               | Highwa                                     | tment of Ti<br>ys Division<br>/olume Rep | •                         | ion,      |                    |                  |                       |              |      |
|---------------------------------------------------|-------------------------------------------------------|---------------|------------------|----------------------|---------------|--------------------------------------------|------------------------------------------|---------------------------|-----------|--------------------|------------------|-----------------------|--------------|------|
| Site ID: B71001909<br>Functional Class: Location: |                                                       | IPAL ARTERIA  | L - OTHER        |                      | Cour          | n: Hawaii<br>nt Type: CLA:<br>E: 02-OCT-18 | SS                                       | DIR 1: +MP<br>Counter Typ | e: Tube   | DIR                | <b>2:</b> -MP    | Final AAD<br>Route No |              |      |
| AM COMMUTER F                                     | •                                                     | )- DIR 1      | ı                | DIR 2                | тоти          | AL                                         | PM COMMU<br>19:00)                       |                           | •         | DIR 1              | DIR 2            |                       | TOTAL        |      |
| TWO DIRECTION<br>AM - PEAK HR                     |                                                       | 07:15         | AM to 08:15      |                      |               |                                            |                                          | CTIONAL PEA<br>K HR TIME  | AK.       | 4:15 PM            |                  |                       |              |      |
|                                                   |                                                       |               | ΛM               |                      |               |                                            |                                          |                           |           |                    | PM               |                       |              |      |
| AM - PEAK HR '<br>AM - K FACTOR                   |                                                       | 863           | 4                | 233                  | 1,096<br>7.42 |                                            |                                          | .K HR VOLUM<br>ACTOR(%)   | lE .      | 352                | 859              |                       | 1,211<br>8.2 |      |
| AM - D(%)                                         | (70)                                                  | 78.74         |                  | 21.26                | 100           |                                            | PM - D(%                                 |                           |           | 29.07              | 70.93            |                       | 100          |      |
| DIRECTIONAL PE                                    | AK                                                    |               |                  |                      |               |                                            | DIRECTION                                |                           |           |                    |                  |                       |              |      |
| AM - PEAK HR                                      | ГІМЕ                                                  | 07:00 A<br>AM |                  | 08:00 AM to 0<br>AM  | 9:00          |                                            | PM - PEA                                 | K HR TIME                 |           | 3:15 PM to 4<br>PM | :15 4:30 P<br>PM | 'M to 5:30            |              |      |
| AM - PEAK HR                                      | - PEAK HR VOLUME 877 329                              |               |                  | 329                  |               |                                            | PM - PEA                                 | K HR VOLUM                | IE        | 408                | 876              |                       |              |      |
|                                                   | PERIOD (00:00-12:00) DIR 1 DIF<br>WO DIRECTIONAL PEAK |               |                  | DIR 2                | тот           | AL                                         | PM PERIOD                                |                           |           | DIR 1              | DIR 2            |                       | TOTAL        |      |
|                                                   |                                                       | 07-15         | AM to 08:15      |                      |               |                                            |                                          | CTIONAL PEA               | AK.       | 4:15 PM            | to E:15          |                       |              |      |
| AM - PEAK HR                                      | TIME                                                  | 07.15         | AM AM            |                      |               |                                            | PM - PEA                                 | K HR TIME                 |           | 4.15 PW            | PM               |                       |              |      |
| AM - PEAK HR                                      | /OLUME                                                | 863           | 8                | 377                  | 1,096         | 5                                          | PM - PEA                                 | K HR VOLUM                | IE        | 352                | 444              |                       | 1,211        |      |
| AM - K FACTOR                                     | (%)                                                   |               |                  |                      | 7.42          |                                            |                                          | ACTOR(%)                  |           |                    |                  |                       | 8.2          |      |
| AM - D(%)                                         |                                                       | 78.74         | 2                | 21.26                | 100           |                                            | PM -D(%)                                 | )                         |           | 29.07              | 70.93            |                       | 100          |      |
| NON COMMUTER                                      | PERIOD (09:                                           | 00- DIR 1     |                  | DIR 2                | тоти          | AL                                         | 6-HR, 12-HR                              | k, 24-HR PER              | IODS      | DIR 1              | DIR 2            |                       | TOTAL        |      |
| TWO DIRECTION                                     | AL PEAK                                               |               |                  |                      |               |                                            | AM 6-HR                                  | PERIOD (06:00             | 0-12:00)  | 3,533              | 1,780            |                       | 5,313        |      |
| PEAK HR TIME                                      |                                                       | 2:00          | PM to 3:00<br>PM |                      |               |                                            | AM 12-HR                                 | PERIOD (00:               | 00-12:00) | 4,391              | 2,016            |                       | 6,407        |      |
| PEAK HR VOLU                                      | ME                                                    | 428           |                  | 557                  | 985           |                                            | PM 6-HR F                                | PERIOD (12:00             | )-18:00)  | 2,265              | 3,663            |                       | 5,928        |      |
| DIRECTIONAL PE                                    |                                                       |               |                  |                      |               |                                            |                                          | PERIOD (12:0              |           | 2,993              | 5,368            |                       | 8,361        |      |
| PEAK HR TIME                                      | 00:00 AM to 2:00 PM to                                |               |                  | 2:00 PM to 3:0<br>PM | 00            |                                            | 24-HR PER                                | IOD (12:00-2              | 4:00)     | 7,384              | 7,384            |                       | 14,768       |      |
| PEAK HR VOLU                                      | PEAK HR VOLUME 510 557                                |               |                  | 557                  |               |                                            | D%                                       |                           |           | 50                 | 50               |                       | 100          |      |
| ГІМЕ                                              |                                                       |               |                  |                      | DIR           |                                            | TIME                                     |                           | DIR       |                    | TIME             |                       | DIR          |      |
| AM DIR1                                           | DIR1 2 TOTAL - AM DIR1                                |               |                  |                      | 2             | TOTAL                                      | - PM                                     | DIR1                      | 2         | TOTAL              | - PM             | DIR1                  | 2            | TOTA |
| 12:00                                             | 06:00                                                 |               |                  |                      |               |                                            | 12:00                                    |                           |           |                    | 06:00            |                       |              |      |
| - 3                                               | 26                                                    | 29            |                  | 187                  | 22            | 209                                        | •                                        | 94                        | 112       | 206                | -                | 84                    | 150          | 2    |
| 12:15                                             |                                                       |               | 06:15            |                      |               |                                            | 12:15                                    |                           |           |                    | 06:15            |                       |              |      |

| 1/21, 9:36 AM       |         |           |           |                     |     |    |     | 15 Minute           | Report |     |     |                     |        |     |         |
|---------------------|---------|-----------|-----------|---------------------|-----|----|-----|---------------------|--------|-----|-----|---------------------|--------|-----|---------|
| HDOT RI             | IMS Tra | ıffic Sta | ition Ana | alyzer (v4          | 17) |    |     |                     |        |     |     |                     | Log Ou | 0   | Print R |
| 12:15               | 6       | 19        | 25        | 06:15               | 184 | 33 | 217 | 12:15               | 112    | 90  | 202 | 06:15               | 82     | 140 | 222     |
| 12:30               |         |           |           | 06:30               |     |    |     | 12:30               |        |     |     | 06:30               |        |     |         |
| 12:30               | 3       | 5         | 8         | 06:30               | 182 | 33 | 215 | 12:30               | 104    | 123 | 227 | 06:30               | 70     | 130 | 200     |
| 12:45               |         |           |           | 06:45               |     |    |     | 12:45               |        |     |     | 06:45               |        |     |         |
| 12:45               | 3       | 11        | 14        | 06:45               | 207 | 41 | 248 | 12:45               | 62     | 105 | 167 | 06:45               | 43     | 115 | 158     |
| 01:00               |         |           |           | 07:00               |     |    |     | 01:00               |        |     |     | 07:00               |        |     |         |
| 01:00<br>-<br>01:15 | 5       | 7         | 12        | 07:00<br>-<br>07:15 | 202 | 51 | 253 | 01:00<br>-<br>01:15 | 93     | 101 | 194 | 07:00<br>-<br>07:15 | 54     | 99  | 153     |
| 01:15               |         |           |           | 07:15               |     |    |     | 01:15               |        |     |     | 07:15               |        |     |         |
| 01:13               | 6       | 8         | 14        | 07:30               | 217 | 45 | 262 | 01:30               | 80     | 106 | 186 | 07:13               | 48     | 102 | 150     |
| 01:30<br>-<br>01:45 | 3       | 7         | 10        | 07:30<br>-<br>07:45 | 223 | 50 | 273 | 01:30<br>-<br>01:45 | 88     | 108 | 196 | 07:30<br>-<br>07:45 | 37     | 87  | 124     |
| 01:45               | 4       | 7         | 11        | 07:45               | 235 | 56 | 291 | 01:45               | 113    | 111 | 224 | 07:45               | 36     | 85  | 121     |
| 02:00<br>-<br>02:15 | 7       | 5         | 12        | 08:00<br>-<br>08:15 | 188 | 82 | 270 | 02:00               | 113    | 110 | 223 | 08:00<br>-<br>08:15 | 29     | 68  | 97      |
| 02:15<br>-<br>02:30 | 5       | 6         | 11        | 08:15<br>-<br>08:30 | 148 | 93 | 241 | 02:15<br>-<br>02:30 | 130    | 121 | 251 | 08:15<br>-<br>08:30 | 33     | 63  | 96      |
| 02:30<br>-<br>02:45 | 9       | 4         | 13        | 08:30<br>-<br>08:45 | 135 | 72 | 207 | 02:30<br>-<br>02:45 | 78     | 159 | 237 | 08:30<br>-<br>08:45 | 25     | 76  | 101     |
| 02:45<br>-<br>03:00 | 10      | 8         | 18        | 08:45<br>-<br>09:00 | 131 | 82 | 213 | 02:45<br>-<br>03:00 | 107    | 167 | 274 | 08:45<br>-<br>09:00 | 28     | 78  | 106     |
| 03:00<br>-<br>03:15 | 14      | 1         | 15        | 09:00<br>-<br>09:15 | 119 | 72 | 191 | 03:00<br>-<br>03:15 | 100    | 149 | 249 | 09:00<br>-<br>09:15 | 14     | 63  | 77      |
| 03:15<br>-<br>03:30 | 14      | 4         | 18        | 09:15<br>-<br>09:30 | 132 | 91 | 223 | 03:15<br>-<br>03:30 | 118    | 151 | 269 | 09:15<br>-<br>09:30 | 18     | 56  | 74      |
| 03:30<br>-<br>03:45 | 18      | 1         | 19        | 09:30<br>-<br>09:45 | 130 | 76 | 206 | 03:30<br>-<br>03:45 | 84     | 153 | 237 | 09:30<br>-<br>09:45 | 21     | 52  | 73      |

hwypdc07:8080/ords/f?p=101:8:6778511449429::NO:RP:P8\_COUNT\_NUMBER,P8\_SURVEY\_DAY:36598,2

2/

| DOT R               | IMS Tra | ffic Sta | tion Ana | alyzer (v4          | .7) |     |     |                     |     |     |     |                     | Log Out | Ð  | Print |
|---------------------|---------|----------|----------|---------------------|-----|-----|-----|---------------------|-----|-----|-----|---------------------|---------|----|-------|
| 03:45<br>-<br>04:00 | 31      | 5        | 36       | 09:45               | 129 | 95  | 224 | 03:45<br>-<br>04:00 | 103 | 185 | 288 | 09:45<br>-<br>10:00 | 24      | 49 |       |
| 04:00               | 28      | 8        | 36       | 10:00               | 100 | 106 | 206 | 04:00<br>-<br>04:15 | 103 | 174 | 277 | 10:00               | 20      | 37 |       |
| 04:15<br>-<br>04:30 | 59      | 4        | 63       | 10:15<br>-<br>10:30 | 109 | 91  | 200 | 04:15<br>-<br>04:30 | 105 | 190 | 295 | 10:15<br>-<br>10:30 | 15      | 56 |       |
| 04:30<br>-<br>04:45 | 55      | 5        | 60       | 10:30<br>-<br>10:45 | 108 | 93  | 201 | 04:30<br>-<br>04:45 | 85  | 217 | 302 | 10:30<br>-<br>10:45 | 12      | 51 |       |
| 04:45<br>-<br>05:00 | 70      | 11       | 81       | 10:45<br>-<br>11:00 | 114 | 89  | 203 | 04:45<br>-<br>05:00 | 88  | 247 | 335 | 10:45<br>-<br>11:00 | 5       | 38 |       |
| 05:00<br>-<br>05:15 | 102     | 12       | 114      | 11:00<br>-<br>11:15 | 84  | 99  | 183 | 05:00<br>-<br>05:15 | 74  | 205 | 279 | 11:00<br>-<br>11:15 | 5       | 21 |       |
| 05:15<br>-<br>05:30 | 94      | 17       | 111      | 11:15<br>-<br>11:30 | 99  | 99  | 198 | 05:15<br>-<br>05:30 | 77  | 207 | 284 | 11:15<br>-<br>11:30 | 9       | 25 |       |
| 05:30<br>-<br>05:45 | 136     | 33       | 169      | 11:30<br>-<br>11:45 | 90  | 100 | 190 | 05:30<br>-<br>05:45 | 80  | 200 | 280 | 11:30<br>-<br>11:45 | 6       | 35 |       |
| 05:45<br>-<br>06:00 | 173     | 22       | 195      | 11:45<br>-<br>12:00 | 80  | 109 | 189 | 05:45<br>-<br>06:00 | 74  | 172 | 246 | 11:45<br>-<br>12:00 | 10      | 29 |       |



HDOT RIMS Traffic Station Analyzer (v47)

Log

D Print

RS

| Run Dat | te: 01-DEC-2                                           | 21        |                   |                  | Sta              |              | waii, Depart<br>Highway<br>5 Minute V      | s Division                        | •                         | tion,     |                       |                |                       |                |  |
|---------|--------------------------------------------------------|-----------|-------------------|------------------|------------------|--------------|--------------------------------------------|-----------------------------------|---------------------------|-----------|-----------------------|----------------|-----------------------|----------------|--|
|         |                                                        |           | ICIPAL ARTERIA    | L - OTHER        |                  | Cou          | n: Hawaii<br>nt Type: CLAS<br>E: 03-OCT-18 | -                                 | OIR 1: +MP<br>Counter Typ |           | DIR 2:                | -MP            | Final AAD<br>Route No |                |  |
| 09:00)  | MMUTER PE                                              | •         | 00- DIR 1         | D                | IR 2             | тот          |                                            | PM COMMU<br>19:00)                |                           | •         | DIR 1                 | DIR 2          | :                     | TOTAL          |  |
| TWO     | DIRECTIONA                                             | L PEAK    |                   |                  |                  |              |                                            | TWO DIREC                         | TIONAL PE                 | ΑK        |                       |                |                       |                |  |
| AM -    | - PEAK HR TI                                           | ME        | 07:15 A           | M to 08:15       |                  |              |                                            | PM - PEA                          | K HR TIME                 |           | 3:45 PM to            | 4:45<br>PM     |                       |                |  |
|         | - PEAK HR VO                                           |           | 861               | 2                | 77               | 1,13<br>7.67 |                                            | PM - PEAI                         | CHR VOLUN                 | ИE        | 370                   | 830            |                       | 1,200<br>8.09  |  |
| AM -    | - D(%)<br>TIONAL PEA                                   | ,         | 75.66             | 24               | 4.34             | 100          |                                            | PM -D(%)<br>DIRECTION             |                           |           | 30.83                 | 69.17          |                       | 100            |  |
| AM -    |                                                        |           |                   | M to 08:00 08    |                  | 09:00        |                                            | PM - PEAI                         | K HR TIME                 |           | 3:00 PM to 4:00<br>PM | 4:15 F<br>PM   | PM to 5:15            |                |  |
| AM -    | PEAK HR V                                              | OLUME     | 891               | 3                | 51               |              |                                            | PM - PEA                          | K HR VOLUN                | ИE        | 418                   | 845            |                       |                |  |
|         | I PERIOD (00:00-12:00) DIR 1 DIR 2 WO DIRECTIONAL PEAK |           |                   | IR 2             | тот              | AL           | PM PERIOD (                                | ( <b>12:00-24:0</b><br>CTIONAL PE |                           | DIR 1     | DIR 2                 | !              | TOTAL                 |                |  |
| AM -    | - PEAK HR TI                                           | ME        | 07:15 A           | M to 08:15<br>AM |                  |              |                                            | PM - PEA                          | K HR TIME                 |           | 3:45 PM to            | 4:45<br>PM     |                       |                |  |
|         | - PEAK HR VO<br>- K FACTOR(9                           |           | 861               | 85               | 91               | 1,13<br>7.67 |                                            | PM - PEAI<br>PM - K FA            | CHR VOLUN<br>CTOR(%)      | ИE        | 370                   | 432            |                       | 1,200<br>8.09  |  |
| AM -    | - D(%)                                                 |           | 75.66             | 24               | 4.34             | 100          |                                            | PM -D(%)                          |                           |           | 30.83                 | 69.17          |                       | 100            |  |
| NON CC  | OMMUTER F                                              | ERIOD (09 | 0:00- DIR 1       | D                | IR 2             | тот          | AL                                         | 6-HR, 12-HR                       | , 24-HR PEI               | RIODS     | DIR 1                 | DIR 2          |                       | TOTAL          |  |
|         | DIRECTIONA                                             | L PEAK    |                   |                  |                  |              |                                            | AM 6-HR P                         | ERIOD (06:0               | 0-12:00)  | 3,476                 | 1,822          |                       | 5,298          |  |
| PEAK    | CHR TIME                                               |           | 2:00              | PM to 3:00<br>PM |                  |              |                                            | AM 12-HR                          | PERIOD (00                | 00-12:00) | 4,356                 | 2,054          |                       | 6,410          |  |
|         | CHR VOLUM                                              | _         | 391               | 5                | 22               | 913          |                                            | PM 6-HR P<br>PM 12-HR             |                           |           | 2,231<br>3,033        | 3,634<br>5,397 |                       | 5,865<br>8,430 |  |
| PEAK    | CHR TIME                                               |           | 09:00 A<br>112:00 |                  | 00 PM to 3:<br>M | 00           |                                            | 24-HR PERI                        | OD (12:00-2               | 24:00)    | 7,389                 | 7,451          |                       | 14,840         |  |
| PEAK    | PEAK HR VOLUME 464 522                                 |           | 22                |                  |                  | D%           |                                            |                                   | 49.79                     | 50.21     |                       | 100            |                       |                |  |
| IME     |                                                        | DIR       |                   | TIME             |                  | DIR          |                                            | TIME                              |                           | DIR       |                       | TIME           |                       | DIR            |  |
| AM      |                                                        |           |                   |                  | TOTAL            | - PM         | DIR1                                       | 2                                 | TOTAL                     | - PM      | DIR1                  | 2              | TOTAL                 |                |  |
| 12:00   | 06:00<br>5 16 21 - 173 26 199                          |           |                   |                  |                  | 199          | 12:00                                      | 100                               | 106                       | 206       | 06:00                 | 77             | 138                   | 21             |  |
| 12:15   | 5 16 21 - 173 26 1<br>06:15                            |           |                   |                  |                  | 155          | 12:15                                      | 100                               | .00                       |           | 06:15                 |                | .50                   |                |  |

hwypdc07:8080/ords/f?p=101:8:6778511449429::NO:RP:P8\_COUNT\_NUMBER,P8\_SURVEY\_DAY:36598,3

1/4

| OT RI | MS Tra | ffic Stat | tion Ana | alyzer (v4 | 7)  |     |     |       |     |     |      |       | Log Ou | t 🖨 | Print |
|-------|--------|-----------|----------|------------|-----|-----|-----|-------|-----|-----|------|-------|--------|-----|-------|
| 12:15 |        |           |          | 06:15      |     |     |     | 12:15 |     |     |      | 06:15 |        |     |       |
| 12:30 | 7      | 21        | 28       | 06:30      | 187 | 22  | 209 | 12:30 | 108 | 111 | 219  | 06:30 | 83     | 129 | 21    |
| 12:30 |        |           |          | 06:30      |     |     |     | 12:30 |     |     |      | 06:30 |        |     |       |
| -     | 2      | 18        | 20       | -          | 202 | 40  | 242 | -     | 83  | 101 | 184  | -     | 73     | 123 | 19    |
| 12:45 |        |           |          | 06:45      |     |     |     | 12:45 |     |     |      | 06:45 |        |     |       |
| 12:45 |        |           |          | 06:45      |     |     |     | 12:45 |     |     |      | 06:45 |        |     |       |
| -     | 5      | 7         | 12       | -          | 204 | 42  | 246 | -     | 103 | 110 | 213  | -     | 58     | 117 | 17    |
| 01:00 |        |           |          | 07:00      |     |     |     | 01:00 |     |     |      | 07:00 |        |     |       |
| 01:00 |        | 42        | 45       | 07:00      | 400 | 45  | 225 | 01:00 |     | 00  | 405  | 07:00 | 42     |     | 4.    |
| 01:15 | 3      | 12        | 15       | 07:15      | 190 | 45  | 235 | 01:15 | 97  | 89  | 186  | 07:15 | 43     | 114 | 15    |
| 01:15 |        |           |          | 07:15      |     |     |     | 01:15 |     |     |      | 07:15 |        |     |       |
| -     | 8      | 6         | 14       | -          | 245 | 50  | 295 | -     | 98  | 101 | 199  | -     | 60     | 92  | 15    |
| 01:30 |        |           |          | 07:30      |     |     |     | 01:30 |     |     |      | 07:30 |        |     |       |
| 01:30 |        |           |          | 07:30      |     |     |     | 01:30 |     |     |      | 07:30 |        |     |       |
| -     | 4      | 6         | 10       | -          | 246 | 68  | 314 | -     | 87  | 139 | 226  | -     | 50     | 91  | 14    |
| 01:45 |        |           |          | 07:45      |     |     |     | 01:45 |     |     |      | 07:45 |        |     |       |
| 01:45 | _      |           |          | 07:45      | 240 |     | 277 | 01:45 |     | 400 | 224  | 07:45 |        | 70  |       |
| 02:00 | 5      | 4         | 9        | 08:00      | 210 | 67  | 277 | 02:00 | 98  | 123 | 221  | 08:00 | 54     | 78  | 13    |
| 02:00 |        |           |          | 08:00      |     |     |     | 02:00 |     |     |      | 08:00 |        |     |       |
| -     | 7      | 4         | 11       | -          | 160 | 92  | 252 | -     | 111 | 112 | 223  | -     | 24     | 90  | 11    |
| 02:15 |        |           |          | 08:15      |     |     |     | 02:15 |     |     |      | 08:15 |        |     |       |
| 02:15 |        |           |          | 08:15      |     |     |     | 02:15 |     |     |      | 08:15 |        |     |       |
| -     | 3      | 5         | 8        | -          | 130 | 104 | 234 |       | 78  | 138 | 216  | -     | 25     | 86  | 11    |
| 02:30 |        |           |          | 08:30      |     |     |     | 02:30 |     |     |      | 08:30 |        |     |       |
| 02:30 |        | 3         | 40       | 08:30      |     | 70  | 188 | 02:30 | 78  | 136 | 24.4 | 08:30 | 22     |     | 1.    |
| 02:45 | 9      | 3         | 12       | 08:45      | 115 | 73  | 188 | 02:45 | /8  | 136 | 214  | 08:45 | 32     | 84  | '     |
| 02:45 |        |           |          | 08:45      |     |     |     | 02:45 |     |     |      | 08:45 |        |     |       |
| -     | 8      | 10        | 18       | -          | 141 | 82  | 223 | -     | 124 | 136 | 260  | -     | 30     | 58  | 8     |
| 03:00 |        |           |          | 09:00      |     |     |     | 03:00 |     |     |      | 09:00 |        |     |       |
| 03:00 |        |           |          | 09:00      |     |     |     | 03:00 |     |     |      | 09:00 |        |     |       |
|       | 15     | 3         | 18       |            | 126 | 78  | 204 |       | 100 | 142 | 242  |       | 26     | 74  | 10    |
| 03:15 |        |           |          | 09:15      |     |     |     | 03:15 |     |     |      | 09:15 |        |     |       |
| 03:15 | 16     | 2         | 18       | 09:15      | 112 | 85  | 197 | 03:15 | 100 | 153 | 253  | 09:15 | 24     | 62  | 8     |
| 03:30 | 10     | 2         | 10       | 09:30      | 112 | 0.5 | 197 | 03:30 | 100 | 155 | 200  | 09:30 | 24     | 02  |       |
| 03:30 |        |           |          | 09:30      |     |     |     | 03:30 |     |     |      | 09:30 |        |     |       |
| -     | 22     | 4         | 26       | -          | 109 | 86  | 195 | -     | 108 | 166 | 274  | -     | 18     | 58  | 7     |
| 03:45 |        |           |          | 09:45      |     |     |     | 03:45 |     |     |      | 09:45 |        |     |       |

| JOI RI              | IIVIS Ira | ffic Sta | tion Ana | alyzer (v4          | 1)  |     |     |                     |     |     |     |                     | Log Out | -  | Print |
|---------------------|-----------|----------|----------|---------------------|-----|-----|-----|---------------------|-----|-----|-----|---------------------|---------|----|-------|
| 03:45<br>-<br>04:00 | 32        | 3        | 35       | 09:45<br>-<br>10:00 | 117 | 97  | 214 | 03:45<br>-<br>04:00 | 110 | 194 | 304 | 09:45<br>-<br>10:00 | 23      | 51 | 74    |
| 04:00<br>-<br>04:15 | 27        | 3        | 30       | 10:00<br>-<br>10:15 | 109 | 87  | 196 | 04:00<br>-<br>04:15 | 94  | 216 | 310 | 10:00<br>-<br>10:15 | 25      | 47 | 72    |
| 04:15<br>-<br>04:30 | 69        | 7        | 76       | 10:15<br>-<br>10:30 | 92  | 91  | 183 | 04:15<br>-<br>04:30 | 95  | 203 | 298 | 10:15<br>-<br>10:30 | 16      | 53 | 69    |
| 04:30<br>-<br>04:45 | 48        | 7        | 55       | 10:30<br>-<br>10:45 | 89  | 116 | 205 | 04:30<br>-<br>04:45 | 71  | 217 | 288 | 10:30<br>-<br>10:45 | 17      | 50 | 67    |
| 04:45<br>-<br>05:00 | 66        | 9        | 75       | 10:45<br>-<br>11:00 | 111 | 82  | 193 | 04:45<br>-<br>05:00 | 75  | 204 | 279 | 10:45<br>-<br>11:00 | 10      | 39 | 49    |
| 05:00<br>-<br>05:15 | 96        | 8        | 104      | 11:00<br>-<br>11:15 | 105 | 98  | 203 | 05:00<br>-<br>05:15 | 67  | 221 | 288 | 11:00<br>-<br>11:15 | 7       | 23 | 30    |
| 05:15<br>-<br>05:30 | 112       | 17       | 129      | 11:15<br>-<br>11:30 | 110 | 84  | 194 | 05:15<br>-<br>05:30 | 67  | 180 | 247 | 11:15<br>-<br>11:30 | 9       | 41 | 50    |
| 05:30<br>-<br>05:45 | 145       | 29       | 174      | 11:30<br>-<br>11:45 | 90  | 102 | 192 | 05:30<br>-<br>05:45 | 83  | 182 | 265 | 11:30<br>-<br>11:45 | 11      | 39 | 50    |
| 05:45               | 166       | 28       | 194      | 11:45<br>-<br>12:00 | 103 | 105 | 208 | 05:45<br>-<br>06:00 | 96  | 154 | 250 | 11:45<br>-<br>12:00 | 7       | 26 | 33    |



hwypdc07:8080/ords/f?p=101:8:6778511449429::NO:RP:P8\_COUNT\_NUMBER,P8\_SURVEY\_DAY:36598,3

3/4

12/1/21, 9:37 AM

15 Minute Report

HDOT RIMS Traffic Station Analyzer (v47)



| Run Date         | e: 01-DEC-2                                                                    | 21                     |               |             | Stat           |      | waii, Depart<br>Highway<br>5 Minute V      | s Division            | •                                 | tion,    |              |             |                       |        |       |
|------------------|--------------------------------------------------------------------------------|------------------------|---------------|-------------|----------------|------|--------------------------------------------|-----------------------|-----------------------------------|----------|--------------|-------------|-----------------------|--------|-------|
|                  |                                                                                |                        | CIPAL ARTERIA | AL - OTHER  |                | Cour | n: Hawaii<br>nt Type: CLAS<br>E: 22-OCT-19 |                       | DIR 1: +MP<br>Counter Typ         |          | DIR          | 2: -MP      | Final AAD<br>Route No |        |       |
| AM COM<br>09:00) | MUTER PE                                                                       | RIOD (05:0             | 0- DIR 1      |             | DIR 2          | тот  | AL                                         | PM COMMU<br>19:00)    | TER PERIO                         | (15:00-  | DIR 1        | DIR 2       |                       | TOTAL  |       |
| TWO              | DIRECTIONA                                                                     | L PEAK                 |               |             |                |      |                                            | TWO DIRE              | CTIONAL PE                        | ΑK       |              |             |                       |        |       |
| AM -             | PEAK HR TI                                                                     | ME                     | 07:15         | to 08:15 AM |                |      |                                            | PM - PEA              | K HR TIME                         |          | 03:45 to 04  | 4:45 PM     |                       |        |       |
| AM -             | PEAK HR V                                                                      | DLUME                  | 940           | 3           | 370            | 1,31 | 0                                          | PM - PEA              | K HR VOLUN                        | 4E       | 496          | 968         |                       | 1,464  |       |
| AM -             | K FACTOR(9                                                                     | 6)                     |               |             |                | 8.16 |                                            | PM - K FA             | CTOR(%)                           |          |              |             |                       | 9.12   |       |
| AM -             | D(%)<br>TIONAL PEA                                                             | K                      | 71.76         | 2           | 28.24          | 100  |                                            | PM -D(%)<br>DIRECTION |                                   |          | 33.88        | 66.12       |                       | 100    |       |
| AM -             | PEAK HR TI                                                                     | ME                     | 07:15 t       | o 08:15 AM  | 07:45 to 08:45 | 5 AM |                                            | PM - PEA              | K HR TIME                         |          | 03:00 to 04: | 00 PM 04:00 | to 05:00 PM           | 1      |       |
| AM -             | PEAK HR V                                                                      | DLUME                  | 940           | 4           | 411            |      |                                            | PM - PEA              | K HR VOLUN                        | ИE       | 541          | 980         |                       |        |       |
|                  | PERIOD (00:00-12:00) DIR 1  O DIRECTIONAL PEAK M - PEAK HR TIME 07:15 to 08:15 |                        |               | ı           | DIR 2          | тот  | AL                                         | PM PERIOD             | ( <b>12:00-24:0</b><br>CTIONAL PE | •        | DIR 1        | DIR 2       |                       | TOTAL  |       |
| AM -             | PEAK HR TI                                                                     | ME                     | 07:15         | to 08:15 AM |                |      |                                            | PM - PEA              | K HR TIME                         |          | 03:45 to 04  | 4:45 PM     |                       |        |       |
| AM -             | PEAK HR V                                                                      | DLUME                  | 940           | 9           | 940            | 1,31 | 0                                          | PM - PEA              | K HR VOLUN                        | 4E       | 496          | 541         |                       | 1,464  |       |
| AM -             | K FACTOR(9                                                                     | 6)                     |               |             |                | 8.16 |                                            | PM - K FA             | CTOR(%)                           |          |              |             |                       | 9.12   |       |
| AM -             | D(%)                                                                           |                        | 71.76         |             | 28.24          | 100  |                                            | PM -D(%)              | 1                                 |          | 33.88        | 66.12       |                       | 100    |       |
| NON CO<br>15:00) | MMUTER F                                                                       | ERIOD (09              | :00- DIR 1    | 1           | DIR 2          | тот  | AL                                         | 6-HR, 12-HR           | t, 24-HR PEI                      | RIODS    | DIR 1        | DIR 2       |                       | TOTAL  |       |
| TWO E            | DIRECTIONA                                                                     | L PEAK                 |               |             |                |      |                                            | AM 6-HR P             | PERIOD (06:0                      | 0-12:00) | 3,853        | 2,104       |                       | 5,957  |       |
|                  | HR TIME                                                                        |                        |               | to 03:45 PM |                |      |                                            |                       | PERIOD (00                        | ,        | 4,685        | 2,281       |                       | 6,966  |       |
|                  | HR VOLUM                                                                       |                        | 525           | 1           | 709            | 1,23 | 4                                          |                       | ERIOD (12:0                       | ,        | 2,666        | 4,075       |                       | 6,741  |       |
|                  | TIONAL PEA                                                                     | K                      |               |             |                |      |                                            |                       | PERIOD (12:                       | ,        | 3,310        | 5,774       |                       | 9,084  |       |
|                  | HR TIME                                                                        |                        |               | o 03:45 PM  |                | 5 PM |                                            |                       | IOD (12:00-2                      | 24:00)   | 7,995        | 8,055       |                       | 16,050 |       |
| PEAK             | HR VOLUM                                                                       | E                      | 525           |             | 709            |      |                                            | D%                    |                                   |          | 49.81        | 50.19       |                       | 100    |       |
| IME              |                                                                                | DIR                    |               | TIME        |                | DIR  |                                            | TIME                  |                                   | DIR      |              | TIME        |                       | DIR    |       |
| AM               | DIR1                                                                           | 2                      | TOTAL         | - AM        | DIR1           | 2    | TOTAL                                      | - PM                  | DIR1                              | 2        | TOTAL        | - PM        | DIR1                  | 2      | TOTAL |
| 12:00            |                                                                                | 06:00                  |               |             |                |      | 12:00                                      |                       |                                   |          | 06:00        |             |                       |        |       |
| -                | 2                                                                              | 2 21 23 - 17           |               |             | 179            | 29   | 208                                        |                       | 107                               | 123      | 230          | -           | 78                    | 150    | 22    |
| 12:15            | 06:15                                                                          |                        |               |             |                |      |                                            | 12:15                 |                                   |          |              | 06:15       |                       |        |       |
| 12:15            | 06:15                                                                          |                        |               |             |                |      |                                            | 12:15                 |                                   |          |              | 06:15       |                       |        |       |
| -                | 2                                                                              | 14                     | 16            |             | 216            | 27   | 243                                        |                       | 113                               | 108      | 221          |             | 64                    | 162    | 22    |
| 12:30            |                                                                                | 2 14 16 - 216<br>06:30 |               |             |                |      |                                            | 12:30                 |                                   |          |              | 06:30       |                       |        |       |

| 9:37 AM |         |          |          |            |     |     |     | 15 Minute | Report |     |       |         |        |     |       |
|---------|---------|----------|----------|------------|-----|-----|-----|-----------|--------|-----|-------|---------|--------|-----|-------|
| OT RII  | MS Trat | ffic Sta | tion Ana | alyzer (v4 | 7)  |     |     |           |        |     |       |         | Log Ou | t 🖨 | Print |
| 12:30   |         |          |          | 06:30      |     |     |     | 12:30     |        |     |       | 06:30   |        |     |       |
| -       | 5       | 9        | 14       |            | 189 | 54  | 243 |           | 93     | 110 | 203   | -       | 77     | 136 | 213   |
| 12:45   |         |          |          | 06:45      |     |     |     | 12:45     |        |     |       | 06:45   |        |     |       |
| 12:45   |         |          |          | 06:45      |     |     |     | 12:45     |        |     |       | 06:45   |        |     |       |
| -       | 1       | 3        | 4        | -          | 214 | 41  | 255 | -         | 104    | 119 | 223   | -       | 55     | 127 | 182   |
| 01:00   |         |          |          | 07:00      |     |     |     | 01:00     |        |     |       | 07:00   |        |     |       |
| 01:00   |         |          |          | 07:00      |     |     |     | 01:00     |        |     |       | 07:00   |        |     |       |
| _       | 2       | 4        | 6        | -          | 244 | 49  | 293 |           | 99     | 107 | 206   | -       | 31     | 112 | 143   |
| 01:15   |         |          |          | 07:15      |     |     |     | 01:15     |        |     |       | 07:15   |        |     |       |
| 01:15   |         |          |          | 07:15      |     |     |     | 01:15     |        |     |       | 07:15   |        |     |       |
| -       | 3       | 8        | 11       | -          | 228 | 74  | 302 | -         | 98     | 116 | 214   | -       | 34     | 97  | 131   |
| 01:30   | ,       | Ü        |          | 07:30      | 220 | , , | 302 | 01:30     | 30     |     | 2.1-4 | 07:30   | 3-4    | 5.  | 13    |
| 01:30   |         |          |          | 07:30      |     |     |     | 01:30     |        |     |       | 07:30   |        |     |       |
| 01.50   | 1       | 6        | 7        | -          | 251 | 89  | 340 | 01.50     | 129    | 104 | 233   | 07.50   | 28     | 88  | 116   |
| 01:45   |         | 0        | '        | 07:45      | 231 | 05  | 540 | 01:45     | 123    | 104 | 233   | 07:45   | 20     | 00  |       |
| 01:45   |         |          |          | 07:45      |     |     |     | 01:45     |        |     |       | 07:45   |        |     |       |
| 01.45   | 5       | 1        | 6        | 07.45      | 215 | 93  | 308 | 01.45     | 112    | 127 | 239   | 07.45   | 34     | 75  | 109   |
| 02:00   | ,       | '        | 0        | 08:00      | 213 | 93  | 300 | 02:00     | 112    | 127 | 239   | 08:00   | 34     | /3  | 10    |
|         |         |          |          |            |     |     |     |           |        |     |       |         |        |     |       |
| 02:00   |         |          | 5        | 08:00      | 240 | 114 | 200 | 02:00     | 102    | 121 | 222   | 08:00   | 22     | 59  | 0.    |
| 02:15   | 4       | 1        | 3        | 08:15      | 246 | 114 | 360 | 02:15     | 102    | 121 | 223   | 08:15   | 23     | 59  | 82    |
|         |         |          |          |            |     |     |     |           |        |     |       |         |        |     |       |
| 02:15   | _       | _        | _        | 08:15      |     |     |     | 02:15     |        |     |       | 08:15   |        |     |       |
| -       | 3       | 5        | 8        |            | 171 | 108 | 279 | - 02.20   | 107    | 134 | 241   | - 00.20 | 24     | 74  | 98    |
| 02:30   |         |          |          | 08:30      |     |     |     | 02:30     |        |     |       | 08:30   |        |     |       |
| 02:30   |         |          |          | 08:30      |     |     |     | 02:30     |        |     |       | 08:30   |        |     |       |
| -       | 9       | 0        | 9        |            | 160 | 96  | 256 |           | 122    | 163 | 285   |         | 25     | 65  | 90    |
| 02:45   |         |          |          | 08:45      |     |     |     | 02:45     |        |     |       | 08:45   |        |     |       |
| 02:45   |         |          |          | 08:45      |     |     |     | 02:45     |        |     |       | 08:45   |        |     |       |
|         | 6       | 4        | 10       |            | 136 | 90  | 226 | :         | 117    | 169 | 286   |         | 32     | 51  | 83    |
| 03:00   |         |          |          | 09:00      |     |     |     | 03:00     |        |     |       | 09:00   |        |     |       |
| 03:00   |         |          |          | 09:00      |     |     |     | 03:00     |        |     |       | 09:00   |        |     |       |
| -       | 14      | 4        | 18       | -          | 131 | 89  | 220 | -         | 115    | 158 | 273   | -       | 17     | 54  | 7     |
| 03:15   |         |          |          | 09:15      |     |     |     | 03:15     |        |     |       | 09:15   |        |     |       |
| 03:15   |         |          |          | 09:15      |     |     |     | 03:15     |        |     |       | 09:15   |        |     |       |
|         | 13      | 2        | 15       |            | 123 | 95  | 218 | :         | 153    | 167 | 320   |         | 26     | 73  | 99    |
| 03:30   |         |          |          | 09:30      |     |     |     | 03:30     |        |     |       | 09:30   |        |     |       |
| 03:30   |         |          |          | 09:30      |     |     |     | 03:30     |        |     |       | 09:30   |        |     |       |
| -       | 24      | 2        | 26       | -          | 106 | 74  | 180 | -         | 140    | 215 | 355   | -       | 19     | 66  | 85    |
| 03:45   |         |          |          | 09:45      |     |     |     | 03:45     |        |     |       | 09:45   |        |     |       |
| 03:45   |         |          |          | 09:45      |     |     |     | 03:45     |        |     |       | 09:45   |        |     |       |
| -       | 35      | 4        | 39       | -          | 141 | 104 | 245 | -         | 133    | 224 | 357   | -       | 20     | 34  | 54    |
| 04:00   |         |          |          | 10:00      |     |     |     | 04:00     |        |     |       | 10:00   |        |     |       |

hwypdc07:8080/ords/f?p=101:8:6778511449429::NO:RP:P8\_COUNT\_NUMBER,P8\_SURVEY\_DAY:39797,22

2/4

| DOT R               | MS Tra | ffic Sta | tion Ana | alyzer (v4          | 7)  |     |     |                     |     |     |     |                     | Log Out | -   ⊕ F | Print |
|---------------------|--------|----------|----------|---------------------|-----|-----|-----|---------------------|-----|-----|-----|---------------------|---------|---------|-------|
| 04:00<br>-<br>04:15 | 46     | 5        | 51       | 10:00<br>-<br>10:15 | 134 | 104 | 238 | 04:00<br>-<br>04:15 | 109 | 236 | 345 | 10:00<br>-<br>10:15 | 11      | 47      |       |
| 04:15               |        |          |          | 10:15               |     |     |     | 04:15               |     |     |     | 10:15               |         |         |       |
| 04:30               | 45     | 4        | 49       | 10:30               | 115 | 105 | 220 | 04:30               | 121 | 261 | 382 | 10:30               | 17      | 41      |       |
| 04:30               | 43     | 3        | 46       | 10:30               | 99  | 119 | 218 | 04:30               | 133 | 247 | 380 | 10:30               | 7       | 46      |       |
| 04:45<br>04:45      |        |          |          | 10:45<br>10:45      |     |     |     | 04:45<br>04:45      |     |     |     | 10:45<br>10:45      |         |         |       |
| 05:00               | 64     | 2        | 66       | 11:00               | 106 | 92  | 198 | 05:00               | 105 | 236 | 341 | 11:00               | 6       | 39      |       |
| 05:00               |        |          |          | 11:00               |     |     |     | 05:00               |     |     |     | 11:00               |         |         |       |
| 05:15               | 78     | 6        | 84       | -<br>11:15          | 122 | 93  | 215 | 05:15               | 82  | 234 | 316 | -<br>11:15          | 5       | 25      |       |
| 05:15<br>-<br>05:30 | 111    | 18       | 129      | 11:15<br>-<br>11:30 | 115 | 112 | 227 | 05:15<br>-<br>05:30 | 79  | 216 | 295 | 11:15<br>-<br>11:30 | 4       | 19      |       |
| 05:30               | 146    | 30       | 176      | 11:30               | 109 | 115 | 224 | 05:30               | 108 | 190 | 298 | 11:30               | 5       | 41      |       |
| 05:45               |        |          |          | 11:45<br>11:45      |     |     |     | 05:45<br>05:45      |     |     |     | 11:45<br>11:45      |         |         |       |
| 06:00               | 170    | 21       | 191      | 12:00               | 103 | 138 | 241 | 06:00               | 85  | 190 | 275 | 12:00               | 2       | 18      |       |



HDOT RIMS Traffic Station Analyzer (v47)

Log Or

D Print

RS

| Run Date         | e: 01-DEC-2                       | :1         |               |              | Sta           |          | Highwa                    | rtment of Tr<br>lys Division<br>Volume Rep | •                                 | tion,     |              |              |             |          |       |
|------------------|-----------------------------------|------------|---------------|--------------|---------------|----------|---------------------------|--------------------------------------------|-----------------------------------|-----------|--------------|--------------|-------------|----------|-------|
|                  | B710019054                        |            | NCIPAL ARTERI | AL OTHER     |               |          | n: Hawaii<br>nt Type: CLA |                                            | DIR 1: +MP                        |           | DIR          | 2: -MP       | Final AAI   |          |       |
| Location         |                                   | NDAIN.FRII | NCIPAL ARTERI | AL - OTHER   |               |          | E: 23-OCT-1               |                                            | Counter Typ                       | pe. Tube  |              |              | Koute No    | . 19     |       |
| AM CON<br>09:00) | IMUTER PE                         | RIOD (05   | :00- DIR 1    |              | DIR 2         | тот      | AL                        | PM COMMU<br>19:00)                         | TER PERIO                         | O (15:00- | DIR 1        | DIR 2        |             | TOTAL    |       |
| TWO              | DIRECTIONA                        | L PEAK     |               |              |               |          |                           | TWO DIRE                                   | CTIONAL PE                        | AK        |              |              |             |          |       |
| AM -             | PEAK HR TI                        | ME         | 07:15         | to 08:15 AM  |               |          |                           | PM - PEA                                   | K HR TIME                         |           | 04:15 to 0   | 5:15 PM      |             |          |       |
| AM -             | PEAK HR VO                        | DLUME      | 972           |              | 333           | 1,30     |                           | PM - PEA                                   | K HR VOLUN                        | ΛE        | 427          | 931          |             | 1,358    |       |
| AM -             | K FACTOR(9                        | 6)         |               |              |               | 8.04     |                           | PM - K FA                                  | CTOR(%)                           |           |              |              |             | 8.37     |       |
| AM -             | D(%)<br>TIONAL PEA                | K          | 74.48         |              | 25.52         | 100      |                           | PM -D(%)<br>DIRECTION                      |                                   |           | 31.44        | 68.56        |             | 100      |       |
| AM -             | PEAK HR TI                        | ME         | 07:00         | to 08:00 AM  | 07:45 to 08:4 | 5 AM     |                           | PM - PEA                                   | K HR TIME                         |           | 03:15 to 04: | 15 PM 04:15  | to 05:15 PM | 1        |       |
| AM -             | PEAK HR VO                        | DLUME      | 1,007         |              | 386           |          |                           | PM - PEA                                   | K HR VOLUN                        | ΛE        | 511          | 931          |             |          |       |
|                  | I <b>OD (00:00-</b><br>DIRECTIONA | -          | DIR 1         |              | DIR 2         | тот      | AL                        | PM PERIOD                                  | ( <b>12:00-24:0</b><br>CTIONAL PE |           | DIR 1        | DIR 2        |             | TOTAL    |       |
| AM -             | PEAK HR TI                        | ME         | 07:15         | to 08:15 AM  |               |          |                           | PM - PEA                                   | K HR TIME                         |           | 04:15 to 0   | 5:15 PM      |             |          |       |
| AM -             | PEAK HR VO                        | DLUME      | 972           |              | 1,007         | 1,30     | 5                         | PM - PEA                                   | K HR VOLUN                        | ΛE        | 427          | 528          |             | 1,358    |       |
| AM -             | K FACTOR(9                        | 6)         |               |              |               | 8.04     |                           | PM - K FA                                  | CTOR(%)                           |           |              |              |             | 8.37     |       |
| AM -             | D(%)                              |            | 74.48         |              | 25.52         | 100      |                           | PM -D(%)                                   |                                   |           | 31.44        | 68.56        |             | 100      |       |
| NON CO<br>15:00) | MMUTER P                          | ERIOD (0   | 9:00- DIR 1   |              | DIR 2         | тот      | AL                        | 6-HR, 12-HR                                | , 24-HR PEI                       | RIODS     | DIR 1        | DIR 2        |             | TOTAL    |       |
| TWO E            | DIRECTIONA                        | L PEAK     |               |              |               |          |                           | AM 6-HR P                                  | PERIOD (06:0                      | 0-12:00)  | 3,915        | 2,152        |             | 6,067    |       |
|                  | HR TIME                           |            |               | to 03:45 PM  |               |          |                           |                                            | PERIOD (00:                       | ,         | 4,767        | 2,345        |             | 7,112    |       |
|                  | HR VOLUM                          |            | 521           |              | 759           | 1,28     | 0                         |                                            | ERIOD (12:0                       |           | 2,718        | 4,098        |             | 6,816    |       |
|                  | TIONAL PEA                        | K          |               |              |               |          |                           |                                            | PERIOD (12:                       | ,         | 3,343        | 5,771        |             | 9,114    |       |
|                  | HR TIME                           |            |               | to 03:15 PM  |               | 5 PM     |                           |                                            | IOD (12:00-2                      | 24:00)    | 8,110        | 8,116        |             | 16,226   |       |
| PEAK             | HR VOLUM                          | E          | 528           |              | 759           |          |                           | D%                                         |                                   |           | 49.98        | 50.02        |             | 100      |       |
| TIME<br>- AM     | DIR1                              | DIR<br>2   | TOTAL         | TIME<br>- AM | DIR1          | DIR<br>2 | TOTAL                     | TIME<br>- PM                               | DIR1                              | DIR<br>2  | TOTAL        | TIME<br>- PM | DIR1        | DIR<br>2 | TOTAL |
| 12:00            |                                   |            |               | 06:00        |               |          |                           | 12:00                                      |                                   |           |              | 06:00        |             |          |       |
| -                | 4                                 | 16         | 20            | -            | 167           | 36       | 203                       | -                                          | 90                                | 117       | 207          | -            | 83          | 149      | 232   |
| 12:15            |                                   |            |               | 06:15        |               |          |                           | 12:15                                      |                                   |           |              | 06:15        |             |          |       |
| 12:15            |                                   |            |               | 06:15        |               |          |                           | 12:15                                      |                                   |           |              | 06:15        |             |          |       |
| -                | 2                                 | 9          | 11            |              | 209           | 40       | 249                       |                                            | 123                               | 126       | 249          |              | 72          | 148      | 220   |
| 12:30            |                                   |            |               | 06:30        |               |          |                           | 12:30                                      |                                   |           |              | 06:30        |             |          |       |
|                  |                                   |            |               |              |               |          |                           |                                            |                                   |           |              |              |             |          |       |
|                  |                                   |            |               |              |               |          |                           |                                            |                                   |           |              |              |             |          |       |

| OOT RI              | MS Tra | ffic Sta | tion Ana | alyzer (v4          | 7)  |     |     |                     |     |     |     |                     | Log Out | A Prin | it |
|---------------------|--------|----------|----------|---------------------|-----|-----|-----|---------------------|-----|-----|-----|---------------------|---------|--------|----|
| 12:30<br>-<br>12:45 | 4      | 22       | 26       | 06:30<br>-<br>06:45 | 211 | 47  | 258 | 12:30<br>-<br>12:45 | 104 | 123 | 227 | 06:30<br>-<br>06:45 | 65      | 145    | 2  |
| 12:45               | 4      | 7        | 11       | 06:45               | 198 | 48  | 246 | 12:45               | 111 | 114 | 225 | 06:45               | 64      | 121    | 18 |
| 01:00               | 3      | 6        | 9        | 07:00<br>07:00<br>- | 243 | 45  | 288 | 01:00<br>01:00<br>- | 136 | 120 | 256 | 07:00<br>07:00      | 39      | 123    | 1  |
| 01:15               | 1      | 8        | 9        | 07:15<br>07:15      | 281 | 62  | 343 | 01:15<br>01:15      | 115 | 123 | 238 | 07:15<br>07:15      | 34      | 117    | 1. |
| 01:30<br>01:30      | 2      |          |          | 07:30<br>07:30      |     |     |     | 01:30<br>01:30      |     |     |     | 07:30<br>07:30      |         |        |    |
| 01:45<br>01:45      | 3      | 2        | 5        | 07:45<br>07:45      | 249 | 75  | 324 | 01:45<br>01:45      | 106 | 160 | 266 | 07:45<br>07:45      | 26      | 93     | 1  |
| 02:00<br>02:00      | 3      | 3        | 6        | 08:00               | 234 | 100 | 334 | 02:00<br>02:00      | 106 | 126 | 232 | 08:00<br>08:00      | 21      | 60     |    |
| 02:15               | 4      | 3        | 7        | 08:15               | 208 | 96  | 304 | 02:00               | 105 | 135 | 240 | 08:15               | 21      | 52     |    |
| 02:15               | 1      | 2        | 3        | 08:15<br>-<br>08:30 | 135 | 90  | 225 | 02:15<br>-<br>02:30 | 144 | 131 | 275 | 08:15<br>-<br>08:30 | 25      | 66     |    |
| 02:30<br>-<br>02:45 | 5      | 0        | 5        | 08:30<br>-<br>08:45 | 172 | 100 | 272 | 02:30<br>-<br>02:45 | 129 | 143 | 272 | 08:30<br>-<br>08:45 | 22      | 77     |    |
| 02:45               | 12     | 1        | 13       | 08:45<br>-<br>09:00 | 153 | 97  | 250 | 02:45<br>-<br>03:00 | 128 | 138 | 266 | 08:45<br>-<br>09:00 | 25      | 55     |    |
| 03:00<br>-<br>03:15 | 8      | 3        | 11       | 09:00<br>-<br>09:15 | 140 | 90  | 230 | 03:00<br>-<br>03:15 | 127 | 204 | 331 | 09:00<br>-<br>09:15 | 14      | 49     |    |
| 03:15<br>-<br>03:30 | 15     | 3        | 18       | 09:15<br>-<br>09:30 | 122 | 85  | 207 | 03:15<br>-<br>03:30 | 126 | 205 | 331 | 09:15<br>-<br>09:30 | 27      | 51     |    |
| 03:30<br>-<br>03:45 | 24     | 2        | 26       | 09:30<br>-<br>09:45 | 99  | 90  | 189 | 03:30<br>-<br>03:45 | 140 | 212 | 352 | 09:30<br>-<br>09:45 | 17      | 45     |    |
| 03:45               | 28     | 3        | 31       | 09:45               | 133 | 106 | 239 | 03:45               | 114 | 200 | 314 | 09:45               | 11      | 47     |    |

| 04:00 |     |    |     | 10:00   |     |     |     | 04:00   |     |     |     | 10:00          |    |     |    |
|-------|-----|----|-----|---------|-----|-----|-----|---------|-----|-----|-----|----------------|----|-----|----|
| -     | 48  | 5  | 53  | -       | 144 | 95  | 239 |         | 131 | 204 | 335 | -              | 11 | 49  | 60 |
| 04:15 |     |    |     | 10:15   |     |     |     | 04:15   |     |     |     | 10:15          |    |     |    |
| 04:15 |     |    |     | 10:15   |     |     |     | 04:15   |     |     |     | 10:15          |    |     |    |
| -     | 53  | 5  | 58  | -       | 134 | 129 | 263 | -       | 102 | 213 | 315 | -              | 12 | 42  | 54 |
| 04:30 |     |    |     | 10:30   |     |     |     | 04:30   |     |     |     | 10:30          |    |     |    |
| 04:30 |     |    |     | 10:30   |     |     |     | 04:30   |     |     |     | 10:30          |    |     |    |
| -     | 44  | 4  | 48  | -       | 113 | 117 | 230 | -       | 108 | 241 | 349 | -              | 11 | 36  | 47 |
| 04:45 |     |    |     | 10:45   |     |     |     | 04:45   |     |     |     | 10:45          |    |     |    |
| 04:45 |     |    |     | 10:45   |     |     |     | 04:45   |     |     |     | 10:45          |    |     |    |
| -     | 74  | 8  | 82  | -       | 135 | 113 | 248 | -       | 109 | 248 | 357 | -              | 8  | 34  | 4. |
| 05:00 |     |    |     | 11:00   |     |     |     | 05:00   |     |     |     | 11:00          |    |     |    |
| 05:00 |     | _  |     | 11:00   |     |     |     | 05:00   |     |     |     | 11:00          |    |     | _  |
| -     | 88  | 9  | 97  |         | 105 | 127 | 232 |         | 108 | 229 | 337 |                | 6  | 26  | 3  |
| 05:15 |     |    |     | 11:15   |     |     |     | 05:15   |     |     |     | 11:15          |    |     |    |
| 05:15 | 420 |    | 404 | 11:15   | 400 | 405 | 222 | 05:15   |     | 200 | 207 | 11:15          |    | 2.4 |    |
| 05:30 | 120 | 11 | 131 | 11:30   | 123 | 106 | 229 | 05:30   | 88  | 209 | 297 | - 11.20        | 3  | 24  | 27 |
| 05:30 |     |    |     | 11:30   |     |     |     | 05:30   |     |     |     | 11:30<br>11:30 |    |     |    |
| -     | 146 | 36 | 182 | - 11.50 | 92  | 132 | 224 | 05.50   | 103 | 197 | 300 | - 11.50        | 5  | 42  | 4  |
| 05:45 | 140 | 20 | 102 | 11:45   | 32  | 132 | 224 | 05:45   | 103 | 131 | 500 | 11:45          | 3  | 42  | 4  |
| 05:45 |     |    |     | 11:45   |     |     |     | 05:45   |     |     |     | 11:45          |    |     |    |
| -     | 158 | 25 | 183 | - 11.45 | 115 | 126 | 241 | - 05.45 | 65  | 180 | 245 | - 11.45        | 3  | 22  | 2  |
| 06:00 | 130 | 23 | 103 | 12:00   | 113 | 120 | 241 | 06:00   | 03  | 130 | 243 | 12:00          | ,  |     | 2  |



hwypdc07:8080/ords/f?p=101:8:6778511449429::NO:RP:P8\_COUNT\_NUMBER,P8\_SURVEY\_DAY:39797,23

3/4

12/1/21, 9:38 AM

HDOT DIMS Traffic Station Analyzor (v47)

15 Minute Report

| Run Date         | e: 01-DEC-2        | 21          |                      |              | Stat          |      | Highwa                                    | tment of Tr<br>ys Division<br>/olume Rep | •                                   | tion,     |              |             |                       |                    |       |
|------------------|--------------------|-------------|----------------------|--------------|---------------|------|-------------------------------------------|------------------------------------------|-------------------------------------|-----------|--------------|-------------|-----------------------|--------------------|-------|
|                  |                    |             | IPAL ARTERIA         | L - OTHER    |               | Cou  | n: Hawaii<br>nt Type: CLA<br>E: 14-DEC-20 | SS                                       | DIR 1: +MP<br>Counter Typ           |           | DIR          | t 2: -MP    | Final AAD<br>Route No | OT: 13100<br>o: 19 |       |
| AM COM           | IMUTER PE          | RIOD (05:00 | D- DIR 1             |              | DIR 2         | тот  | AL                                        | PM COMMU<br>19:00)                       | TER PERIOD                          | (15:00-   | DIR 1        | DIR 2       |                       | TOTAL              |       |
| TWO              | DIRECTIONA         | L PEAK      |                      |              |               |      |                                           | TWO DIRE                                 | CTIONAL PE                          | ΑK        |              |             |                       |                    |       |
|                  | PEAK HR TI         |             | 07:15 t              | o 08:15 AM   |               |      |                                           | PM - PEA                                 | K HR TIME                           |           | 03:15 to 0-  | 4:15 PM     |                       |                    |       |
| AM -             | PEAK HR V          | DLUME       | 788                  | 2            | 75            | 1,06 | 3                                         | PM - PEA                                 | K HR VOLUN                          | 4E        | 445          | 886         |                       | 1,331              |       |
| AM -             | K FACTOR(9         | 6)          |                      |              |               | 7.56 |                                           | PM - K FA                                | CTOR(%)                             |           |              |             |                       | 9.46               |       |
| AM -<br>DIRECT   | D(%)<br>FIONAL PEA | K           | 74.13                | 2            | .5.87         | 100  |                                           | PM -D(%)<br>DIRECTION                    |                                     |           | 33.43        | 66.57       |                       | 100                |       |
| AM -             | PEAK HR TI         | ME          | 07:15 to             | 0 08:15 AM 0 | 7:45 to 08:45 | 5 AM |                                           | PM - PEA                                 | K HR TIME                           |           | 03:00 to 04: | 00 PM 04:00 | to 05:00 PM           | 1                  |       |
| AM -             | PEAK HR V          | DLUME       | 788                  | 3            | 110           |      |                                           | PM - PEA                                 | K HR VOLUN                          | ИE        | 448          | 905         |                       |                    |       |
|                  | OD (00:00-         |             | DIR 1                |              | DIR 2         | тот  | AL                                        | PM PERIOD<br>TWO DIRE                    | ( <b>12:00-24:0</b> 0<br>CTIONAL PE |           | DIR 1        | DIR 2       |                       | TOTAL              |       |
| AM -             | PEAK HR TI         | ME          | 07:15 t              | o 08:15 AM   |               |      |                                           | PM - PEA                                 | K HR TIME                           |           | 03:15 to 0-  | 4:15 PM     |                       |                    |       |
| AM -             | PEAK HR V          | DLUME       | 788                  | 2            | 75            | 1,06 | 3                                         | PM - PEA                                 | K HR VOLUN                          | 4E        | 445          | 886         |                       | 1,331              |       |
| AM -             | K FACTOR(9         | 6)          |                      |              |               | 7.56 |                                           | PM - K FA                                | CTOR(%)                             |           |              |             |                       | 9.46               |       |
| AM -             | D(%)               |             | 74.13                | 2            | 25.87         | 100  |                                           | PM -D(%)                                 |                                     |           | 33.43        | 66.57       |                       | 100                |       |
| NON CO<br>15:00) | MMUTER P           | ERIOD (09:  | <sup>00-</sup> DIR 1 |              | DIR 2         | тот  | AL                                        | 6-HR, 12-HR                              | , 24-HR PE                          | RIODS     | DIR 1        | DIR 2       |                       | TOTAL              |       |
| TWO E            | DIRECTIONA         | L PEAK      |                      |              |               |      |                                           | AM 6-HR F                                | PERIOD (06:0                        | 0-12:00)  | 3,412        | 1,732       |                       | 5,144              |       |
| PEAK             | HR TIME            |             | 02:45                | to 03:45 PM  |               |      |                                           | AM 12-HR                                 | PERIOD (00:                         | 00-12:00) | 4,080        | 1,858       |                       | 5,938              |       |
| PEAK             | I IR VOLUM         | Ε           | 432                  | 7            | 64            | 1,19 | 6                                         | PM 6-HR F                                | ERIOD (12:0                         | 0-18:00)  | 2,446        | 3,932       |                       | 6,378              |       |
| DIRECT           | TIONAL PEA         | K           |                      |              |               |      |                                           | PM 12-HR                                 | PERIOD (12:                         | 00-24:00) | 2,949        | 5,183       |                       | 8,132              |       |
| PEAK             | HR TIME            |             | 09:00 to             | 10:00 AM 0   | 2:45 to 03:45 | 5 PM |                                           |                                          | IOD (12:00-2                        | 24:00)    | 7,029        | 7,041       |                       | 14,070             |       |
| PEAK             | HR VOLUM           | E           | 488                  | 7            | 764           |      |                                           | D%                                       |                                     |           | 49.96        | 50.04       |                       | 100                |       |
| ГІМЕ             |                    | DIR         |                      | TIME         |               | DIR  |                                           | TIME                                     |                                     | DIR       |              | TIME        |                       | DIR                |       |
| - AM             | DIR1               | 2           | TOTAL                | - AM         | DIR1          | 2    | TOTAL                                     | - PM                                     | DIR1                                | 2         | TOTAL        | - PM        | DIR1                  | 2                  | TOTAL |
| 12:00            |                    |             |                      | 06:00        |               |      |                                           | 12:00                                    |                                     |           |              | 06:00       |                       |                    |       |
| -                | 2                  | 8           | 10                   |              | 149           | 21   | 170                                       | .                                        | 94                                  | 132       | 226          |             | 56                    | 154                | 21    |
| 12:15            |                    |             |                      | 06:15        |               |      |                                           | 12:15                                    |                                     |           |              | 06:15       |                       |                    |       |
| 12:15            |                    |             |                      | 06:15        |               |      |                                           | 12:15                                    |                                     |           |              | 06:15       |                       |                    |       |
| -                | 7                  | 11          | 18                   | -            | 149           | 35   | 184                                       | -                                        | 120                                 | 97        | 217          | _           | 54                    | 142                | 19    |
| 12:30            |                    |             |                      | 06:30        |               |      |                                           | 12:30                                    |                                     |           | 2            | 06:30       |                       |                    |       |

| 9:38 AM |         |           |          |            |     |    |     | 15 Minute | Report |     |     |         |         |     |      |
|---------|---------|-----------|----------|------------|-----|----|-----|-----------|--------|-----|-----|---------|---------|-----|------|
| OT RII  | MS Trat | ffic Stat | tion Ana | alyzer (v4 | .7) |    |     |           |        |     |     |         | Log Out | ₽ ₽ | rint |
| 12:30   |         |           |          | 06:30      |     |    |     | 12:30     |        |     |     | 06:30   |         |     |      |
| -       | 5       | 4         | 9        |            | 176 | 36 | 212 |           | 95     | 117 | 212 |         | 54      | 111 | 165  |
| 12:45   |         |           |          | 06:45      |     |    |     | 12:45     |        |     |     | 06:45   |         |     |      |
| 12:45   |         |           |          | 06:45      |     |    |     | 12:45     |        |     |     | 06:45   |         |     |      |
| -       | 1       | 5         | 6        | -          | 183 | 29 | 212 | -         | 118    | 98  | 216 |         | 48      | 120 | 168  |
| 01:00   |         |           |          | 07:00      |     |    |     | 01:00     |        |     |     | 07:00   |         |     |      |
| 01:00   |         |           |          | 07:00      |     |    |     | 01:00     |        |     |     | 07:00   |         |     |      |
| -       | 3       | 6         | 9        |            | 162 | 52 | 214 |           | 110    | 118 | 228 |         | 33      | 91  | 124  |
| 01:15   |         |           |          | 07:15      |     |    |     | 01:15     |        |     |     | 07:15   |         |     |      |
| 01:15   |         |           |          | 07:15      |     |    |     | 01:15     |        |     |     | 07:15   |         |     |      |
| -       | 3       | 6         | 9        | -          | 214 | 45 | 259 | -         | 97     | 107 | 204 | -       | 32      | 72  | 104  |
| 01:30   |         |           |          | 07:30      |     |    |     | 01:30     |        |     |     | 07:30   | -       |     |      |
| 01:30   |         |           |          | 07:30      |     |    |     | 01:30     |        |     |     | 07:30   |         |     |      |
| 01.50   | 3       | 9         | 12       | -          | 227 | 77 | 304 | 01.50     | 99     | 132 | 231 | 07.50   | 26      | 63  | 89   |
| 01:45   | ,       | -         | "-       | 07:45      |     |    | 304 | 01:45     | 33     | 152 | 231 | 07:45   | 20      | 05  | 0.   |
| 01:45   |         |           |          | 07:45      |     |    |     | 01:45     |        |     |     | 07:45   |         |     |      |
| 01.43   | 3       | 3         | 6        | 07.43      | 184 | 78 | 262 | 01.43     | 106    | 110 | 216 | - 07.43 | 26      | 48  | 74   |
| 02:00   | 3       | 3         | 0        | 08:00      | 104 | 76 | 202 | 02:00     | 100    | 110 | 210 | 08:00   | 20      | 40  | /-   |
|         |         |           |          |            |     |    |     |           |        |     |     |         |         |     |      |
| 02:00   | 2       |           | 7        | 08:00      | 102 | 75 | 238 | 02:00     | 110    | 120 | 257 | 08:00   | 22      | 59  | 0.   |
|         | 3       | 4         | /        |            | 163 | 75 | 238 |           | 118    | 139 | 257 |         | 23      | 59  | 82   |
| 02:15   |         |           |          | 08:15      |     |    |     | 02:15     |        |     |     | 08:15   |         |     |      |
| 02:15   | _       | _         |          | 08:15      |     |    |     | 02:15     |        |     |     | 08:15   |         |     |      |
| -       | 5       | 3         | 8        | -          | 156 | 77 | 233 | -         | 121    | 129 | 250 | -       | 22      | 68  | 90   |
| 02:30   |         |           |          | 08:30      |     |    |     | 02:30     |        |     |     | 08:30   |         |     |      |
| 02:30   |         |           |          | 08:30      |     |    |     | 02:30     |        |     |     | 08:30   |         |     |      |
| -       | 3       | 1         | 4        |            | 141 | 80 | 221 |           | 122    | 137 | 259 |         | 15      | 28  | 43   |
| 02:45   |         |           |          | 08:45      |     |    |     | 02:45     |        |     |     | 08:45   |         |     |      |
| 02:45   |         |           |          | 08:45      |     |    |     | 02:45     |        |     |     | 08:45   |         |     |      |
|         | 8       | 2         | 10       |            | 137 | 59 | 196 |           | 114    | 152 | 266 |         | 20      | 38  | 58   |
| 03:00   |         |           |          | 09:00      |     |    |     | 03:00     |        |     |     | 09:00   |         |     |      |
| 03:00   |         |           |          | 09:00      |     |    |     | 03:00     |        |     |     | 09:00   |         |     |      |
| -       | 7       | 2         | 9        | -          | 133 | 65 | 198 | -         | 102    | 173 | 275 | -       | 18      | 26  | 44   |
| 03:15   |         |           |          | 09:15      |     |    |     | 03:15     |        |     |     | 09:15   |         |     |      |
| 03:15   |         |           |          | 09:15      |     |    |     | 03:15     |        |     |     | 09:15   |         |     |      |
| -       | 3       | 5         | 8        | -          | 129 | 76 | 205 |           | 112    | 209 | 321 | -       | 24      | 32  | 56   |
| 03:30   |         |           |          | 09:30      |     |    |     | 03:30     |        |     |     | 09:30   |         |     |      |
| 03:30   |         |           |          | 09:30      |     |    |     | 03:30     |        |     |     | 09:30   |         |     |      |
| -       | 19      | 1         | 20       | -          | 115 | 73 | 188 | -         | 104    | 230 | 334 | -       | 9       | 30  | 39   |
| 03:45   |         |           |          | 09:45      |     |    |     | 03:45     |        |     |     | 09:45   |         |     |      |
| 03:45   |         |           |          | 09:45      |     |    |     | 03:45     |        |     |     | 09:45   |         |     |      |
| -       | 27      | 1         | 28       | -          | 111 | 78 | 189 |           | 130    | 205 | 335 | -       | 10      | 20  | 30   |
| 04:00   |         |           |          | 10:00      |     |    |     | 04:00     |        |     |     | 10:00   |         |     |      |

 $hwypdc07:8080/ords/f?p=101:8:6778511449429::NO:RP:P8\_COUNT\_NUMBER,P8\_SURVEY\_DAY:44630,14$ 

2/4

| DOT R               | MS Tra | ffic Sta | tion Ana | alyzer (v4          | 7)  |     |     |                     |    |     |     |                     | Log Out | F  | rint |
|---------------------|--------|----------|----------|---------------------|-----|-----|-----|---------------------|----|-----|-----|---------------------|---------|----|------|
| 04:00<br>-<br>04:15 | 19     | 6        | 25       | 10:00<br>-<br>10:15 | 122 | 96  | 218 | 04:00<br>-<br>04:15 | 99 | 242 | 341 | 10:00<br>-<br>10:15 | 7       | 23 |      |
| 04:15               |        |          |          | 10:15               |     |     |     | 04:15               |    |     |     | 10:15               |         |    |      |
| 04:30               | 32     | 6        | 38       | 10:30               | 106 | 83  | 189 | 04:30               | 93 | 205 | 298 | 10:30               | 8       | 25 |      |
| 04:30               | 42     | 2        | 44       | 10:30               | 106 | 95  | 201 | 04:30               | 75 | 242 | 317 | 10:30               | 4       | 24 |      |
| 04:45               |        |          |          | 10:45<br>10:45      |     |     |     | 04:45<br>04:45      |    |     |     | 10:45<br>10:45      |         |    |      |
| 05:00               | 62     | 5        | 67       | 11:00               | 110 | 90  | 200 | 05:00               | 92 | 216 | 308 | 11:00               | 3       | 19 |      |
| 05:00               |        |          |          | 11:00               |     |     |     | 05:00               |    |     |     | 11:00               |         |    |      |
| 05:15               | 70     | 4        | 74       | -<br>11:15          | 119 | 101 | 220 | 05:15               | 90 | 225 | 315 | -<br>11:15          | 5       | 18 |      |
| 05:15<br>-<br>05:30 | 108    | 10       | 118      | 11:15<br>-<br>11:30 | 109 | 98  | 207 | 05:15<br>-<br>05:30 | 88 | 195 | 283 | 11:15<br>-<br>11:30 | 0       | 13 |      |
| 05:30               | 101    | 11       | 112      | 11:30               | 102 | 109 | 211 | 05:30               | 72 | 177 | 249 | 11:30               | 3       | 18 |      |
| 05:45               |        |          |          | 11:45               |     |     |     | 05:45               |    |     |     | 11:45               |         |    |      |
| 06:00               | 132    | 11       | 143      | 12:00               | 109 | 104 | 213 | 06:00               | 75 | 145 | 220 | 12:00               | 3       | 9  |      |



HDOT RIMS Traffic Station Analyzer (v47)

Loa

D Print

RS

| Run Date         | e: 01-DEC-2               | 21        |                |              | Sta   |          | Highwa                                   | rtment of Tr<br>rys Division<br>Volume Rep | •                                   | tion,    |             |               |                       |          |       |
|------------------|---------------------------|-----------|----------------|--------------|-------|----------|------------------------------------------|--------------------------------------------|-------------------------------------|----------|-------------|---------------|-----------------------|----------|-------|
|                  |                           |           | NCIPAL ARTERIA | AL - OTHER   |       | Cou      | n: Hawaii<br>nt Type: CLA<br>E: 15-DEC-2 | iss                                        | DIR 1: +MP<br>Counter Typ           |          | DIR         | <b>2:</b> -MP | Final AAI<br>Route No |          |       |
| AM CON<br>09:00) | IMUTER PE                 | RIOD (05: | 00- DIR 1      | ı            | DIR 2 | тот      | AL                                       | PM COMMU<br>19:00)                         | TER PERIOD                          | (15:00-  | DIR 1       | DIR 2         |                       | TOTAL    |       |
| TWO              | DIRECTIONA                | L PEAK    |                |              |       |          |                                          | TWO DIRE                                   | CTIONAL PE                          | AK       |             |               |                       |          |       |
| AM -             | PEAK HR TI                | ME        | 07:15          | to 08:15 AM  |       |          |                                          | PM - PEA                                   | K HR TIME                           |          | 03:45 to 04 | 4:45 PM       |                       |          |       |
|                  | PEAK HR V                 |           | 816            | 2            | 265   | 1,08     |                                          |                                            | K HR VOLUN                          | ΛE       | 382         | 919           |                       | 1,301    |       |
|                  | K FACTOR(9                | %)        |                |              |       | 7.22     |                                          | PM - K FA                                  | . ,                                 |          |             |               |                       | 8.69     |       |
| AM -             | D(%)<br>TIONAL PEA        | K         | 75.49          | 2            | 24.51 | 100      |                                          | PM -D(%)<br>DIRECTION                      |                                     |          | 29.36       | 70.64         |                       | 100      |       |
|                  | PEAK HR TI                |           |                | o 07:45 AM(  |       | 0 AM     |                                          |                                            | K HR TIME                           |          |             | 00 PM 03:45   | to 04:45 PM           | 1        |       |
| AM -             | PEAK HR V                 | OLUME     | 826            | 3            | 123   |          |                                          | PM - PEA                                   | K HR VOLUN                          | ΛE       | 432         | 919           |                       |          |       |
|                  | IOD (00:00-<br>DIRECTIONA |           | DIR 1          | ι            | DIR 2 | тот      | AL                                       | PM PERIOD<br>TWO DIRE                      | ( <b>12:00-24:0</b> )<br>CTIONAL PE |          | DIR 1       | DIR 2         |                       | TOTAL    |       |
| AM -             | PEAK HR TI                | ME        | 07:15          | to 08:15 AM  |       |          |                                          | PM - PEA                                   | K HR TIME                           |          | 03:45 to 04 | 4:45 PM       |                       |          |       |
|                  | PEAK HR V                 |           | 816            | 2            | 265   | 1,08     |                                          |                                            | K HR VOLUN                          | ΛE       | 382         | 919           |                       | 1,301    |       |
| AM -             | K FACTOR(9                | %)        |                |              |       | 7.22     |                                          | PM - K FA                                  | CTOR(%)                             |          |             |               |                       | 8.69     |       |
| AM -             | D(%)                      |           | 75.49          | 2            | 4.51  | 100      |                                          | PM -D(%)                                   |                                     |          | 29.36       | 70.64         |                       | 100      |       |
| NON CO<br>15:00) | MMUTER P                  | PERIOD (0 | 9:00- DIR 1    | ı            | DIR 2 | тот      | AL                                       | 6-HR, 12-HR                                | , 24-HR PE                          | RIODS    | DIR 1       | DIR 2         |                       | TOTAL    |       |
|                  | DIRECTIONA                | L PEAK    |                |              |       |          |                                          | AM 6-HR P                                  | ERIOD (06:0                         | 0-12:00) | 3,658       | 1,807         |                       | 5,465    |       |
|                  | HR TIME                   |           |                | to 03:45 PM  |       |          |                                          |                                            | PERIOD (00:                         | ,        | 4,380       | 1,930         |                       | 6,310    |       |
|                  | TIR VOLUM                 |           | 462            | 6            | 83    | 1,14     | 5                                        |                                            | ERIOD (12:0                         | ,        | 2,577       | 4,034         |                       | 6,611    |       |
|                  | TIONAL PEA                | .K        | 44             | 40.45.00     |       |          |                                          |                                            | PERIOD (12:                         | ,        | 3,156       | 5,508         |                       | 8,664    |       |
|                  | HR TIME                   | _         |                | o 12:45 PM ( |       | 5 PM     |                                          |                                            | IOD (12:00-2                        | 24:00)   | 7,536       | 7,438         |                       | 14,974   |       |
| PŁAK             | HR VOLUM                  | L         | 548            |              | 583   |          |                                          | D%                                         |                                     |          | 50.33       | 49.67         |                       | 100      |       |
| TIME<br>- AM     | DIR1                      | DIR<br>2  | TOTAL          | TIME<br>- AM | DIR1  | DIR<br>2 | TOTAL                                    | TIME<br>- PM                               | DIR1                                | DIR<br>2 | TOTAL       | TIME<br>- PM  | DIR1                  | DIR<br>2 | TOTAL |
| 12:00            |                           |           |                | 06:00        |       |          |                                          | 12:00                                      |                                     |          |             | 06:00         |                       |          |       |
| -                | 2                         | 12        | 14             | -            | 171   | 21       | 192                                      | -                                          | 148                                 | 127      | 275         | -             | 73                    | 167      | 240   |
| 12:15            |                           |           |                | 06:15        |       |          |                                          | 12:15                                      |                                     |          |             | 06:15         |                       |          |       |
| 12:15            |                           |           |                | 06:15        |       |          |                                          | 12:15                                      |                                     |          |             | 06:15         |                       |          |       |
|                  | 6                         | 10        | 16             |              | 159   | 27       | 186                                      | -                                          | 127                                 | 137      | 264         |               | 69                    | 156      | 225   |
| -                |                           |           |                | 06:30        |       |          |                                          | 12:30                                      |                                     |          |             | 06:30         |                       |          |       |

| , 9:38 AM |        |          |          |            |     |     |     | 15 Minute | Report |     |     |         |         |            |      |
|-----------|--------|----------|----------|------------|-----|-----|-----|-----------|--------|-----|-----|---------|---------|------------|------|
| OT RI     | MS Tra | ffic Sta | tion Ana | alyzer (v4 | 17) |     |     |           |        |     |     |         | Log Out | <b>⊕</b> P | rint |
| 12:30     | 3      | 3        | 6        | 06:30      | 159 | 38  | 197 | 12:30     | 131    | 114 | 245 | 06:30   | 53      | 128        |      |
| 12:45     |        |          |          | 06:45      |     |     |     | 12:45     |        |     |     | 06:45   |         |            |      |
| 12:45     |        |          |          | 06:45      |     |     |     | 12:45     |        |     |     | 06:45   |         |            |      |
|           | 3      | 0        | 3        |            | 229 | 45  | 274 |           | 112    | 115 | 227 |         | 45      | 106        |      |
| 01:00     |        |          |          | 07:00      |     |     |     | 01:00     |        |     |     | 07:00   |         |            |      |
| 01:00     |        |          |          | 07:00      | 470 |     | 207 | 01:00     | 400    | 405 | 224 | 07:00   |         | 400        |      |
| -         | 3      | 6        | 9        | -          | 173 | 34  | 207 | -         | 109    | 125 | 234 |         | 47      | 102        |      |
| 01:15     |        |          |          | 07:15      |     |     |     | 01:15     |        |     |     | 07:15   |         |            |      |
| 01:15     |        |          |          | 07:15      |     |     |     | 01:15     |        |     |     | 07:15   |         |            |      |
|           | 2      | 3        | 5        |            | 199 | 44  | 243 |           | 116    | 138 | 254 |         | 42      | 86         |      |
| 01:30     |        |          |          | 07:30      |     |     |     | 01:30     |        |     |     | 07:30   |         |            |      |
| 01:30     |        |          | _        | 07:30      |     |     |     | 01:30     |        |     |     | 07:30   |         |            |      |
|           | 1      | 4        | 5        |            | 225 | 56  | 281 |           | 91     | 113 | 204 |         | 29      | 85         |      |
| 01:45     |        |          |          | 07:45      |     |     |     | 01:45     |        |     |     | 07:45   |         |            |      |
| 01:45     |        |          |          | 07:45      |     |     |     | 01:45     |        |     |     | 07:45   |         |            |      |
| -         | 5      | 7        | 12       | -          | 216 | 69  | 285 | -         | 118    | 148 | 266 |         | 29      | 61         |      |
| 02:00     |        |          |          | 08:00      |     |     |     | 02:00     |        |     |     | 08:00   |         |            |      |
| 02:00     |        |          |          | 08:00      |     |     |     | 02:00     |        |     |     | 08:00   |         |            |      |
| -         | 3      | 2        | 5        | -          | 176 | 96  | 272 | -         | 97     | 153 | 250 | -       | 25      | 68         |      |
| 02:15     |        |          |          | 08:15      |     |     |     | 02:15     |        |     |     | 08:15   |         |            |      |
| 02:15     |        |          |          | 08:15      |     |     |     | 02:15     |        |     |     | 08:15   |         |            |      |
|           | 4      | 1        | 5        |            | 147 | 85  | 232 |           | 112    | 157 | 269 |         | 22      | 54         |      |
| 02:30     |        |          |          | 08:30      |     |     |     | 02:30     |        |     |     | 08:30   |         |            |      |
| 02:30     |        |          |          | 08:30      |     |     |     | 02:30     |        |     |     | 08:30   |         |            |      |
|           | 3      | 1        | 4        |            | 165 | 70  | 235 |           | 106    | 166 | 272 |         | 24      | 51         |      |
| 02:45     |        |          |          | 08:45      |     |     |     | 02:45     |        |     |     | 08:45   |         |            |      |
| 02:45     |        |          |          | 08:45      |     |     |     | 02:45     |        |     |     | 08:45   |         |            |      |
| -         | 8      | 2        | 10       | -          | 153 | 72  | 225 | -         | 120    | 160 | 280 | -       | 21      | 46         |      |
| 03:00     |        |          |          | 09:00      |     |     |     | 03:00     |        |     |     | 09:00   |         |            |      |
| 03:00     |        |          | 40       | 09:00      | 446 |     | 225 | 03:00     | 404    | 476 | 200 | 09:00   | 20      |            |      |
| - 02.45   | 14     | 4        | 18       | - 00.15    | 146 | 89  | 235 | - 02.15   | 124    | 176 | 300 | - 00.15 | 20      | 40         |      |
| 03:15     |        |          |          | 09:15      |     |     |     | 03:15     |        |     |     | 09:15   |         |            |      |
| 03:15     | -      |          | -        | 09:15      | 0.5 | 74  | 470 | 03:15     | 107    | 157 | 264 | 09:15   | 40      | 22         |      |
|           | 7      | 0        | 7        |            | 96  | 74  | 170 |           | 107    | 157 | 264 |         | 18      | 33         |      |
| 03:30     |        |          |          | 09:30      |     |     |     | 03:30     |        |     |     | 09:30   |         |            |      |
| 03:30     | 4.4    | ,        | 47       | 09:30      | 142 | 0.0 | 220 | 03:30     | 111    | 100 | 201 | 09:30   |         | 40         |      |
|           | 14     | 3        | 17       |            | 143 | 86  | 229 | - 02.45   | 111    | 190 | 301 | - 00.45 | 4       | 40         |      |
| 03:45     |        |          |          | 09:45      |     |     |     | 03:45     |        |     |     | 09:45   |         |            |      |
| 03:45     | 22     |          | 22       | 09:45      | 127 | 00  | 222 | 03:45     | 00     | 242 | 202 | 09:45   | 10      | 20         |      |
| - 04.00   | 32     | 0        | 32       | 10.00      | 137 | 96  | 233 | - 04.00   | 90     | 213 | 303 | 10.00   | 10      | 30         |      |
| 04:00     |        |          |          | 10:00      |     |     |     | 04:00     |        |     |     | 10:00   |         |            |      |

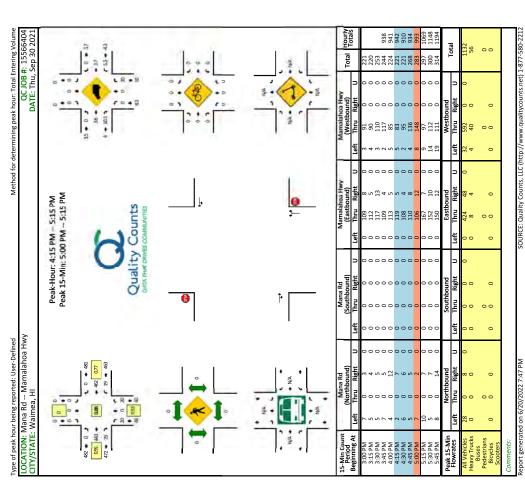
15 Minute Report

|     |      |    | 12:00              |     |     |            | 00:90  |     |     |     | 12:00 |     |    |     | 00:90 |
|-----|------|----|--------------------|-----|-----|------------|--------|-----|-----|-----|-------|-----|----|-----|-------|
| L   | 13   | L  | -                  | 742 | SSI | 76         |        | 246 | 104 | 142 | -     | ZSI | S١ | 742 | -     |
|     |      |    | 24:11              |     |     |            | St:S0  |     |     |     | 11:42 |     |    |     | St:S0 |
|     |      |    | 2 <del>1</del> :11 |     |     |            | St:S0  |     |     |     | SÞ:11 |     |    |     | S1:S0 |
| L   | 13   | 8  | -                  | 270 | 173 | <b>Z</b> 6 | -      | 240 | 112 | 152 | -     | 159 | 18 | LLL | -     |
|     |      |    | 11:30              |     |     |            | 05:20  |     |     |     | 11:30 |     |    |     | 08:3  |
|     |      |    | 11:30              |     |     |            | 05:20  |     |     |     | 11:30 |     |    |     | 08:5  |
| L   | 14   | t  | -                  | 567 | 506 | 63         | -      | 202 | 102 | 46  | -     | 601 | 8  | 101 | -     |
|     |      |    | 21:11              |     |     |            | S1:80  |     |     |     | SI:II |     |    |     | S1:S  |
|     |      |    | 21:11              |     |     |            | S1:S0  |     |     |     | SLILL |     |    |     | 51:5  |
| 7   | 56   | 2  | -                  | 982 | 561 | 16         | -      | 246 | 113 | 133 | -     | 78  | L  | 08  | -     |
|     |      |    | 11:00              |     |     |            | 00:50  |     |     |     | 11:00 |     |    |     | 00:2  |
|     |      |    | 11:00              |     |     |            | 00:50  |     |     |     | 11:00 |     |    |     | 00:2  |
| ₽ . | 32   | S  | -                  | 505 | 210 | 63         | -      | 212 | 86  | 114 | -     | 89  | ٤  | 59  | -     |
|     |      |    | 10:42              |     |     |            | St:40  |     |     |     | 10:45 |     |    |     | St:45 |
|     |      |    | 10:42              |     |     |            | St:t0  |     |     |     | 10:42 |     |    |     | 54:45 |
| S   | 45   | 6  | -                  | 320 | 258 | 76         | -      | 861 | 06  | 108 | -     | LS  | 7  | 23  | -     |
|     |      |    | 10:30              |     |     |            | 04:30  |     |     |     | 10:30 |     |    |     | 08:4  |
|     |      |    | 10:30              |     |     |            | 04:30  |     |     |     | 10:30 |     |    |     | 4:30  |
| S   | 01⁄2 | 13 | -                  | 346 | 240 | 109        | -      | 112 | 88  | 123 | -     | 7.5 | 9  | 1.8 | -     |
|     |      |    | 10:15              |     |     |            | S1:40  |     |     |     | 10:12 |     |    |     | S1:4  |
|     |      |    | 21:01              |     |     |            | S L:10 |     |     |     | 21:01 |     |    |     | S1:4  |
| b . | 38   | LL | -                  | 567 | 208 | 16         | -      | 214 | 76  | 155 | -     | 33  | 7  | 58  | -     |
|     |      |    | 10:00              |     |     |            | 00:40  |     |     |     | 10:00 |     |    |     | 00:1  |



Pwypdc07:8080/ords/f?p=101:8:6778511449429::NO:RP:P8\_COUNT\_NUMBER,P8\_SURVEY\_DAY:44630,15

| QC JOB #: 15566401<br>DATE: Thu, Sep 30 2021 | 13                                                            | 97.4                     | 6.00     |          | Total Hour!                 | т            | 279<br>264         |                    | +                  | 392 1812<br>336 1740<br>311 1506 | 305 1344<br>302 1254 | Total                    | 2180<br>84                   | 16<br>4                                      |           |
|----------------------------------------------|---------------------------------------------------------------|--------------------------|----------|----------|-----------------------------|--------------|--------------------|--------------------|--------------------|----------------------------------|----------------------|--------------------------|------------------------------|----------------------------------------------|-----------|
| C JOB #:                                     |                                                               | 68 + 8                   |          | 4.00.4   |                             | $^{+}$       | 000                |                    | Ŧ                  | 000                              | -                    | 3                        | 0                            |                                              |           |
| DATE                                         | 0 +01                                                         | * C + 2                  |          |          | le ë                        | æ            | 000                |                    |                    | 00 2                             |                      | Westbound                |                              | 0                                            |           |
|                                              | 99                                                            | 1                        | T        | 1 1      |                             |              | 4 210<br>8 186     |                    |                    |                                  | 4 145<br>3 154       | West                     |                              | 0 4 0                                        |           |
|                                              |                                                               |                          | 1        | Y        | 30                          | n °          | 000                | 00                 | 0 0                | 000                              | 00                   | -                        | 0                            |                                              |           |
|                                              | AM                                                            | 90 a                     | eso 4 }- | 800      | 15.6                        | Right        |                    | 39 10              |                    |                                  | 12 17                | Eastbound<br>hru Right   |                              | 0                                            |           |
|                                              | Peak-Hour: 7:15 AM — 8:15 AM<br>eak 15-Min: 7:45 AM — 8:00 AM | Counts                   |          | <b>←</b> |                             | _            |                    |                    |                    | 146<br>122<br>96                 |                      | ľ                        |                              | 00                                           |           |
|                                              | 15 AM                                                         | A SH                     |          |          | $\vdash$                    | 4            | 000                |                    |                    | 0 0 1                            |                      | d d                      |                              | 0                                            |           |
|                                              | Peak-Hour: 7:15 AM –<br>Peak 15-Min: 7:45 AM                  | Quality<br>DARK TRAFFORM |          |          | B:                          | ¥            |                    |                    |                    | 0 0                              | 0 0                  | e t                      |                              | 0                                            |           |
|                                              | Peak-I                                                        | Olg                      | 1000     | 4 P 1999 | 15.5                        | 5            |                    |                    |                    | 000                              |                      | Southbound<br>Thru Right |                              | 80                                           |           |
|                                              |                                                               |                          | d.       |          |                             | ٠            |                    | 00                 | 0                  | 100                              | 10                   | S                        |                              | 0                                            |           |
|                                              | 0                                                             | و ا                      |          |          |                             | )            | 000                | 00                 | 0                  | 000                              | 0                    | 3                        | 0                            |                                              |           |
|                                              | S • 38                                                        | 31 + 476                 | ~        | * *      | Kamamalu St<br>(Northbound) | Right        | 1 20 20            | 4 ಬ                | 18                 | 5 9 6                            | 8 7                  | bound<br>Right           | 95 0                         | 0                                            |           |
| iea, HI                                      | 8 ~ ·                                                         | CR + 82                  | 1        | ş. [1].ş | Kama<br>(North              | Thru         | 000                | 00                 | 0                  | 000                              | 00                   | North                    | 00                           | 40                                           |           |
| Wain                                         |                                                               | • · · · · · · · ·        | 1        |          |                             | -1           | 18                 | 43                 | 20                 | 18<br>24<br>24                   | 29<br>11             | Гeff                     |                              | 4                                            |           |
| CITY/STATE: Waimea, HI                       | 1083                                                          | 269 151 + 685            | 0        | dy.      | 15-Min Count<br>Period      | Beginning At | 6:45 AM<br>7:00 AM | 7:15 AM<br>7:30 AM | 7:45 AM<br>8:00 AM | 8:15 AM<br>8:30 AM<br>8:45 AM    | 9:00 AM<br>9:15 AM   | Peak 15-Min<br>Flowrates | All Vehicles<br>Heavy Trucks | Buses<br>Pedestrians<br>Bicycles<br>Scooters | Comments: |


3/4

| Je                                                      | 1 2                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |               | <u>~×</u>                                  | m m 2                                                          |
|---------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|--------------------------------------------|----------------------------------------------------------------|
| Volun                                                   | 6640<br>3 202                                                 | 44 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |               | Hourly<br>Totals                           | 1823<br>1823<br>1792<br>1843                                   |
| Method for determining peak hour: Total Entering Volume | QC JOB #: 15566402<br>DATE: Thu, Sep 30 2021                  | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 6 6                | *             | Total                                      | 463<br>469<br>419<br>472<br>463<br>483<br>438                  |
| otal Er                                                 | JOB #<br>Thu, !                                               | 5 + 0 4 5 + 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3766                 |               | ٦                                          | 000000                                                         |
| hour: 1                                                 | QC<br>ATE:                                                    | g • n •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3, 6                 | \$            | oa Hwy<br>ound)<br>Right                   | 0 0 0 0 0 0                                                    |
| peak                                                    |                                                               | 23 • 13 •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                    | **            | Mamalahoa Hwy<br>(Westbound)<br>Thru Right | 154<br>152<br>140<br>149<br>152<br>147                         |
| mining                                                  |                                                               | ÷ 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1                  | 1, 1,         |                                            | 15<br>14<br>14<br>14<br>15<br>17                               |
| deter                                                   |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |               | Left                                       | 11<br>6<br>9<br>4<br>4<br>8                                    |
| nod for                                                 |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | V             | ٥                                          | 0100000                                                        |
| Met                                                     |                                                               | 5 Σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2010                 |               | on Hwy<br>Dund)<br>Right                   | 28<br>17<br>36<br>37<br>38<br>38                               |
|                                                         |                                                               | 115 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 690 4                | 1000          | Mamalahon Hwy<br>(Eastbound)<br>Thru Right | 195<br>225<br>211<br>248<br>239<br>239<br>238                  |
|                                                         |                                                               | Peak 15-Min; 4:30 PM – 5:15 PM Peak 15-Min; 4:30 PM – 4:45 PM  Quality Counts  AND THE CHARTS COMMENTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | <del>4-</del> | I <sup>-</sup> I                           | 000                                                            |
|                                                         |                                                               | 30 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |               | Left                                       | 0040400                                                        |
|                                                         |                                                               | Alice Alice At the Attendance Attendance At the Attendance Attendance At the Attendance Att |                      |               | )<br>                                      | 000000                                                         |
|                                                         |                                                               | k 15-Min<br>K 15-Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                    | 2-4           | natu St<br>nound)<br>Right                 | 0117711                                                        |
|                                                         |                                                               | Peak<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 600                  | 4 F           | Kamamalu St<br>(Southbound)<br>Thru Right  | 000000                                                         |
|                                                         | wy                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q.                   | l l           | eff                                        | 00000                                                          |
| per                                                     | оа Н                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |               |                                            |                                                                |
| r-Defir                                                 | malak                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |               | ]<br>                                      | 000000                                                         |
| d: Use                                                  | - Mai                                                         | 2 + 564<br>SHI 09<br>11 + 1005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                    | <b>↑ ↑</b>    | Kamamalu St<br>(Northbound)<br>Thru Right  | 28<br>10<br>10<br>7<br>7                                       |
| eporte                                                  | lu St<br>1, H                                                 | 2 2 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | * 4 ***       | Caman<br>North<br>Thru                     | 1 8 0 0 0 0                                                    |
| eing r                                                  | nama<br>aimea                                                 | K - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·1 <del>&lt;</del> 1 | ş • · · ş     | Left (                                     | 46<br>26<br>26<br>18<br>24<br>13                               |
| Type of peak hour being reported: User-Defined          | LOCATION: Kamamalu St Mamalahoa Hwy<br>CITY/STATE: Waimea, HI | 72.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>→</b> [           | 1             |                                            |                                                                |
| f peak                                                  | STAT                                                          | 624 • 0 972 • 700 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100  | 0                    | 2             | 15-Min Count<br>Period<br>Beginning At     | 3:00 PM<br>3:15 PM<br>3:30 PM<br>3:45 PM<br>4:00 PM<br>4:15 PM |
| Type o                                                  | 10C/<br>CITY,                                                 | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |               | 15-M<br>Pe<br>Begir                        | 3:5<br>3:5<br>3:5<br>3:4<br>4:0<br>4:3<br>4:3                  |

| 15-Min Count<br>Period |      | Kamar<br>(North | (amamalu St<br>Northbound) |   |      | Kamar<br>(South | Kamamalu St<br>Southbound) |   | _    | Латаlahoa H<br>(Eastbound) | Mamalahon Hwy<br>(Eastbound) | 9 | ٢    | Mamalahoa H<br>(Westbound) | Mamalahoa Hwy<br>(Westbound) |   | Total | Hourly |
|------------------------|------|-----------------|----------------------------|---|------|-----------------|----------------------------|---|------|----------------------------|------------------------------|---|------|----------------------------|------------------------------|---|-------|--------|
| Beginning At           | Left | Thru            | Right                      | n | Left | Thru            | Right                      | n | Left | Thru                       | Right                        | n | Left | Thru                       | Right                        | n |       | Otals  |
| 3:00 PM                | 46   | -1              | 28                         | 0 | 0    | 0               | 0                          | 0 | 0    | 195                        | 28                           | 0 | 11   | 154                        | 0                            | 0 | 463   |        |
| 3:15 PM                | 24   | m               | 10                         | 0 | 0    | 0               | П                          | 0 | 0    | 225                        | 17                           | 1 | 9    | 152                        | 0                            | 0 | 469   |        |
| 3:30 PM                | 56   | 0               | 6                          | 0 | 0    | 0               | -                          | 0 | 7    | 211                        | 56                           | 0 | 4    | 140                        | 1                            | 0 | 419   |        |
| 3:45 PM                | 18   | 0               | 10                         | 0 | 0    | 0               | 7                          | 0 | 0    | 248                        | 36                           | 0 | 6    | 149                        | 0                            | 0 | 472   | 1823   |
| 4:00 PM                | 54   | 0               | 7                          | 0 | 0    | 0               | 2                          | 0 | -    | 539                        | 34                           | 0 | 4    | 152                        | 0                            | 0 | 463   | 1823   |
| 4:15 PM                | 13   | 0               | 6                          | 0 | 0    | 0               | 7                          | 0 | 0    | 238                        | 27                           | 0 | m    | 147                        | 0                            | 0 | 438   | 1792   |
| 4:30 PM                | 56   | 0               | 12                         | 0 | 1    | 0               | -1                         | 0 | 0    | 263                        | 38                           | 0 | m    | 126                        | 0                            | 0 | 470   | 1843   |
| 4:45 PM                | 23   | 0               | 4                          | 0 | 0    | 0               | 1                          | 0 | 0    | 244                        | 56                           | 0 | _ 1  | 122                        | 0                            | 0 | 427   | 1798   |
| 5:00 PM                | 17   | 0               | 9                          | 0 | П    | 0               |                            | 0 | 0    | 227                        | 16                           | 0 | œ    | 146                        | 7                            | 0 | 424   | 1759   |
| 5:15 PM                | 10   | 0               | 8                          | 0 | 0    | 0               | 1                          | 0 | 2    | 224                        | 23                           | 0 | 10   | 111                        | 0                            | 0 | 389   | 1710   |
| 5:30 PM                | 14   | 0               | 12                         | 0 | 0    | 0               | 0                          | 0 | -    | 202                        | 23                           | 0 | 7    | 106                        | 0                            | 0 | 365   | 1605   |
| 5:45 PM                | 2    | 0               | 2                          | 0 | 0    | 0               | 0                          | 0 | 0    | 182                        | 16                           | 0 | 4    | 98                         | 0                            | 0 | 298   | 1476   |
| Peak 15-Min            |      | North           | Northbound                 |   |      | Southbound      | punoc                      |   |      | Eastbound                  | puno                         |   |      | Westbound                  | puno                         |   | Total | _      |
| Flowrates              | Left | Thru            | Right                      | n | Left | Thru            | Right                      | n | Left | Thru                       | Right                        | Ω | Left | Thru                       | Right                        | n | 5     | 8      |
| All Vehicles           | 104  | 0               | 48                         | 0 | 4    | 0               | 4                          | 0 | 0    | 1052                       | 152                          | 0 | 12   | 504                        | 0                            | 0 | 1880  | 0:     |
| Heavy Trucks           | 4    | 0               | 4                          |   | 0    | 0               | 0                          |   | 0    | 12                         | 4                            |   | 0    | 28                         | 0                            |   | 52    |        |
| Buses                  |      |                 |                            |   |      |                 |                            |   |      |                            |                              |   |      |                            |                              |   |       |        |
| Pedestrians            |      | 0 0             |                            |   | ,    | 0 0             |                            |   | ,    | 0 0                        |                              |   |      | 0                          |                              |   | ٥.    |        |
| Scooters               | 0    | 0               | 0                          |   | 0    | >               | 0                          |   | 0    | >                          | 4                            |   | 0    | 0                          | 0                            |   | 4     |        |
| Comments:              |      |                 |                            |   |      |                 |                            |   |      |                            |                              |   |      |                            |                              |   |       |        |
|                        |      |                 |                            |   |      |                 |                            |   |      |                            |                              |   |      |                            |                              |   |       |        |

Report generated on 6/20/2022 7:46 PM SOURCE: Quality Counts, LLC (http://www.qualitycounts.net) 1-877-580-2212

Hourly Totals 1047 1175 1306 1388 1302 1199 1073 997 985 SOURCE: Quality Counts, LLC (http://www.qualitycounts.net) 1-877-580-2212 Method for determining peak hour: Total Entering Volum. QC JOB #: 15566403 DATE: Thu, Sep 30 2027 Total 1492 40 0 245 238 221 343 369 303 303 257 270 227 245 Total 1 v/v ٠٠١ Ť 203 196 167 254 242 242 201 177 177 117 1152 1152 **●** Peak-Hour: 7:15 AM — 8:15 AM Peak 15-Min: 7:30 AM — 7:45 AM Quality Counts Type of peak hour being reported: System-wide Peak LOCATION: Mana Rd -- Mamalahoa Hwy CITY/STATE: Waimea, HI Report generated on 10/6/2021 12:05 PM 442 AV (Northbound)
Left Thru Right 0 • 0 1 22 0 42 112 0 46 113 046 94 • \$ NA 15-Min Count Period Beginning At 6:30 AW 6:45 AW 7:00 AW 7:15 AW 7:45 AW 8:00 AW 8:15 AW 8:45 AW 8:45 AW 9:00 AW 9:15 AW



Hourly Totals 53 153 254 263 263 255 171 76 61 SOURCE: Quality Counts, LLC (http://www.qualitycounts.net) 1-877-580-2212 Method for determining peak hour: Total Entering Volum:
QC JOB #: 15566405
DATE: Thu, Sep 30 2027 1 . 0 . 5 . C Total 000 428 12 0 0 Total 6 103 103 24 21 21 12 12 19 who 1 L F Hilaka St (Westbound) Thru Right <u>0</u> Peak-Hour: 7:15 AM — 8:15 AM Peak 15-Min: 7:45 AM — 8:00 AM Quality Counts KOKA Main Dwy (Southbound) Thru Right 00 Type of peak hour being reported: System-wide Peak LOCATION: KOKA Main Dwy -- Hiiaka St CITY/STATE: Waimea, HI Report generated on 10/6/2021 12:05 PM (Northbound)
Thru Right ₩ . \* \* NA . 15-Min Count Period Beginning At 6:45 AM 7:00 AM 7:30 AM 7:30 AM 8:00 AM 8:30 AM 8:30 AM 8:30 AM 9:00 AM

| UC JOB #: 15566406<br>TE: Thu, Sep 30 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *I &                                                          |                         | A 8          |                                         | Hourly<br>Totals                            | 121<br>55                                           | 90 90 20                                 | 69                                           | Total                    | 96<br>0                      | 0                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------|--------------|-----------------------------------------|---------------------------------------------|-----------------------------------------------------|------------------------------------------|----------------------------------------------|--------------------------|------------------------------|----------------------------------------------|
| #: 155<br>, Sep 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 0 0                                                         |                         | 000          | 100                                     | Total                                       | 74<br>14<br>20<br>13<br>8                           | 1 2 2 2                                  | 18 20 18 18 18 18 18 18 18 18 18 18 18 18 18 | 1                        |                              |                                              |
| DATE: Thu,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                               | • •                     |              | \$                                      | >                                           | 00000                                               | 0000                                     | 000                                          | <u> </u>                 | 0                            |                                              |
| DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 4 4 4                                                       | 10.0                    |              |                                         | Hilaka St<br>(Westbound)<br>Thru Right      |                                                     | 0000                                     | 000                                          | Westbound<br>Thru Right  | 0 0                          | 0                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24 0 0                                                        |                         | 1, , , ]     |                                         | Wes Thru                                    | 35<br>2<br>3<br>0                                   | 4 <mark>0</mark> / r                     | 3 6 8                                        |                          | 24<br>0                      | 0 0                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                         |              |                                         | F 5                                         | 13<br>0<br>1<br>0                                   | 0000                                     | 000                                          | Left                     | 00                           | 0                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                         | I            |                                         | ) D                                         | 00000                                               |                                          | 000                                          | بر<br>0                  |                              |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PM<br>45 PM                                                   | 20 a                    |              | 0                                       | Hiiaka St<br>Eastbound)<br>Thru Righ        |                                                     |                                          |                                              | boui                     |                              | 0                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N-45                                                          | Counts                  |              | <i>-</i>                                |                                             | 9 7 4 8 8                                           |                                          |                                              |                          | 09                           | 0                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Peak 15-Min: 4:30 PM — 5:15 PM Peak 15-Min: 4:30 PM — 4:45 PM | A N                     |              |                                         | l lef                                       | 00000                                               |                                          |                                              | Left                     | 0 0                          | 0                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -Min:                                                         | Quality<br>DART THAT DR |              |                                         | D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0     | 00000                                               |                                          |                                              | _ _                      | 0                            |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Peak-F<br>eak 15                                              | O                       |              | <u></u>                                 | KOKA Main Dwy<br>(Southbound)<br>Thru Right |                                                     |                                          |                                              | Southbound<br>Thru Right |                              | 0                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                      |                         |              |                                         | I                                           | 00000                                               |                                          |                                              | H                        |                              | 0                                            |
| i .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               |                         |              |                                         |                                             |                                                     | +                                        |                                              | Left                     | 0 0                          | 0                                            |
| a de la composition della comp | 20 TT 20 + 1                                                  |                         | T T          | 11                                      | (a) (a)                                     | 00000                                               |                                          |                                              | n<br>p #                 |                              |                                              |
| - ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 00 0                                                        |                         | <del>`</del> | NA<br>WA                                | (Northbound) Thru Right                     |                                                     |                                          |                                              | Northbound<br>Thru Right |                              | 0                                            |
| mea, F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00 . 2                                                        | • 0 <del>18</del>       | ·1 & 1       | s . P . s                               | IE 1                                        | 00000                                               |                                          |                                              | l (                      | 0 0                          | 0                                            |
| E: Wai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 + 0 1                                                       | f n e n                 |              | 1                                       | F #                                         | 1 6 4 0 0                                           | 004-                                     | 100                                          | Left                     | 0 0                          | 0                                            |
| CITY/STATE: Waimea, HI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22 00,000                                                     |                         | 0            | all | 15-Min Count<br>Period<br>Beginning At      | 3:00 PM<br>3:15 PM<br>3:30 PM<br>3:45 PM<br>4:00 PM | 4:15 PM<br>4:30 PM<br>4:45 PM<br>5:00 PM | 5:15 PM<br>5:30 PM<br>5:45 PM                | Peak 15-Min<br>Flowrates | All Vehicles<br>Heavy Trucks | Buses<br>Pedestrians<br>Bicycles<br>Scooters |

Hourly Totals Method for determining peak hour: Total Entering Volume QC JOB #: 15566407 DATE: Thu, Sep 30 2021 66 187 291 309 297 182 86 67 55 SOURCE: Quality Counts, LLC (http://www.qualitycounts.net) 1-877-580-2212 528 4 0 West of the second seco 0000 Total 11 11 111 111 29 29 25 17 17 10 10 <u>0</u> Peak-Hour: 7:15 AM — 8:15 AM Peak 15-Min: 7:30 AM — 7:45 AM Quality Counts KOKA East Dwy (Southbound) Left Thru Right 00 Type of peak hour being reported: System-wide Peak LOCATION: KOKA East Dwy -- Ainahua Alanui St CITY/STATE: Waimea, HI Report generated on 10/6/2021 12:05 PM N/A (Northbound)
Left Thru Right • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 • 100 \*\*\* NA 15-Min Count Period Beginning At 6:30 AW 6:45 AW 7:10 AW 7:15 AW 8:00 AW 8:15 AW 8:15 AW 8:15 AW 9:00 AW 9:15 AW

| 0 |
|---|
| - |
| a |
| ō |
| ä |
| - |
|   |

| DATE: Thu, Sep 30 2021 | 1                                                              | <b>料</b> ・                              | 0 0 0 |                                          | Total Hourly<br>U                                     |                                             | 22 21 21     | 0 22 88<br>0 14 79<br>0 15 72 | U Total                        | 0 92 0 | 00    |
|------------------------|----------------------------------------------------------------|-----------------------------------------|-------|------------------------------------------|-------------------------------------------------------|---------------------------------------------|--------------|-------------------------------|--------------------------------|--------|-------|
| DATE:                  |                                                                | - C - C - C - C - C - C - C - C - C - C | 000   | 1                                        | Ainahua Alanui St<br>(Westbound)<br>Left Thru Right   | 0 10<br>0 4 0<br>0 4 0<br>0 5 5 0<br>0 9 0  |              |                               | Westbound<br>Left Thru Right   |        | 0 0 0 |
|                        | M – 5:15 PM<br>PM – 4:45 PM                                    | Counts                                  | }     | <u>•</u>                                 | Ainahua Alanui St<br>(Eastbound)<br>Left Thru Right U | 0000000                                     | 13 0<br>15 0 |                               | Eastbound<br>Left Thru Right U | 00     | 0 0 0 |
| ariai or               | Peak-Hour; 4:15 PM — 5:15 PM<br>Peak 15-Min; 4:30 PM — 4:45 PM | Quality Quality O                       | •     | 4                                        | KOKA East Dwy<br>(Southbound)<br>Left Thru Right U    | 000000                                      | 000          |                               | +                              | 0 0 0  | 0 0 0 |
| CITY/STATE: Waimea, HI |                                                                | 8                                       |       | NA N | KOKA East Dwy<br>(Northbound)<br>Left Thru Right U    | 24<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 000          | 000                           | n                              | 0      | 0 0 0 |

Type of report: Tube Count - Volume Data

Report generated on 10/6/2021 11:54 AM

:sзиәшшо

|                              |                |          |                 |           |                  |                 | :sɪuəwwoɔ     |
|------------------------------|----------------|----------|-----------------|-----------|------------------|-----------------|---------------|
|                              |                |          |                 |           |                  |                 | loV nim-21    |
|                              |                |          |                 |           |                  |                 | bW beak       |
|                              |                |          |                 |           |                  |                 | loV nim-21    |
|                              |                |          |                 |           |                  |                 | AM Peak       |
|                              |                |          |                 |           |                  |                 | Average       |
|                              |                |          |                 |           |                  |                 | % Week        |
|                              |                |          |                 |           |                  |                 | Average       |
|                              |                |          |                 |           |                  |                 | % Меекдау     |
|                              |                |          |                 |           |                  |                 | Day Total     |
|                              | ZST            |          | ZSI             | ZST       |                  |                 | MA 24:20      |
|                              | 143            | HNIMMINE | 143             | 143       |                  |                 | MA 05:20      |
|                              | 134            |          | 134             | 134       |                  |                 | MA 21:20      |
|                              | T09            |          | 60T             | 60T       |                  |                 | MA 00:20      |
|                              | 18             | I Inaa   | 18              | 18        |                  |                 | MA 24:40      |
|                              | 95             |          | 99              | 95        |                  |                 | MA 0E:40      |
|                              | τs             |          | ŢS              | ŢS        |                  |                 | MA 21:40      |
|                              | 07             |          | 07              | 01⁄2      |                  |                 | MA 00:40      |
|                              | Et             |          | 43              | ٤٦        |                  |                 | MA 24:E0      |
|                              | Δī             |          | Δī              | Δī        |                  |                 | MA 0E:E0      |
|                              | 70             |          | 50              | 50        |                  |                 | MA 21:50      |
|                              | ÞΤ             |          | ÞΤ              | ÞΤ        |                  |                 | MA 00:E0      |
| I                            | 8              |          | 8               | 8         |                  |                 | MA 24:20      |
| I                            | 6              |          | 6               | 6         |                  |                 | MA 0E:20      |
| I                            | L              |          | L               | <u></u>   |                  |                 | MA 21:20      |
| Ī                            | 9              |          | 9               | 9         |                  |                 | MA 00:20      |
| ī                            | S              |          | S               | S         |                  |                 | MA 24:10      |
| ī                            | 9              |          | 9               | 9         |                  |                 | MA 0E:10      |
| i                            | 6              |          | 6               | 6         |                  |                 | MA 21:10      |
| ī                            | 9              |          | 9               | 9         |                  |                 | MA 00:10      |
| ī                            | S              |          | S               | S         |                  |                 | 12:45 AM      |
| ï                            | _<br>          |          | Ĺ               | _<br>L    |                  |                 | MA 08:S1      |
| -                            | 7T             |          | 14              | ÞΙ        |                  |                 | MA 21:21      |
| _                            | ÞΤ             |          | 14              | ÞΙ        |                  |                 | MA 00:S1      |
|                              | 15-min Traffic |          | 213-min Traffic | 30 Sep 21 |                  |                 |               |
| Average Week Profile         | Average Week   | ung teg  | Average Weekday | ina udT   | pəʌʌ ən          | T noM           | Start Time    |
| E: Sep 30 2021 - Sep 30 2021 |                | 5 .5     |                 |           |                  |                 | CITY/STATE: \ |
| DIRECTION: EB, WB            | 140            |          |                 |           |                  |                 | SPECIFIC LOC. |
|                              |                |          |                 |           | nu nuniai ie see |                 |               |
| OC 10B #: 12266409           |                |          |                 |           | hR ensM to teal  | W ywH sodslemsi | M •MOITADOJ   |

Type of report: Tube Count - Volume Data

LOCATION: Mamalahoa Hwy West of Mana Rd

|                            |                |                   |                 |            |            | AM Peak     |
|----------------------------|----------------|-------------------|-----------------|------------|------------|-------------|
|                            |                |                   |                 |            |            | Average     |
|                            |                |                   |                 |            |            | % Week      |
|                            |                |                   |                 |            |            | Average     |
|                            |                |                   |                 |            |            | 6 Weekday   |
|                            |                |                   |                 |            |            | Day Total   |
|                            | 522            |                   | 225             | 525        |            | MA 24:11    |
|                            | 717            | INDIMINE          | 211             | 711        |            | MA 0E:11    |
|                            | 727            | -11 11 11 11 11 1 | 727             | 727        |            | MA 21:11    |
|                            | 96T            |                   | 961             | 961        |            | MA 00:11    |
|                            | 223            | linaa.            | 223             | 223        |            | MA 24:01    |
|                            | 216            |                   | 216             | 216        |            | MA 0E:01    |
|                            | 181            |                   | 181             | 181        |            | MA 21:01    |
|                            | 195            |                   | S6T             | S6T        |            | MA 00:01    |
|                            | 717            |                   | 212             | 212        |            | MA 24:60    |
|                            | 737            |                   | 231             | 737        |            | MA 0E:60    |
|                            | 747            |                   | 747             | 747        |            | MA 21:90    |
|                            | 212            |                   | 212             | SIZ        |            | MA 00:60    |
|                            | 737            |                   | 737             | 737        |            | MA 24:80    |
|                            | 733            |                   | 233             | 533        |            | MA 0E:80    |
|                            | 526            |                   | 957             | 957        |            | MA 21:80    |
|                            | 567            |                   | 567             | 563        |            | MA 00:80    |
|                            | 767            |                   | 767             | 767        |            | MA 24:70    |
|                            | 572            |                   | 572             | 522        |            | MA 0E:70    |
|                            | 302            |                   | 307             | 305        |            | MA 21:70    |
|                            | 218            |                   | 218             | 812        |            | MA 00:70    |
|                            | 730            |                   | 730             | 730        |            | MA 24:90    |
|                            | 77.4           |                   | 754             | 524        |            | MA 0E:00    |
|                            | 730            |                   | 730             | 730        |            | MA 21:90    |
|                            | τ∠τ            |                   | τ∠τ             | τ∠τ        |            | MA 00:00    |
|                            | 15-min Traffic |                   | 25-min Traffic  | 30 Sep 21  |            |             |
| Average Week Profile       | Average Week   | ung teč           | Average Weekday | h∃ uhT beW | euT noM    | emiT that   |
| : Sep 30 2021 - Sep 30 202 | TAQ .          |                   |                 |            | IH ,eəmisW | : TY/STATE: |
| DIRECTION: EB, W           |                |                   |                 |            | :NOITA     | SECIFIC LOC |
|                            |                |                   |                 |            |            |             |

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

OC 108 #: 12266409

Report generated on 10/6/2021 11:54 AM

:sţuəwwoɔ T2-min Vol 15-min Vol

| :  | .bECIŁIC ΓΟC∀IJON:                     | DIRECTION: EB, WB  |
|----|----------------------------------------|--------------------|
|    | OCATION: Mamalahoa Hwy West of Mana Rd | OC 10B #: 72266409 |
| ſΤ | pe of report: Tube Count - Volume Data |                    |

| Average Week Profile | Average Week   | ung te2         | Average Weekday | in∃ th<br>Thu Fri | bəW | ənŢ | noM | ant Time          |
|----------------------|----------------|-----------------|-----------------|-------------------|-----|-----|-----|-------------------|
|                      | 15-min Traffic |                 | 15-min Traffic  | 30 Sep 21         |     |     |     |                   |
|                      | 202            |                 | 502             | 502               |     |     |     | Ng 00:5           |
|                      | 218            |                 | 218             | 218               |     |     |     | Mq ST:5           |
|                      | 744            |                 | 744             | 744               |     |     |     | M9 08:            |
|                      | 782            |                 | 782             | 782               |     |     |     | Md St:            |
|                      | 907            |                 | 907             | 907               |     |     |     | Mq 00:            |
|                      | 207            |                 | 207             | 207               |     |     |     | M9 21:            |
|                      | 757<br>777     |                 | 727<br>737      | 727<br>737        |     |     |     | Md Str            |
|                      | 997            |                 | 997             | 997               |     |     |     | Mq 00:            |
|                      | 579            |                 | 579             | 579               |     |     |     | Md ST:            |
|                      | 275            |                 | 575             | 575               |     |     |     | 30 PM             |
|                      | 087            |                 | 087             | 087               |     |     |     | Md St             |
|                      | 379            |                 | 379             | 379               |     |     |     | Mq 00             |
|                      | 302            |                 | 302             | 302               |     |     |     | Md ST             |
|                      | 307            |                 | 307             | 307               |     |     |     | 30 PM             |
|                      | 322            |                 | 322             | 322               |     |     |     | Md Str            |
|                      | 300            |                 | 300             | 300               |     |     |     | Mq 00             |
|                      | 322            |                 | 322             | 322               |     |     |     | Md ST             |
|                      | 698            |                 | 698             | 698               |     |     |     | 30 PM             |
|                      | 337            |                 | 755             | 337               |     |     |     | Md St             |
|                      | 339            | 11100           | 339             | 339               |     |     |     | Mq 00             |
|                      | 780            |                 | 780             | 780               |     |     |     | T2 bW             |
|                      | 772            | LIMI IMINE      | 772             | 7.17              |     |     |     | 30 PM             |
|                      | 228            | LAN DAVIA DA LA | 578             | 578               |     |     |     | Md St             |
|                      |                |                 |                 |                   |     |     |     | y Total           |
|                      |                |                 |                 |                   |     |     |     | Лееказу           |
|                      |                |                 |                 |                   |     |     |     | verage            |
|                      |                |                 |                 |                   |     |     |     | Week              |
|                      |                |                 |                 |                   |     |     |     | /erage            |
|                      |                |                 |                 |                   |     |     |     | N Peak            |
|                      |                |                 |                 |                   |     |     |     | loV nim           |
|                      |                |                 |                 |                   |     |     |     | A Peak<br>Min Vol |
|                      |                |                 |                 |                   |     |     |     |                   |

Type of report: Tube Count - Volume Data

LOCATION: Mamalahoa Hwy West of Mana Rd

SPECIFIC LOCATION: CITY/STATE: Waimea, HI QC JOB #: 15566409 DIRECTION: EB, WB

DATE: Sep 30 2021 - Sep 30 2021

| Start Time           | Mon | Tue | Wed | Thu       | Fri | Average Weekday | Sat              | Sun | Average Week   | Average Week Profile |
|----------------------|-----|-----|-----|-----------|-----|-----------------|------------------|-----|----------------|----------------------|
|                      |     |     |     | 30 Sep 21 |     | 15-min Traffic  |                  |     | 15-min Traffic |                      |
| 06:00 PM             |     |     |     | 213       |     | 213             |                  |     | 213            |                      |
| 06:15 PM             |     |     |     | 214       |     | 214             |                  |     | 214            |                      |
| 06:30 PM             |     |     |     | 194       |     | 194             |                  |     | 194            |                      |
| 06:45 PM             |     |     |     | 162       |     | 162             |                  |     | 162            |                      |
| 07:00 PM             |     |     |     | 137       |     | 137             |                  |     | 137            |                      |
| 07:15 PM             |     |     |     | 129       |     | 129             |                  |     | 129            |                      |
| 07:30 PM             |     |     |     | 118       |     | 118             |                  |     | 118            |                      |
| 07:45 PM             |     |     |     | 83        |     | 83              |                  |     | 83             |                      |
| 08:00 PM             |     |     |     | 79        |     | 79              |                  |     | 79             |                      |
| 08:15 PM             |     |     |     | 84        |     | 84              |                  |     | 84             |                      |
| 08:30 PM             |     |     |     | 71        |     | 71              |                  |     | 71             |                      |
| 08:45 PM             |     |     |     | 67        |     | 67              |                  |     | 67             |                      |
| 09:00 PM             |     |     |     | 57        |     | 57              |                  |     | 57             |                      |
| 09:15 PM             |     |     |     | 69        |     | 69              | -                |     | 69             |                      |
| 09:30 PM             |     |     |     | 39        |     | 39              |                  |     | 39             |                      |
| 09:45 PM             |     |     |     | 50        |     | 50              |                  |     | 50             |                      |
| 10:00 PM             |     |     |     | 45        |     | 45              |                  |     | 45             |                      |
| 10:15 PM             |     |     |     | 55        |     | 55              |                  |     | 55             |                      |
| 10:30 PM             |     |     |     | 43        |     | 43              |                  |     | 43             |                      |
| 10:45 PM             |     |     |     | 51        |     | 51              |                  |     | 51             |                      |
| 11:00 PM             |     |     |     | 18        |     | 18              |                  |     | 18             |                      |
| 11:15 PM             |     |     |     | 26        |     | 26              |                  |     | 26             |                      |
| 11:30 PM             |     |     |     | 38        |     | 38              | $\supset  V  V $ |     | 38             |                      |
| 11:45 PM             |     |     |     | 22        |     | 22              |                  |     | 22             |                      |
| Day Total            |     |     |     | 15143     |     | 15143           |                  |     | 15143          |                      |
| % Weekday<br>Average |     |     |     | 100%      |     |                 |                  |     |                |                      |
| % Week<br>Average    |     |     |     | 100%      |     | 100%            |                  |     |                |                      |
| AM Peak              |     |     |     | 7:15 AM   |     | 7:15 AM         |                  |     | 7:15 AM        |                      |
| 15-min Vol           |     |     |     | 307       |     | 307             |                  |     | 307            |                      |
| PM Peak              |     |     |     | 4:30 PM   |     | 4:30 PM         |                  |     | 4:30 PM        |                      |
| 15-min Vol           |     |     |     | 369       |     | 369             |                  |     | 369            |                      |

Report generated on 10/6/2021 11:54 AM

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

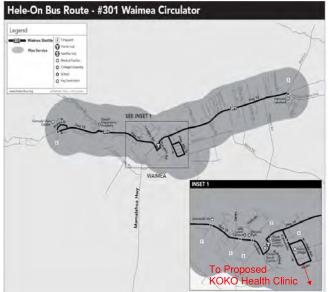
Appendix B Hele-on Bus Information

|                |                                              |                                                          |                                                                            | : Waimea                                                              |                         |                               |                                |                                |                                          |                         | : Waimea                                |                                                                            |                                                          |                                              |   |
|----------------|----------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------|-------------------------------|--------------------------------|--------------------------------|------------------------------------------|-------------------------|-----------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|---|
|                |                                              |                                                          |                                                                            | Septembe                                                              |                         |                               |                                |                                |                                          |                         | Septembe                                |                                                                            | 1                                                        |                                              | L |
|                | Lakeland                                     | V                                                        | estbound t                                                                 | o Kamuela '                                                           | View Estate             | es                            | Kamuela<br>View<br>Estates     | Kamuela<br>View<br>Estates     |                                          | Eastt                   | Waimea                                  | celand                                                                     |                                                          | Lakeland                                     | İ |
|                | A                                            | В                                                        | С                                                                          | D                                                                     | E                       | F                             | G                              | G                              | F                                        | Е                       | D                                       | С                                                                          | В                                                        | A                                            | t |
|                | Highway 19 @ Mud Lane<br>and Puu Pulehu Loop | Kamamalu Street @<br>Highway 19 (Waimea Civic<br>Center) | Highway 19 @ Pukalani Rd<br>(Ace Hardware/Parker<br>Ranch Shopping Center) | Highway 19 @ farside of<br>Lindsey Road (Waimea<br>Park, bus shelter) | Highway 19 @ Opelo Road | Highway 19 @ Jacaranda<br>Inn | Ohina Street @ Mahua<br>Street | Ohina Street @ Mahua<br>Street | Highway 19 @ Across from<br>Jacranda Inn | Highway 19 @ Opelo Road | Highway 19 @ Across from<br>Waimea Park | Highway 19 @ Pukalani Rd<br>(Ace Hardware/Parker<br>Ranch Shopping Center) | Kamamalu Street @<br>Highway 19 (Waimea Civic<br>Center) | Highway 19 @ Mud Lane<br>and Puu Pulehu Loop | 0 |
| us Stop<br>ID# | TBA                                          | TBA                                                      | 422                                                                        | 410                                                                   | TBA                     | TBA                           | TBA                            | TBA                            | TBA                                      | TBA                     | 421                                     | 422                                                                        | TBA                                                      | TBA                                          |   |
|                | 6:30 AM                                      | 6:40 AM                                                  | 6:45 AM                                                                    | 6:47 AM                                                               | 6:50 AM                 | 6:55 AM                       | 7:00 AM                        | 7:00 AM                        | 7:05 AM                                  | 7:10 AM                 | 7:13 AM                                 | 7:15 AM                                                                    | 7:20 AM                                                  | 7:25 AM                                      | F |
|                | 7:30 AM                                      | 7:40 AM                                                  | 7:45 AM                                                                    | 7:47 AM                                                               | 7:50 AM                 | 7:55 AM                       | 8:00 AM                        | 8:00 AM                        | 8:05 AM                                  | 8:10 AM                 | 8:13 AM                                 | 8:15 AM                                                                    | 8:20 AM                                                  | 8:25 AM                                      | L |
|                | 8:30 AM                                      | 8:40 AM                                                  | 8:45 AM                                                                    | 8:47 AM                                                               | 8:50 AM                 | 8:55 AM                       | 9:00 AM                        | 9:00 AM                        | 9:05 AM                                  | 9:10 AM                 | 9:13 AM                                 | 9:15 AM                                                                    | 9:20 AM                                                  | 9:25 AM                                      | L |
|                | 9:30 AM<br>10:30 AM                          | 9:40 AM<br>10:40 AM                                      | 9:45 AM<br>10:45 AM                                                        | 9:47 AM<br>10:47 AM                                                   | 9:50 AM<br>10:50 AM     | 9:55 AM<br>10:55 AM           | 10:00 AM                       | 10:00 AM<br>11:00 AM           | 10:05 AM                                 | 10:10 AM                | 10:13 AM<br>11:13 AM                    | 10:15 AM                                                                   | 10:20 AM<br>Route 60 to                                  |                                              | L |
|                | 10:30 AM                                     | 10:40 AM                                                 | 10:45 AM                                                                   | 10:47 AM                                                              | 10:50 AM                | 10:55 AM                      | 11:00 AM                       | 11:00 AM                       | 11:05 AM<br>11:05 AM                     | 11:10 AM<br>11:10 AM    | 11:13 AM                                | 11:15 AM                                                                   | 11:20 AM                                                 |                                              | t |
|                | 12:30 PM                                     | 12:40 PM                                                 |                                                                            | 12:47 PM                                                              | 12:50 PM                | 12:55 PM                      | 1:00 PM                        | 12:00 PM                       | 12:05 PM                                 | 12:10 AM                | 12:13 PM                                | 12:15 PM                                                                   | 12:20 PM                                                 | 12:25 PM                                     | t |
|                | 1:30 PM                                      | 1:40 PM                                                  | 1:45 PM                                                                    | 1:47 PM                                                               | 1:50 PM                 | 1:55 PM                       | 2:00 PM                        | 1:00 PM                        | 1:05 PM                                  | 1:10 PM                 | 1:13 PM                                 | 1:15 PM                                                                    | 1:20 PM                                                  | 1:25 PM                                      | t |
|                | 2:30 PM                                      | 2:40 PM                                                  | 2:45 PM                                                                    | 2:47 PM                                                               | 2:50 PM                 | 2:55 PM                       | 3:00 PM                        | 2:00 PM                        | 2:05 PM                                  | 2:10 PM                 | 2:13 PM                                 | 2:15 PM                                                                    | 2:20 PM                                                  | 2:25 PM                                      | t |
|                | 3:30 PM                                      | 3:40 PM                                                  | 3:45 PM                                                                    | 3:47 PM                                                               | 3:50 PM                 | 3:55 PM                       | 4:00 PM                        | 3:00 PM                        | 3:05 PM                                  | 3:10 PM                 | 3:13 PM                                 | 3:15 PM                                                                    | 3:20 PM                                                  | 3:25 PM                                      | t |
|                | 4:30 PM                                      | 4:40 PM                                                  | 4:45 PM                                                                    | 4:47 PM                                                               | 4:50 PM                 | 4:55 PM                       | 5:00 PM                        | 4:00 PM                        | 4:05 PM                                  | 4:10 PM                 | 4:13 PM                                 | 4:15 PM                                                                    | 4:20 PM                                                  | 4:25 PM                                      | t |
|                | Bus doe                                      | s not serve                                              | timepoint.                                                                 |                                                                       |                         | Monday-Fr                     | iday only                      | 5:00 PM                        | 5:05 PM                                  | 5:10 PM                 | 5:13 PM                                 | See                                                                        | Route 60 to                                              | Hilo                                         | t |
|                |                                              | This trip c                                              | ontinues to                                                                | Hilo.                                                                 |                         | Everyday s                    | service                        |                                |                                          |                         |                                         |                                                                            |                                                          |                                              | Т |

To read the timetable, read from left to right to follow the course of the route and then read down for the times that the bus operates. Schedules are subject to change without notice. Times are approximate and may vary depending on traffic conditions, weather and other conditions.

## Flex Service

Hele-On offers flex route service on Route 301 – Waimea Shuttle for everyonel This flexible type services combine ADA paratransit and general public transit into one service providing additional mobility in the Waimea area if you cannot get to the bus route. The bus can flex up to 1 mile off route and you are required to make a reservation at least one hour in advance. To schedule a flex trip, call (808) 961-8744, option 1. TDD/TTY: 711 through the Relay Service.


The fare for flex service is \$4.00 for all passengers.

Not all Hele-On bus stops are shown. Please flag the bus along its route at safe intersections where the bus can safely pull over or board at a bus shelter, a Kona Trolley Stop sign, a Hele-On Bus Stop or a red/white or blue Bus Stop sign.

- - means timepoint is not served.

AM times are shown in lightface type. PM times are in boldface type.





Appendix C

**Existing Intersection Analysis Worksheets** 

## HCM Signalized Intersection Capacity Analysis 10: Kamamalu St & Mamalahoa Hwy

| Lane Content   EBT   EBR   WBT   NBR       |                             | †          | -    | -     | ţ        | •         | •               |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------|------|-------|----------|-----------|-----------------|------|
| me (vph)         4th 4ze 4ze 121 31 897 185 50         4th 7 f 7         4th 7 f 7           me (vph)         42e 121 31 897 185 50         50         50         50           me (vph)         42e 121 31 897 185 50         50         50         50           me (vph)         42e 121 31 897 185 50         50         50         50           me (vph)         50         1900 1900 1900 1900 1900         1900 1900         1900 1900           me (vph)         50         50         50         50         50           sactor         0.95         1.00         1.00         1.00         1.00           kes         1.00         1.00         1.00         0.85         1.00           perm)         3405         1.00         1.00         0.85         1.00           perm)         410         0.71         0.71         0.95         1.00         0.85           pord)         1.00         1.00         1.00         0.85         1.00         0.85         1.00           perm)         3405         2.0         0.95         1.00         0.95         1.00         0.95         1.00         0.95         1.00         0.95         1.00         0.95         1.00 <th>Movement</th> <th>EBT</th> <th>EBR</th> <th>WBL</th> <th>WBT</th> <th>NBL</th> <th>NBR</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Movement                    | EBT        | EBR  | WBL   | WBT      | NBL       | NBR             |      |
| ne (vph)         426         121         31         897         185         50           me (vph)         426         121         31         897         185         50           vph)         190         1900         1900         1900         1900         1900           vph)         5.0         5.0         5.0         5.0         5.0         5.0           kes         0.39         1.00         1.00         1.00         0.39           prod)         3405         1.00         1.00         0.39           prod)         3405         1.00         1.00         0.35           perm)         3405         1.00         1.00         0.35           pot)         1.00         0.35         1.00         0.35           perm)         3405         1.00         0.35         1.00         0.35           pot)         1.00         0.71         0.71         0.89         0.85         1.00           perm)         4.00         0.00         0.00         0.00         0.00         0.00         0.00           perm)         4.00         1.00         1.00         0.35         1.00         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -ane Configurations         | 4.         |      |       | ₹₽       | K         | R.              |      |
| me (vph)         426         121         31         897         185         50           witholf)         1900         1900         1900         1900         1900         1900           witholf)         5.0         5.0         5.0         5.0         5.0           witholf         5.0         5.0         1.00         1.00         1.00           kes         1.00         1.00         1.00         1.00         1.00           prof)         3.405         3.23         1.70         1.65         1.00         1.00           prof)         1.00         1.00         0.95         1.00         0.95         1.00           prof)         60         1.70         3.2         0.89         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | raffic Volume (vph)         | 426        | 121  | 31    | 897      | 185       | 20              |      |
| with billing 1900 1900 1900 1900 1900 1900 1900 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -uture Volume (vph)         | 426        | 121  | 31    | 897      | 185       | 20              |      |
| reactor (s) 5.0 5.0 5.0 Face actor (s) 5.0 5.0 Face actor (s) 5.0 6.0 Face actor (s) 6.0 Face ac | deal Flow (vphpl)           | 1900       | 1900 | 1900  | 1900     | 1900      | 1900            |      |
| kes 0.99 1.00 0.09 kes 1.00 1.00 0.99 (kes 1.00 1.00 0.99 (1.00 1.00 0.99 0.97 0.99 (1.00 1.00 0.99 0.97 0.97 0.99 (1.00 1.00 0.99 0.97 0.97 0.99 (1.00 1.00 0.99 0.99 0.97 0.99 0.99 0.99 0.99 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | otal Lost time (s)          | 2.0        |      |       | 2.0      | 2.0       | 5.0             |      |
| kies 0.99 1.00 1.00 0.99 kes 1.00 1.00 0.99 kes 1.00 1.00 0.99 d 1.00 1.00 1.00 0.85 d 1.00 0.95 1.00 0.85 prol) 3405 3533 1770 1565 perm) 3405 0.22 0.95 1.00 perm) 3405 0.22 0.95 1.00 perm) 3405 0.24 0.95 1.00 perm) 405 0.71 0.71 0.89 0.89 0.65 0.65 ph) 600 170 0.71 0.89 0.89 0.65 0.65 ph) 729 0 0 1043 285 77 hases 4 3 8 5 3 hases 4 3 8 5 0.00 hases 4 3 8 5 0.00 hases 6 18.4 0.00 hases 6 18.4 0.00 hases 6 18.4 0.00 hases 7 0.00 hases 7 0.00 hases 8 1 1.20 hases 9 0 0 1043 285 25 hases 9 0 0 0 1043 285 77 hases 9 0 0 0 0 1043 285 77 hases 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ane Util. Factor            | 0.95       |      |       | 0.95     | 1.00      | 1.00            |      |
| kes         1,00         1,00         1,00           d         1,00         1,00         0.85           d         1,00         1,00         0.85           prof)         3405         3533         1770         1565           pem)         3405         3533         1770         1565           pem)         3405         3246         1770         1565           pem)         3405         3246         1770         1565           port         PF         0,71         0,71         0.89         0.89         0.65         0.65           ph)         600         170         35         1008         285         175         1565           ph)         600         170         35         1008         285         175         1655           ph)         600         170         35         1008         285         175         175         175         175         175         175         175         175         175         175         175         175         175         175         175         175         175         175         175         175         175         175         175         175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rpb, ped/bikes              | 0.99       |      |       | 1.00     | 1.00      | 0.99            |      |
| prof) 3405 1.00 0.85 1.00 perm) 3405 3533 1770 1565 1.00 perm) 3405 3533 1770 1565 1.00 perm) 3405 3.246 1770 1565 1.00 perm) 41 0 0 0 0 52 0.55 1.00 perm) 41 0 0 0 0 0 52 0.55 1.00 perm) 41 0 0 0 0 0 52 0.55 1.00 perm 5.24 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -Ipb, ped/bikes             | 1.00       |      |       | 1.00     | 1.00      | 1.00            |      |
| table of the color | æ                           | 0.97       |      |       | 1.00     | 1.00      | 0.85            |      |
| prot)         3405         3533         1770         1565           pem)         1,00         92         9,08         1,00           pem)         3405         324         1,00         9           pem)         3405         324         1,00         9           ph)         600         177         35         1008         285         1,00           ph)         600         177         35         1008         285         77           ph)         600         177         35         1008         285         77           ph         600         170         35         1008         285         77           ph         600         170         36         0.65         0.65         0.65           Flow (ph)         123         18         5         3         3         3           peen, G (s)         18.4         26.0         13.2         15.8         3           peen, G (s)         18.4         26.0         13.2         15.8         3           peen, G (s)         18.4         26.0         13.2         15.8         4         4         4         4         4         661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | It Protected                | 1.00       |      |       | 1.00     | 0.95      | 1.00            |      |
| d actor, PHF 0,71 0,89 0,95 1,00 perm) 3405 3246 1770 1565 actor, PHF 0,71 0,89 0,89 0,65 0,65 ph) 600 170 35 1008 285 7.7 ction (vph) 729 0 0 1043 285 25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | atd. Flow (prot)            | 3405       |      |       | 3533     | 1770      | 1565            |      |
| perm) 3405 3246 1770 1565  actor, PHF 0,71 0,89 0,89 0,65 0,65 ph) bd) (00 170 35 1008 285 77  (#Int) 41 0 0 0 0 0 5 52  Flow (vph) 729 0 0 1043 285 25  (#Int) NA pm+pt NA Prot pm+ov hases 4 8 5 3  hases 4 8 5 5 3  hases 4 8 5 5 3  hases 7 7  cen, G (s) 18.4 26,0 13.2 15.8  een, G (s) 18.4 26,0 13.2 15.8  actor, g (s) 18.4 26,0 13.2  actor, g (s) 18.4 18.5 26,0 13.2  actor, g (s) 18.4 18.5 18.5  actor, g (s) 18.4 1 | It Permitted                | 1.00       |      |       | 0.92     | 0.95      | 1.00            |      |
| actor, PHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | atd. Flow (perm)            | 3405       |      |       | 3246     | 1770      | 1565            |      |
| bpl) 600 170 35 1008 285 77 Lefthor(pht) 41 0 0 0 0 0 52 Lefthor(pht) 729 0 1043 285 25 Lefthor(pht) NA pm+pt NA Prot pm+ov hases 4 3 8 5 3 3 Hases 8 5 3 3 Hases 8 5 3 3 Hases 9 18.4 26.0 13.2 15.8 Leen, G(s) 12.3 3.0 3.0 3.0 3.0 Lefthor(pht) 1273 1730 474 661 Lefthor(s) 12.2 10.0 1.00 Lefthor(s) 12.2 10.0 1.00 Lefthor(s) 12.2 10.0 1.00 Lefthor(s) 12.2 10.0 1.00 Lefthor(s) 12.3 8.6 17.9 11.5 Lefthor(pht) 12.3 8.6 17.9 11 | eak-hour factor, PHF        | 0.71       | 0.71 | 0.89  | 0.89     | 0.65      | 0.65            |      |
| retion (vph) 41 0 0 0 0 52 Flow (vph) 729 0 0 1043 285 25 flow (vph) 184 8 5 3 3 flow (vph) 184 260 132 158 flow (vph) 1273 158 flow (vph) 1273 158 flow (vph) 1273 158 flow (vph) 1273 1730 474 661 flow (vph) 1273 1730 474 661 flow (vph) 1273 1730 474 661 flow (vph) 1273 1730 1730 174 661 flow (vph) 1273 1730 174 661 flow (vph) 1273 1730 1730 174 661 flow (vph) 1273 174 661 flow (vph) 1273 174 flow (vph) 174 flow (vph) 175 flow (vph)  | dj. Flow (vph)              | 009        | 170  | 32    | 1008     | 285       | 77              |      |
| Flow (pth)   729   0   1043   285   25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TOR Reduction (vph)         | 41         | 0    | 0     | 0        | 0         | 52              |      |
| (#Inr)         2         2           hases         4         pm+bt         NA         Prot pm+ov           hases         4         3         8         5         3           hases         4         3         8         5         3           een, G (s)         18.4         8         6.0         13.2         15.8           een, G (s)         18.4         26.0         13.2         15.8           cen, G (s)         18.4         26.0         13.2         15.8           cen, G (s)         18.4         26.0         13.2         15.8           cen, G (s)         3.0         3.0         3.0         3.0           ansion (s)         3.0         3.0         3.0         3.0           app (vph)         1273         3.0         3.0         3.0           app (vph)         1273         47         661         0.0           app, d2         0.57         0.60         0.0         0.0           App, d2         0.6         0.6         0.0         1.0           Deby, d2         B         B         B         B           App, d2         B         B         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ane Group Flow (vph)        | 729        | 0    | 0     | 1043     | 285       | 25              |      |
| NA         pm+pt NA         Prot pm+ov           hases         4         3         8         5         3           hases         8         5         3         3         5         6         4         3         6         3         5         6         6         6         3         6         6         6         6         3         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6 </td <td>onfl. Peds. (#/hr)</td> <td></td> <td>2</td> <td>2</td> <td></td> <td></td> <td>2</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | onfl. Peds. (#/hr)          |            | 2    | 2     |          |           | 2               |      |
| hases         4         3         8         5         3           hasses         8         5         3           hasses         8         5         3           een, G (s)         18.4         8         5         5           een, g (s)         18.4         26.0         13.2         15.8           een, g (s)         18.4         26.0         13.2         15.8           C Pation         0.37         0.50         0.03         0.03           ap (vph)         1273         30         3.0         3.0           ap (vph)         1273         474         661           or         0.21         0.03         0.01           rm         0.27         0.60         0.04           ay, d1         12.3         8.0         15.7         11.5           read         12.9         8.0         15.7         11.5           vote         B         B         B         B           elay (s)         12.9         8.6         17.9         11.5           vote         B         A         B         B           Summary         11.4         HCM 2000 Level of Service <td>urn Type</td> <td>NA</td> <td></td> <td>pm+pt</td> <td>NA</td> <td></td> <td>vo+mc</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urn Type                    | NA         |      | pm+pt | NA       |           | vo+mc           |      |
| 18.4 26.0 13.2 15.8 18.4 18.4 26.0 13.2 15.8 18.4 26.0 13.2 15.8 26.0 37 0.37 0.33 0.27 0.32 0.37 0.21 0.30 0.21 0.30 0.21 0.021 0.021 0.029 0.01 0.021 0.057 0.05 0.06 0.04 12.9 8.6 17.9 11.5 8.0 1.00 0.06 0.06 0.06 0.06 0.06 0.06 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rotected Phases             | 4          |      | က     | ∞        | 2         | က               |      |
| 18.4 26.0 13.2 15.8 18.4 26.0 13.2 15.8 18.4 0.37 0.53 0.32 5.0 5.0 5.0 0.32 5.0 5.0 5.0 0.32 1273 1730 474 661 0.57 0.60 0.60 0.04 12.3 8.0 15.7 11.5 1.00 0.6 0.6 2.2 0.0 12.9 8.6 17.9 11.5 8 12.9 8.6 16.5 8 17.9 11.4 HCM 2000 Level of Service  340 5.1 0.0 0.09 12.9 8.6 16.5 8 17.9 11.5 12.9 8.6 16.5 8 17.9 11.5 12.9 8.6 16.5 8 17.9 11.5 12.9 8.6 16.5 8 18.9 8 18.9 11.4 HCM 2000 Level of Service 14.9% ILUL evel of Service 15.1 15.0 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ermitted Phases             |            |      | 80    |          |           | 5               |      |
| 18.4 26.0 13.2 15.8  0.37 0.53 0.27 0.32  3.0 3.0 3.0 3.0  1273 1730 474 661  0.21 0.03 0.016 0.00  0.57 0.60 0.60 0.04  12.3 8.0 15.7 11.5  1.00 1.00 1.00  0.6 2.2 0.0  12.9 8.6 17.9 11.5  B A B B A B A B A B A B A B A B A B A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ctuated Green, G (s)        | 18.4       |      |       | 26.0     | 13.2      | 15.8            |      |
| 0.37 0.53 0.27 0.32 3.0 3.0 5.0 5.0 3.0 3.0 3.0 3.0 3.0 1273 1730 474 661 0.21 0.03 0.01 0.00 0.57 0.60 0.60 0.04 12.3 8.0 15.7 11.5 1.00 1.00 1.00 0.6 0.6 10.0 1.00 0.6 0.6 17.9 11.5 B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B B B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ffective Green, g (s)       | 18.4       |      |       | 26.0     | 13.2      | 15.8            |      |
| 5.0 5.0 5.0 3.0 3.0 3.0 1273 1730 474 661 0.21 0.03 0.03 0.01 0.57 0.05 0.00 1.00 1.00 1.00 1.00 0.6 0.6 2.2 0.0 0.6 0.6 2.2 0.0 12.9 8.6 17.9 11.5 B A B B 12.9 8.6 16.5 14.4 HCM 2000 Level of Service 3.00 0.69 3.00 of lost time (s) 1.114 HCM 2000 Level of Service 1.25 0.06 1.25 0.00 1.26 0.06 1.27 0.00 1.28 0.06 1.29 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.20 0.06 1.2 | ctuated g/C Ratio           | 0.37       |      |       | 0.53     | 0.27      | 0.32            |      |
| 3.0 3.0 3.0 3.0 1.773 1.730 4.74 661 0.00 0.21 0.003 c.0.16 0.00 0.004 0.057 0.00 0.00 0.004 1.2.3 8.0 1.57 11.5 1.00 0.6 2.2 0.00 1.00 0.6 2.2 0.00 1.2.9 8.6 17.9 11.5 8.6 16.5 8.6 17.9 11.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5 8.6 16.5  | learance Time (s)           | 2.0        |      |       | 2.0      | 2.0       | 5.0             |      |
| 1273 1730 474 661 0.21 0.003 0.016 0.00 0.57 0.060 0.60 0.04 12.3 8.0 15.7 11.5 1.00 1.00 1.00 0.6 0.6 8.6 17.9 11.5 B A B B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B B B B A B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ehicle Extension (s)        | 3.0        |      |       | 3.0      | 3.0       | 3.0             |      |
| 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ane Grp Cap (vph)           | 1273       |      |       | 1730     | 474       | 661             |      |
| 0.57 0.01 12.3 0.60 0.04 12.3 0.06 0.04 12.0 0.60 0.004 12.9 0.60 0.00 0.04 12.9 0.60 0.00 12.9 0.60 12.9 0.60 12.9 0.60 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9 0.69 12.9  | s Ratio Prot                | 0.21       |      |       | c0.03    | c0.16     | 0.00            |      |
| 0.57 0.60 0.60 0.04 12.3 8.0 15.7 11.5 1.00 0.6 2.2 0.0 0.6 2.2 0.0 12.9 8.6 17.9 11.5 B A B B 12.9 8.6 16.5 B A B B 3.9 11.4 HCM 2000 Level of Service 3apacity ratio 0.69 Sum of lost time (s) tilization 64.4% ICU Level of Service 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 's Ratio Perm               |            |      |       | c0.29    |           | 0.01            |      |
| 12.3 8.0 15.7 11.5 1.00 1.00 1.00 0.6 0.6 12.2 0.0 12.9 8.6 17.9 11.5 B A B B A B A B A B A B A B A B A B A B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 'c Ratio                    | 0.57       |      |       | 09.0     | 0.60      | 0.04            |      |
| 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | niform Delay, d1            | 12.3       |      |       | 8.0      | 15.7      | 11.5            |      |
| 12.9 0.6 2.2 0.0 12.9 8.6 17.9 11.5 12.9 8.6 17.9 11.5 12.9 8.6 16.5 12.9 A B B 12.9 A B 12.9 A B 14.4 HCM 2000 Level of Service 3apacity ratio 0.69 Sum of lost time (s) 11.4 HCM 2000 Level of Service 15 Sum of lost time (s) 11.5 Sum of lost time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rogression Factor           | 1.00       |      |       | 1.00     | 1.00      | 1.00            |      |
| 12.9 8.6 17.9 11.5 B A B B 12.9 8.6 16.5 A B B 3.9 11.4 HCM 2000 Level of Service 3.apacity ratio 0.69 (s) 49.2 Sum of lost time (s) tilization 64.4% ICU Level of Service 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | icremental Delay, d2        | 9.0        |      |       | 9.0      | 2.2       | 0.0             |      |
| 12.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | elay (s)                    | 12.9       |      |       | 9.6      | 17.9      | 11.5            |      |
| 12.9 8.6 16.5  B A B  A B  spacing ratio 0.69 (s) 49.2 Sum of lost time (s)  ilization 64.4% ICU Level of Service 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | evel of Service             | മ          |      |       | ∢        | В         | В               |      |
| y 11.4 HCM 2000 Level of Service sabacity ratio 0.69 Sum of lost time (s) 49.2 Sum of lost time (s) 115aton 64.4% ICU Level of Service 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pproach Delay (s)           | 12.9       |      |       | 9.8      | 16.5      |                 |      |
| 3y 11.4 HCM 2000 Level of Service sapacity ratio 0.69 Sum of fost time (s) 49.2 Sum of fost time (s) 115ation 64.4% ICU Level of Service 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pproach LOS                 | В          |      |       | ∢        | ш         |                 |      |
| ay         11.4         HCM 2000 Level of Service           Sapacity ratio         0.69         0.69           (s)         49.2         Sum of lost time (s)           tilization         64.4%         ICU Level of Service           15         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ntersection Summary         |            |      |       |          |           |                 |      |
| Apacity ratio 0.69 Sum of lost time (s) (s) 49.2 Sum of lost time (s) (s) 64.4% ICU Level of Service 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ICM 2000 Control Delay      |            |      | 11.4  | <br>     | M 2000 L  | evel of Service | В    |
| (s) 49.2 Sum of lost time (s) tilization 64.4% ICU Level of Service 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ICM 2000 Volume to Capa     | city ratio |      | 69.0  |          |           |                 |      |
| tilization 64.4%<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ctuated Cycle Length (s)    |            |      | 49.2  | S        | m of lost | time (s)        | 15.0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tersection Capacity Utilize | ition      |      | 64.4% | <u> </u> | U Level o | Service         | O    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nalysis Period (min)        |            |      | 15    |          |           |                 |      |

Synchro 10 Report Page 1 5:00 pm Baseline

HCM 6th TWSC 20: KOKA Main Driveway & Hiiaka St

**2021 AM** 06/21/2022

2021 AM 06/21/2022

|                          | c      |       |         |      |        |      |  |
|--------------------------|--------|-------|---------|------|--------|------|--|
| int Delay, s/ven         | 7.0    |       |         |      |        |      |  |
| Movement                 | EBT    | EBR   | EBR WBL | WBT  | NBL    | NBR  |  |
| -ane Configurations      | ÷      |       |         | 4    | >      |      |  |
| raffic Vol, veh/h        | 12     | 84    | 83      | 74   | 0      | 0    |  |
| Future Vol, veh/h        | 12     | 8     | 93      | 74   | 0      | 0    |  |
| Conflicting Peds, #/hr   | 0      | 7     | 7       | 0    | 0      | 0    |  |
| Sign Control             | Free   | Free  | Free    | Free | Stop   | Stop |  |
| RT Channelized           | •      | None  | ٠       | None | ٠      | None |  |
| Storage Length           | ٠      | ٠     | ٠       | ٠    | 0      | ٠    |  |
| Veh in Median Storage, # | 0 #    | ٠     | ٠       | 0    | 0      | ٠    |  |
| Grade, %                 |        | ٠     | ٠       | 0    | 0      | ٠    |  |
| Peak Hour Factor         | 29     | 29    | 26      | 29   | 09     | 99   |  |
| Heavy Vehicles, %        | 0      | 0     | 0       | 0    | 0      | 0    |  |
| Mvmt Flow                | 70     | 142   | 166     | 132  | 0      | 0    |  |
|                          |        |       |         |      |        |      |  |
| Major/Minor N            | Major1 | _     | Major2  | 2    | Minor1 |      |  |
| Conflicting Flow All     | 0      | 0     | 164     | 0    | 222    | 83   |  |
| Stage 1                  | ٠      | ٠     | ٠       | ٠    | 83     | ٠    |  |
| Stage 2                  | ٠      | ٠     | ٠       | ٠    | 464    | ٠    |  |
| Critical Hdwy            | ٠      | ٠     | 4.1     | ٠    | 6.4    | 6.2  |  |
| Critical Hdwy Stg 1      | ٠      | ٠     | ٠       | ٠    | 5.4    | ٠    |  |
| Critical Hdwy Stg 2      | ٠      | ٠     | ٠       | ٠    | 5.4    | ٠    |  |
| Follow-up Hdwy           | ٠      | ٠     | 2.2     | ٠    | 3.5    | 3.3  |  |
| Pot Cap-1 Maneuver       | ٠      | ٠     | 1427    | ٠    | 495    | 970  |  |
| Stage 1                  | ٠      | ٠     | ٠       | ٠    | 936    | ٠    |  |
| Stage 2                  | ٠      | ٠     | ٠       | ٠    | 637    | ٠    |  |
| Platoon blocked, %       | ٠      | ٠     |         | ٠    |        |      |  |
| Mov Cap-1 Maneuver       | ٠      | ٠     | 1424    | ٠    | 432    | 896  |  |
| Mov Cap-2 Maneuver       | ٠      | ٠     | ٠       | ٠    | 432    | ٠    |  |
| Stage 1                  | ٠      | ٠     | ٠       | ٠    | 934    | ٠    |  |
| Stage 2                  | •      | ٠     | ٠       | ٠    | 222    | •    |  |
|                          |        |       |         |      |        |      |  |
| Approach                 | 8      |       | WB      |      | BB     |      |  |
| HCM Control Delay, s     | 0      |       | 4.4     |      | 0      |      |  |
| HCM LOS                  |        |       |         |      | ⋖      |      |  |
|                          |        |       |         |      |        |      |  |
| Minor Lane/Major Mvmt    | Z      | NBLn1 | EBT     | EBR  | WBL    | WBT  |  |
| Capacity (veh/h)         |        | •     | •       | ٠    | 1424   |      |  |
| HCM Lane V/C Ratio       |        | ٠     | •       | ٠    | 0.117  | ٠    |  |
| HCM Control Delay (s)    |        | 0     | ٠       | ٠    | 7.9    | 0    |  |
| HCM Lane LOS             |        | ∢     | ٠       | ٠    | <      | ∢    |  |
|                          |        |       |         |      | C      | ζ    |  |

Synchro 10 Report Page 2 5:00 pm Baseline

HCM 6th TWSC 30: KOKA Eastern

2021 AM 06/21/2022

| ı Alanui                                 |  |
|------------------------------------------|--|
| & Aniahua                                |  |
| : KOKA Eastern Driveway & Aniahua Alanui |  |
| Eastern I                                |  |
| KOKA                                     |  |

| IIIelseciloli            |        |           |         |      |         |       |  |
|--------------------------|--------|-----------|---------|------|---------|-------|--|
| Int Delay, s/veh         | 6.2    |           |         |      |         |       |  |
| Movement                 | EBT    | EBR WBL   | WBL     | WBT  | NBL     | NBR   |  |
| -ane Configurations      | Ť,     |           |         | 4    | >       |       |  |
| raffic Vol, veh/h        | 12     | 0         | _       | 4    | 107     | 45    |  |
| -uture Vol, veh/h        | 12     | 0         | ~       | 144  | 107     | 45    |  |
| eds, #/hr                | 0      | 0         | 0       | 0    | 0       | 0     |  |
|                          | Free   | Free Free | Free    | Free | Stop    | Stop  |  |
| RT Channelized           | ٠      | None      |         | None | •       | None  |  |
| Storage Length           |        | ٠         | ٠       | ٠    |         | •     |  |
| /eh in Median Storage, # | 0      | ٠         |         |      |         | •     |  |
| Grade, %                 | 0      |           | ٠       |      | 0       |       |  |
| Peak Hour Factor         | 9      | _         | 8       |      |         | 22    |  |
| Heavy Vehicles, %        | 7      | 2         | 2       | 2    |         | 2     |  |
| Wvmt Flow                | 20     |           | 2       | 240  | 195     | 82    |  |
|                          |        |           |         |      |         |       |  |
| Major/Minor Ma           | Major1 | 2         | Major2  | ~    | Minor1  |       |  |
| Conflicting Flow All     | 0      | 0         | 20      | 0    | 264     | 20    |  |
| Stage 1                  | ٠      |           |         |      | 20      |       |  |
| Stage 2                  | ٠      | ٠         | ٠       | ٠    | 244     | •     |  |
| Critical Hdwy            | •      | ٠         | 4.12    | ٠    | 6.42    | 6.22  |  |
| Critical Hdwy Stg 1      | ٠      | ٠         | ٠       | ٠    | 5.42    | ٠     |  |
| Critical Hdwy Stg 2      | •      | •         | ٠       | ٠    | 5.42    |       |  |
| -ollow-up Hdwy           | ٠      | ٠         | 2 2 1 8 |      |         | 3.318 |  |
| Pot Cap-1 Maneuver       | •      | •         | 1596    | •    | 725     | 1058  |  |
| Stage 1                  | ٠      | ٠         | ٠       | ٠    | 1003    | ٠     |  |
| Stage 2                  | ٠      | ٠         |         | ٠    | 797     | •     |  |
| Platoon blocked, %       | ٠      | ٠         |         | ٠    |         |       |  |
| Mov Cap-1 Maneuver       | ٠      | •         | 1596    | •    | 724     | 1058  |  |
| Mov Cap-2 Maneuver       | ٠      | ٠         | ٠       |      | 724     |       |  |
| Stage 1                  | •      | •         | ٠       | ٠    | 1003    | •     |  |
| Stage 2                  | ٠      | ٠         | ٠       | ٠    | 96      |       |  |
|                          |        |           |         |      |         |       |  |
| Approach                 | 8      |           | WB      |      | 8       |       |  |
| HCM Control Delay, s     | 0      |           | 0.1     |      | 11.9    |       |  |
| HCM LOS                  |        |           |         |      | മ       |       |  |
|                          |        |           |         |      |         |       |  |
| Minor Lane/Major Mvmt    | _      | NBLn1     | EBT     | EBR  | WBL     | WBT   |  |
| Capacity (veh/h)         |        | 799       |         |      | 1596    |       |  |
| HCM Lane V/C Ratio       |        | 0.346     | ٠       | •    | - 0.001 |       |  |
| HCM Control Delay (s)    |        | 11.9      | •       | •    | 7.3     | 0     |  |
| HCM Lane LOS             |        | В         | ٠       |      | ⋖       | ¥     |  |
| HCM 95th %tile Q(veh)    |        | 1.6       | •       | ٠    | 0       |       |  |
|                          |        |           |         |      |         |       |  |

Synchro 10 Report Page 3 5:00 pm Baseline

HCM 6th TWSC 40: Mana Rd & Mamalahoa Hwy

2021 AM 06/21/2022

| IIICIOCOCIOII            |        |             |        |      |        |         |     |
|--------------------------|--------|-------------|--------|------|--------|---------|-----|
| Int Delay, s/veh         | 3.5    |             |        |      |        |         |     |
| Movement                 | EBT    | EBR         | WBL    | WBT  | R      | NBR     |     |
| Lane Configurations      | æ,     |             | *      | *    | r      | *       |     |
| Traffic Vol, veh/h       | 338    | 16          | 96     | 874  | 22     | 45      |     |
| Future Vol, veh/h        | 338    | 16          | 96     | 874  | 22     | 45      |     |
| Conflicting Peds, #/hr   | 0      | 0           | 0      | 0    | 0      | 0       |     |
| Sign Control             | Free   | Free        | Free   | Free | Stop   | Stop    |     |
| RT Channelized           | ٠      | None        | ٠      | None | ٠      | Stop    |     |
| Storage Length           | ٠      | ٠           | 9      | ٠    | 0      | 20      |     |
| Veh in Median Storage, # | 0 #    | ٠           | ٠      | 0    | 0      | ٠       |     |
| Grade, %                 | 0      | ٠           | ٠      | 0    | 0      | ٠       |     |
| Peak Hour Factor         | 9/     | 9/          | 82     | 82   | 46     | 46      |     |
| Heavy Vehicles, %        | 7      | 7           | 7      | 7    | 7      | 7       |     |
| Mvmt Flow                | 445    | 21          | 113    | 1028 | 48     | 91      |     |
|                          |        |             |        |      |        |         |     |
| Major/Minor M            | Major1 | 2           | Major2 | _    | Minor1 |         |     |
| Conflicting Flow All     | 0      | 0           | 466    | 0    | 1710   | 456     |     |
| Stage 1                  | ٠      | ٠           | ٠      | ٠    | 456    | ٠       |     |
| Stage 2                  | •      | ٠           | ٠      | •    | 1254   | ٠       |     |
| Critical Hdwy            | ٠      | ٠           | 4.12   | ٠    | 6.42   | 6.22    |     |
| Critical Hdwy Stg 1      | •      | ٠           | ٠      | •    | 5.42   | ٠       |     |
| Critical Hdwy Stg 2      | ٠      | ٠           | ٠      | ٠    | 5.42   | ٠       |     |
| Follow-up Hdwy           | ٠      | ٠           | 2.218  | ٠    | 3.518  | 3.318   |     |
| Pot Cap-1 Maneuver       | ٠      | •           | 1095   | ٠    | 100    | 604     |     |
| Stage 1                  | ٠      | ٠           | ٠      | ٠    | 638    | ٠       |     |
| Stage 2                  | ٠      | ٠           | ٠      | ٠    | 269    | ٠       |     |
| Platoon blocked, %       | ٠      | ٠           |        | ٠    |        |         |     |
| Mov Cap-1 Maneuver       | ٠      | ٠           | 1095   | ٠    | 8      | 604     |     |
| Mov Cap-2 Maneuver       | ٠      | ٠           | ٠      | ٠    | 6      | ٠       |     |
| Stage 1                  | ٠      | ٠           | ٠      | ٠    | 638    | ٠       |     |
| Stage 2                  | •      | •           | •      |      | 241    | •       |     |
|                          |        |             |        |      |        |         |     |
| Approach                 | EB     |             | WB     |      | NB     |         |     |
| HCM Control Delay, s     | 0      |             | 6.0    |      | 36.5   |         |     |
| HCM LOS                  |        |             |        |      | ш      |         |     |
|                          |        |             |        |      |        |         |     |
| Minor Lane/Major Mvmt    | _      | NBLn1 NBLn2 | JBLn2  | EB   | EBR    | EBR WBL | WBT |
| Capacity (veh/h)         |        | 8           | 604    | ٠    | ٠      | 1095    |     |
| HCM Lane V/C Ratio       |        | 0 531 0 151 | 0.151  | ٠    | ٠      | 0.103   |     |
| HCM Control Delay (s)    |        | 83.4        | 12     | ٠    | ٠      | 8.7     |     |
| HCM Lane LOS             |        | ட           | ω      | ٠    | ٠      | ⋖       |     |
| HCM 95th %tile Q(veh)    |        | 2.4         | 0.5    | ٠    | ٠      | 0.3     |     |
|                          |        |             |        |      |        |         |     |

Synchro 10 Report Page 4 5:00 pm Baseline

HCM 6th TWSC 40: Mana Rd & Mamalahoa Hwy

2021 AM 06/21/2022

†

HCM Signalized Intersection Capacity Analysis 10: Kamamalu St & Mamalahoa Hwy

1

2021 PM 06/21/2022

|              | Movement   Movement   Jane Configurations | Traffic Volume (vph) | Future Volume (vph)  | Ideal Flow (vphpl) | l otal Lost time (s) | Lane Util, Factor      | Frpb, ped/bikes | ripo, ped/bikes |                | Sate Flow (aret)           | Satu: Flow (plot) | Satt Flow (perm) | Dook hour footh: DUE | Adi Flow (vph) | RTOR Reduction (vph) | Lane Group Flow (vph) | Confl. Peds. (#/hr)  | Confl. Bikes (#/hr) | Turn Type | Protected Phases | Permitted Phases    | Actuated Green, G (s) | Effective Green, g (s) | Actuated g/C Ratio | Clearance Time (s) | Vehicle Extension (s) | Lane Grp Cap (vph) | v/s Ratio Prot     | v/s Ratio Perm     | v/c Ratio | Uniform Delay, d1 | Progression Factor | Incremental Delay, d2 | Delay (s)            |
|--------------|-------------------------------------------|----------------------|----------------------|--------------------|----------------------|------------------------|-----------------|-----------------|----------------|----------------------------|-------------------|------------------|----------------------|----------------|----------------------|-----------------------|----------------------|---------------------|-----------|------------------|---------------------|-----------------------|------------------------|--------------------|--------------------|-----------------------|--------------------|--------------------|--------------------|-----------|-------------------|--------------------|-----------------------|----------------------|
|              |                                           |                      |                      |                    |                      |                        |                 |                 |                |                            |                   |                  |                      |                |                      |                       |                      |                     |           |                  |                     |                       |                        |                    |                    |                       |                    |                    |                    |           |                   |                    |                       |                      |
|              |                                           | MRR                  | *                    | 45                 | 42                   | 0                      | Stop            | Stop            | 20             | •                          |                   | 46               | 2                    | 91             |                      |                       | 456                  | •                   |           | 6.22             |                     |                       | 318                    | 604                |                    |                       |                    | 604                |                    |           |                   |                    |                       |                      |
|              |                                           | E E                  |                      | 75                 | 22                   | 0                      | Stop            |                 | 0              | 0                          | 0                 | 46               | 2                    | 48             |                      | Minor1                | 682                  | 456                 |           | 6.42             |                     | 5.42                  | 3.518 3                |                    |                    | 812                   |                    |                    | 372                | 638       | 728               |                    | 8                     | 13.4                 |
|              |                                           | WRT                  | *                    | - 0                | 0                    | 0                      | Free            | - None          | ٠              | 0                          | 0                 | 82               | 7                    | 0              |                      |                       | 0                    | ٠                   | ٠         | ٠                | ١                   | ٠                     | ٠                      | •                  | ٠                  | •                     | •                  | •                  | ٠                  | •         | ٠                 |                    |                       |                      |
|              |                                           | WB                   |                      | 96                 |                      | 0                      | Free            |                 | 99             | •                          |                   |                  |                      | 113            |                      | Major2                | 466                  | ٠                   | ٠         | 4.12             | ١                   |                       | 2 2 1 8                | - 1095             | •                  | ٠                     |                    | 1095               | ٠                  | •         | ١                 |                    | WB                    | 8.7                  |
|              | _                                         | H H                  |                      | 16                 | 16                   | 0                      | Free Free       | - None          |                | _                          |                   |                  |                      | 21             |                      |                       | 0 0                  |                     |           |                  |                     |                       |                        |                    | •                  |                       |                    |                    |                    |           |                   |                    |                       |                      |
|              | 4                                         | FR                   | -                    | 338                | 338                  |                        | Free            |                 |                | le, # (0                   | 0                 | 9/               | 2                    | 445            |                      | Major1                | 0                    |                     |           |                  |                     |                       |                        |                    |                    |                       |                    |                    |                    |           |                   |                    | 田                     |                      |
| Intercondica | Intersection                              | Movement             | l ane Configurations | Traffic Vol. veh/h | Future Vol. veh/h    | Conflicting Peds, #/hr | Sign Control    | RT Channelized  | Storage Length | Veh in Median Storage, # 0 | Grade, %          | Peak Hour Factor | Heavy Vehicles, %    | Mvmt Flow      |                      | Major/Minor           | Conflicting Flow All | Stage 1             | Stage 2   | Critical Hdwy    | Critical Hdwy Stg 1 | Critical Hdwy Stg 2   | Follow-up Hdwy         | Pot Cap-1 Maneuver | Stage 1            | Stage 2               | Platoon blocked, % | Mov Cap-1 Maneuver | Mov Cap-2 Maneuver | Stage 1   | Stage 2           |                    | Approach              | HCM Control Delay, s |

| Movement                          | EBT      | EBK  | WBL   | WBT   | NB.                  | NBR                       |      |
|-----------------------------------|----------|------|-------|-------|----------------------|---------------------------|------|
| Lane Configurations               | 44       |      |       | 4.19  | je.                  | *                         |      |
| Traffic Volume (vph)              | 972      | 107  | 21    | 541   | 79                   | 31                        |      |
| Future Volume (vph)               | 972      | 107  | 21    | 541   | 79                   | 31                        |      |
| Ideal Flow (vphpl)                | 1900     | 1900 | 1900  | 1900  | 1900                 | 1900                      |      |
| Total Lost time (s)               | 2.0      |      |       | 2.0   | 2.0                  | 5.0                       |      |
| Lane Util, Factor                 | 0.95     |      |       | 0.95  | 1.00                 | 1.00                      |      |
| Frpb, ped/bikes                   | 1.00     |      |       | 1.00  | 1.00                 | 0.99                      |      |
| Flpb, ped/bikes                   | 1.00     |      |       | 1.00  | 1.00                 | 1.00                      |      |
| Frt                               | 0.99     |      |       | 1.00  | 1.00                 | 0.85                      |      |
| Fit Protected                     | 1.00     |      |       | 1.00  | 0.95                 | 1.00                      |      |
| Satd. Flow (prot)                 | 3479     |      |       | 3533  | 1770                 | 1567                      |      |
| Flt Permitted                     | 1.00     |      |       | 06.0  | 0.95                 | 1.00                      |      |
| Satd. Flow (perm)                 | 3479     |      |       | 3193  | 1770                 | 1567                      |      |
| Peak-hour factor, PHF             | 06.0     | 06.0 | 06.0  | 06.0  | 0.72                 | 0.72                      |      |
| Adj. Flow (vph)                   | 1080     | 119  | 23    | 601   | 110                  | 43                        |      |
| RTOR Reduction (vph)              | Ξ        | 0    | 0     | 0     | 0                    | 17                        |      |
| Lane Group Flow (vph)             | 1188     | 0    | 0     | 624   | 110                  | 26                        |      |
| Confl. Peds. (#/hr)               |          | -    | _     |       |                      | 2                         |      |
| Confl. Bikes (#/hr)               |          | -    |       |       |                      |                           |      |
| Turn Type                         | M        |      | pm+pt | N     | Prot                 | vo+md                     |      |
| Protected Phases                  | 4        |      | က     | 80    | 2                    | က                         |      |
| Permitted Phases                  |          |      | 80    |       |                      | 2                         |      |
| Actuated Green, G (s)             | 22.3     |      |       | 28.7  | 4.5                  | 5.9                       |      |
| Effective Green, g (s)            | 22.3     |      |       | 28.7  | 4.5                  | 5.9                       |      |
| Actuated g/C Ratio                | 0.52     |      |       | 99.0  | 0.10                 | 0.14                      |      |
| Clearance Time (s)                | 2.0      |      |       | 2.0   | 2.0                  | 5.0                       |      |
| Vehicle Extension (s)             | 3.0      |      |       | 3.0   | 3.0                  | 3.0                       |      |
| Lane Grp Cap (vph)                | 1795     |      |       | 2132  | 184                  | 395                       |      |
| v/s Ratio Prot                    | c0.34    |      |       | c0.01 | 00.00                | 0.00                      |      |
| v/s Ratio Perm                    |          |      |       | 0.18  |                      | 0.01                      |      |
| v/c Ratio                         | 99.0     |      |       | 0.29  | 09.0                 | 0.07                      |      |
| Uniform Delay, d1                 | 7.7      |      |       | 3.0   | 18.5                 | 16.2                      |      |
| Progression Factor                | 9.       |      |       | 9.    | 0.0                  | 1.00                      |      |
| Incremental Delay, d2             | 0.0      |      |       | 0.1   | 2.1                  | 0.1                       |      |
| Delay (s)                         | 9.8      |      |       | 3.1   | 23.6                 | 16.3                      |      |
| Level of Service                  | ⋖        |      |       | ⋖     | ပ                    | മ                         |      |
| Approach Delay (s)                | 8.6      |      |       | 3.1   | 21.6                 |                           |      |
| Approach LOS                      | ⋖        |      |       | ⋖     | ပ                    |                           |      |
| Intersection Summary              |          |      |       |       |                      |                           |      |
| HCM 2000 Control Delay            |          |      | 6.7   | 보     | :M 2000              | HCM 2000 Level of Service | А    |
| HCM 2000 Volume to Capacity ratio | ty ratio |      | 99.0  |       |                      |                           |      |
| Actuated Cycle Length (s)         |          |      | 43.2  | JS.   | Sum of lost time (s) | time (s)                  | 15.0 |
| Intersection Capacity Utilization | ы        |      | 43.7% | ᅙ     | J Level o            | ICU Level of Service      | Ą    |
| Analysis Period (min)             |          |      | 7.    |       |                      |                           |      |

Analysis Period (min) c Critical Lane Group

NBLn1 NBLn2 EBT EBR WBL WBT 372 604 - 1095 - 1035 - 1013 16.1 12 - 8.7 - 8.7 - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B - C B -

Minor Lane/Major Mvmt Capacity (vehh) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS HCM & Seth %itle Q(veh)

5:00 pm Baseline

Synchro 10 Report Page 1

5:00 pm Baseline

HCM 6th TWSC 20: KOKA Main Driveway & Hiiaka St

**2021 PM** 06/21/2022

HCM 6th TWSC 30: KOKA Eastern Driveway & Aniahua Alanui

2021 PM 06/21/2022

| down your                | 7      |         |        |      |        |      |  |
|--------------------------|--------|---------|--------|------|--------|------|--|
| III Delay, sivell        | 5      |         |        |      |        |      |  |
| Movement                 | EBT    | EBR WBL |        | WBT  | NBL    | NBR  |  |
| Lane Configurations      | 2      |         |        | 4    | >      |      |  |
| raffic Vol, veh/h        | 43     | 7       | 0      | 20   | 7      | က    |  |
| Future Vol, veh/h        | 43     | 7       | 0      | 8    | 2      | က    |  |
| Conflicting Peds, #/hr   | 0      | 0       | 0      | 0    | 0      | 0    |  |
| Sign Control             | Free   | Free    | Free   | Free | Stop   | Stop |  |
| RT Channelized           | ٠      | None    | ٠      | None | •      | None |  |
| Storage Length           | ٠      | ٠       | •      | •    | 0      | ı    |  |
| Veh in Median Storage, # |        | ٠       | ٠      | 0    | 0      |      |  |
| Grade, %                 | 0      | ٠       | •      | 0    | 0      | ı    |  |
| Peak Hour Factor         | 20     | 20      | 71     | 71   | 63     | 63   |  |
| Heavy Vehicles, %        | 0      | 0       | 0      | 0    | 0      | 0    |  |
| Mvmt Flow                | 61     | က       | 0      | 28   | က      | 2    |  |
| Major/Minor N            | Major1 | _       | Major2 |      | Minor1 |      |  |
| low All                  | 0      | 0       | 49     | 0    | 9      | 63   |  |
| Stage 1                  | ٠      | ٠       | ٠      | •    | 63     | •    |  |
| Stage 2                  | ٠      | ٠       | ٠      | ٠    | 78     | ı    |  |
| Critical Hdwy            | •      | ٠       | 4.1    | ٠    | 6.4    | 6.2  |  |
| Critical Hdwy Stg 1      | ٠      | ٠       | ٠      |      | 5.4    |      |  |
| Critical Hdwy Stg 2      | ٠      | ٠       | ٠      | •    | 5.4    | ı    |  |
| Follow-up Hdwy           | ٠      | ٠       | 2.2    | ٠    | 3.5    | 3.3  |  |
| Pot Cap-1 Maneuver       | •      | ٠       | 1551   | •    | 914    | 1007 |  |
| Stage 1                  | ٠      | ٠       | ٠      | ٠    | 965    | ŧ    |  |
| Stage 2                  | •      | •       | •      | •    | 1000   | 1    |  |
| Platoon blocked, %       | ٠      | ٠       |        | ٠    |        |      |  |
| Mov Cap-1 Maneuver       | ٠      | ٠       | 1551   | ٠    | 914    | 1007 |  |
| Mov Cap-2 Maneuver       | ٠      | ٠       | ٠      | ٠    | 914    |      |  |
| Stage 1                  | •      | •       | •      | •    | 965    | ı    |  |
| Stage 2                  | •      | •       | •      | •    | 1000   |      |  |
|                          |        |         |        |      |        |      |  |
| Approach                 | EB     |         | WB     |      | NB     |      |  |
| HCM Control Delay, s     | 0      |         | 0      |      | 8.8    |      |  |
| HCM LOS                  |        |         |        |      | ∢      |      |  |
| Minor Lane/Major Mvmt    |        | NBLn1   | EBT    | BB   | WBL    | WBT  |  |
| Capacity (veh/h)         |        | 896     |        |      | 1551   |      |  |
| HCM Lane V/C Ratio       |        | 0.008   | ٠      | ٠    | ٠      | ı    |  |
| HCM Control Delay (s)    |        | 8.8     | ٠      |      | 0      |      |  |
| HCM Lane LOS             |        | ∢       | ٠      | •    | ∢      |      |  |
|                          |        |         |        |      |        |      |  |

| Synchro 10 Report | Page 2 |
|-------------------|--------|
|                   |        |
| 5:00 pm Baseline  |        |

5:00 pm Baseline

| :                        |        |       |         |      |        |       |  |
|--------------------------|--------|-------|---------|------|--------|-------|--|
| Intersection             |        |       |         |      |        |       |  |
| Int Delay, s/veh         | 0      |       |         |      |        |       |  |
| Movement                 | EBT    | EBR   | WBL     | WBT  | NBL    | NBR   |  |
| Lane Configurations      | Ť,     |       |         | ₹    | >      |       |  |
| Traffic Vol, veh/h       | 23     | 0     | 0       | 32   | 0      | 0     |  |
| Future Vol, veh/h        | 23     | 0     | 0       | 32   | 0      | 0     |  |
| Conflicting Peds, #/hr   | 0      | -     | -       | 0    | 0      | 0     |  |
| Sign Control             | Free   | Free  | Free    | Free | Stop   | Stop  |  |
| RT Channelized           | ٠      | None  | ٠       | None | ٠      | None  |  |
| Storage Length           |        | ٠     | ٠       | ٠    | 0      | ٠     |  |
| Veh in Median Storage, # | 0 #    | •     | ٠       | 0    | 0      | ٠     |  |
| Grade, %                 |        | ٠     | ٠       | 0    | 0      | ٠     |  |
| Peak Hour Factor         | 92     | 92    | 97      | 6    | 92     | 92    |  |
| Heavy Vehicles, %        | 7      | 7     | 7       | 7    | 7      | 7     |  |
| Mvmt Flow                | 26     | 0     | 0       | 38   | 0      | 0     |  |
|                          |        |       |         |      |        |       |  |
| Major/Minor M            | Major1 | _     | Major2  | 2    | Minor1 |       |  |
| Conflicting Flow All     | 0      | 0     | 22      | 0    | 93     | 22    |  |
| Stage 1                  | ٠      | ٠     | ٠       | ٠    | 22     | ٠     |  |
| Stage 2                  | ٠      | •     | ٠       | ٠    | 36     | ٠     |  |
| Critical Hdwy            | ٠      | ٠     | 4.12    | ٠    | 6.42   | 6.22  |  |
| Critical Hdwy Stg 1      | ٠      | ٠     | ٠       | ٠    | 5.42   | ٠     |  |
| Critical Hdwy Stg 2      | ٠      | ٠     | ٠       | ٠    | 5.45   | ٠     |  |
| Follow-up Hdwy           | ٠      | ٠     | - 2.218 | ٠    | 3.518  | 3.318 |  |
| Pot Cap-1 Maneuver       | ٠      | ٠     | 1547    | ٠    |        | 1009  |  |
| Stage 1                  | ٠      | ٠     | ٠       | ٠    | 996    | •     |  |
| Stage 2                  |        | ٠     | ٠       | ٠    | 986    | ٠     |  |
| Platoon blocked, %       | ٠      | ٠     |         | ٠    |        |       |  |
| Mov Cap-1 Maneuver       |        | ٠     | 1546    | ٠    | 906    | 1008  |  |
| Mov Cap-2 Maneuver       | ٠      | ٠     | ٠       | ٠    | 906    | ٠     |  |
| Stage 1                  | ٠      | •     | •       | ٠    | 965    | ı     |  |
| Stage 2                  | •      | •     | ٠       | ٠    | 986    | ٠     |  |
|                          |        |       |         |      |        |       |  |
| Approach                 | 8      |       | WB      |      | R      |       |  |
| HCM Control Delay, s     | 0      |       | 0       |      | 0      |       |  |
| HCM LOS                  |        |       |         |      | ∢      |       |  |
|                          |        |       |         |      |        |       |  |
| Minor Lane/Major Mvmt    | _      | NBLn1 | EBT     | EBR  | WBL    | WBT   |  |
| Capacity (veh/h)         |        | •     | ٠       | ٠    | 1546   | •     |  |
| HCM Lane V/C Ratio       |        | •     | ٠       | ٠    | ٠      | ٠     |  |
| HCM Control Delay (s)    |        | 0     | ٠       | ٠    | 0      | •     |  |
| HCM Lane LOS             |        | ⋖     | ٠       | ٠    | ⋖      | ٠     |  |
| HCM 95th %tile Q(veh)    |        | •     | •       | •    | 0      | •     |  |
|                          |        |       |         |      |        |       |  |

HCM 6th TWSC 40: Mana Rd & Mamalahoa Hwy

2021 PM 06/21/2022

| Intersection             |        |             |        |      |        |       |     |
|--------------------------|--------|-------------|--------|------|--------|-------|-----|
| Int Delay, s/veh         | 1.1    |             |        |      |        |       |     |
| Movement                 | EBT    | EBR         | WBL    | WBT  | NBL    | NBR   |     |
| Lane Configurations      | 4      |             | F      | +    | F      | ×     |     |
| Traffic Vol, veh/h       | 925    | 53          | 19     | 393  | 20     | 70    |     |
| Future Vol, veh/h        | 925    | 53          | 19     | 393  | 70     | 20    |     |
| eds, #/hr                |        | 0           | 0      | 0    | 0      | 0     |     |
|                          | Free   | Free        | Free   | Free | Stop   | Stop  |     |
| RT Channelized           | -      | None        |        | None | ٠      | Stop  |     |
| Storage Length           |        | ٠           | 8      | ٠    | 0      | 20    |     |
| Veh in Median Storage, # | 0 #    | •           | ٠      | 0    | 0      | •     |     |
| Grade, %                 | 0      | ٠           | ٠      | 0    | 0      | ٠     |     |
| Peak Hour Factor         | 92     | 92          | 11     | 11   | 8      | 83    |     |
| Heavy Vehicles, %        | 2      | 7           | 2      | 2    | 2      | 2     |     |
| Mvmt Flow                | 974    | 31          | 22     | 210  | 24     | 24    |     |
|                          |        |             |        |      |        |       |     |
| Major/Minor Ma           | Major1 | 2           | Major2 | 2    | Minor1 |       |     |
| Conflicting Flow All     | 0      | 0           | 0 1005 | 0    | 1550   | 066   |     |
| Stage 1                  | ٠      | ٠           | ٠      | ٠    | 990    | ٠     |     |
| Stage 2                  | ٠      | ٠           | ٠      | ٠    | 260    | ٠     |     |
| Critical Hdwy            | ٠      | ٠           | 4.12   | ٠    | 6.42   | 6.22  |     |
| Critical Hdwy Stg 1      | ٠      | ٠           | ٠      | ٠    | 5.42   | ٠     |     |
| Critical Hdwy Stg 2      | •      | •           | ٠      | ı    | 5.42   | •     |     |
| Follow-up Hdwy           | ٠      | •           | 2.218  | ٠    |        | 3.318 |     |
| Pot Cap-1 Maneuver       | ٠      | •           | 689    | ı    | 125    | 536   |     |
| Stage 1                  | ٠      | ٠           | ٠      | ٠    | 360    | ٠     |     |
| Stage 2                  | ٠      | ٠           | ٠      | ٠    | 572    | ٠     |     |
| Platoon blocked, %       | ٠      | ٠           |        | ٠    |        |       |     |
| Mov Cap-1 Maneuver       | ٠      | ٠           | 689    | ٠    | 121    | 536   |     |
| Mov Cap-2 Maneuver       | •      |             | ٠      | ı    | 121    | •     |     |
| Stage 1                  | ٠      | ٠           | ٠      | ٠    | 360    | •     |     |
| Stage 2                  |        | ٠           | ٠      | ٠    | 221    | •     |     |
|                          |        |             |        |      |        |       |     |
| Approach                 | 8      |             | WB     |      | 8      |       |     |
| HCM Control Delay, s     | 0      |             | 0.5    |      | 30.1   |       |     |
| HCM LOS                  |        |             |        |      | □      |       |     |
|                          |        |             |        |      |        |       |     |
| Minor Lane/Major Mvmt    | Z      | NBLn1 NBLn2 | BLn2   | EBT  | EBR    | WBL   | WBT |
| Capacity (veh/h)         |        | 121         | 299    | ٠    | ٠      | 689   |     |
| HCM Lane V/C Ratio       | _      | 0.199 0.081 | 0.081  | ٠    | ٠      | 0.036 | •   |
| HCM Control Delay (s)    |        | 45          | 18.1   | ٠    | ٠      | 10.4  |     |
| HCM Lane LOS             |        | ш           | ပ      | ٠    | ٠      | മ     |     |
| HCM 95th %tile Q(veh)    |        | 0.7         | 0.3    | •    | •      | 0.1   |     |
|                          |        |             |        |      |        |       |     |

Synchro 10 Report Page 4 5:00 pm Baseline

HCM 6th TWSC 40: Mana Rd & Mamalahoa Hwy

2021 PM 06/21/2022

| Intersection             |        |             |                    |      |        |       |     |
|--------------------------|--------|-------------|--------------------|------|--------|-------|-----|
| Int Delay, s/veh         | -:     |             |                    |      |        |       |     |
| Movement                 | EBT    | EBR         | WBL                | WBT  | ВЫ     | NBR   |     |
| Lane Configurations      | 2      |             | *                  | *    | r      | W.    |     |
| Traffic Vol, veh/h       | 925    | 53          | 19                 | 0    | 50     | 50    |     |
| Future Vol, veh/h        | 922    | 59          | 19                 | 0    | 20     | 20    |     |
| Conflicting Peds, #/hr   | 0      | 0           | 0                  | 0    | 0      | 0     |     |
| Sign Control             | Free   | Free        | Free               | Free | Stop   | Stop  |     |
| RT Channelized           | ٠      | None        | ٠                  | None | ٠      | Stop  |     |
| Storage Length           | ٠      | ٠           | 9                  | ٠    | 0      | 22    |     |
| Veh in Median Storage, # | 0 #    | ٠           | ٠                  | 0    | 0      | ٠     |     |
| Grade, %                 | 0      | ٠           | •                  | 0    | 0      | •     |     |
| Peak Hour Factor         | 95     | 95          | 77                 | 11   | 83     | 83    |     |
| Heavy Vehicles, %        | 7      | 7           | 7                  | 2    | 7      | 7     |     |
| Mvmt Flow                | 974    | 31          | 22                 | 0    | 54     | 24    |     |
|                          |        |             |                    |      |        |       |     |
| Major/Minor M            | Major1 | 2           | Major2             | 2    | Minor1 |       |     |
| Conflicting Flow All     | 0      | 0           | 1005               | 0    | 1040   | 066   |     |
| Stage 1                  | ٠      | ٠           | ٠                  | ٠    | 066    | ٠     |     |
| Stage 2                  | ٠      | ٠           | •                  | ٠    | 22     | •     |     |
| Critical Hdwy            | •      | ٠           | 4.12               | ٠    | 6.42   | 6.22  |     |
| Critical Hdwy Stg 1      | ٠      | ٠           | ٠                  | ٠    | 5.45   | ٠     |     |
| Critical Hdwy Stg 2      | •      | ٠           | ٠                  | ٠    | 5.42   | ٠     |     |
| Follow-up Hdwy           | ٠      | ٠           | - 2.218            | ٠    | 3.518  | 3.318 |     |
| Pot Cap-1 Maneuver       | •      | ٠           | 689                | •    | 222    | 533   |     |
| Stage 1                  | •      | ٠           | ٠                  | ٠    | 360    | ٠     |     |
| Stage 2                  | ٠      | ٠           | ٠                  | ٠    | 972    | ٠     |     |
| Platoon blocked, %       | ٠      | ٠           |                    | ٠    |        |       |     |
| Mov Cap-1 Maneuver       | ٠      | ٠           | 689                | ٠    | 246    | 536   |     |
| Mov Cap-2 Maneuver       | ٠      | ٠           | ٠                  | ٠    | 246    | ٠     |     |
| Stage 1                  | •      | •           | •                  | ٠    | 360    | ٠     |     |
| Stage 2                  | •      | ٠           | ٠                  | •    | 937    | ٠     |     |
|                          |        |             |                    |      |        |       |     |
| Approach                 | EB     |             | WB                 |      | NB     |       |     |
| HCM Control Delay, s     | 0      |             | 10.4               |      | 19.7   |       |     |
| HCM LOS                  |        |             |                    |      | ပ      |       |     |
|                          |        |             |                    |      |        |       |     |
| Minor Lane/Major Mvmt    |        | NBLn1 NBLn2 | IBL <sub>n</sub> 2 | EBT  | EBR    | WBL   | WBT |
| Capacity (veh/h)         |        | 246         | 299                | ٠    | ٠      | 689   |     |
| HCM Lane V/C Ratio       |        | 0.098 0.081 | 0.081              | ٠    | ٠      | 0.036 |     |
| HCM Control Delay (s)    |        | 21.2        | 18.1               | ٠    | ٠      | 10.4  |     |
| HCM Lane LOS             |        | ပ           | ပ                  | ٠    | ٠      | മ     |     |
| HCM 95th %tile Q(veh)    |        | 0.3         | 0.3                | •    | ٠      | 0.1   |     |

Synchro 10 Report Page 1 5:00 pm Baseline

Future Without Project Intersection Analysis Worksheets Appendix D

| SC SC        | 2: Future Homestead Road & Hiiaka St |
|--------------|--------------------------------------|
| HCM 6th TWSC | 2: Future Homestea                   |

| Intercontion             |        |       |        |      |        |       |  |
|--------------------------|--------|-------|--------|------|--------|-------|--|
| Int Delay, s/veh         | 2.4    |       |        |      |        |       |  |
|                          | E      | 5     | 2      | FC/V | 2      |       |  |
|                          | 101    | בסק   | WDL    | MDI  | Į,     | NDK   |  |
| Lane Configurations      | 4      |       |        | €    | >      |       |  |
| Traffic Vol, veh/h       | 107    | 126   | 66     | 173  | 33     | 11    |  |
| Future Vol, veh/h        | 107    | 126   | 66     | 173  | 31     | =     |  |
| Conflicting Peds, #/hr   | 0      | 0     | 0      | 0    | 0      | 0     |  |
|                          | Free   | Free  | Free   | Free | Stop   | Stop  |  |
| RT Channelized           | ٠      | None  | ٠      | None |        | None  |  |
| Storage Length           | ٠      | ٠     | ٠      | ٠    | 0      |       |  |
| Veh in Median Storage, # | 0 #    | ٠     | ٠      | 0    | 0      |       |  |
| Grade, %                 | 0      | ٠     | ٠      | 0    | 0      | 1     |  |
| Peak Hour Factor         | 95     | 92    | 92     | 92   | 92     | 92    |  |
| Heavy Vehicles, %        | 7      | 7     | 2      | 7    | 2      | 2     |  |
| Mvmt Flow                | 116    | 137   | 108    | 188  | 34     | 12    |  |
|                          |        |       |        |      |        |       |  |
| Major/Minor Ma           | Major1 | 2     | Major2 | 2    | Minor1 |       |  |
| Conflicting Flow All     | 0      | 0     | 253    | 0    | 289    | 185   |  |
| Stage 1                  |        | ٠     | ٠      | ٠    | 185    |       |  |
| Stage 2                  | ٠      | ٠     | ٠      | ٠    | 404    |       |  |
| Critical Hdwy            | ٠      | ٠     | 4.12   | ٠    | 6.42   | 6.22  |  |
| Critical Hdwy Stg 1      | ٠      | ٠     | ٠      | ٠    | 5.42   | •     |  |
| Critical Hdwy Stg 2      | ٠      | ٠     | ٠      | ٠    | 5.42   | •     |  |
| Follow-up Hdwy           | ٠      | ٠     | 2.218  | ٠    |        | 3.318 |  |
| Pot Cap-1 Maneuver       | ٠      | ٠     | 1312   | ٠    | 471    | 857   |  |
| Stage 1                  | •      | ٠     | ٠      | ٠    | 844    | •     |  |
| Stage 2                  | •      | ٠     | •      | •    | 674    |       |  |
| Platoon blocked, %       | •      | ٠     |        | ٠    |        |       |  |
| Mov Cap-1 Maneuver       | •      | ٠     | 1312   | ٠    | 428    | 857   |  |
| Mov Cap-2 Maneuver       | ٠      | ٠     | ٠      | ٠    | 458    |       |  |
| Stage 1                  |        | ٠     | ٠      | ٠    | 847    |       |  |
| Stage 2                  | ٠      | ٠     | ٠      | ٠    | 612    |       |  |
|                          |        |       |        |      |        |       |  |
| Approach                 | 8      |       | WB     |      | B      |       |  |
| HCM Control Delay, s     | 0      |       | 2.9    |      | 13     |       |  |
| HCM LOS                  |        |       |        |      | മ      |       |  |
|                          |        |       |        |      |        |       |  |
| Minor Lane/Major Mvmt    | Z      | NBLn1 | EBT    | EBR  | WBL    | WBT   |  |
| Capacity (veh/h)         |        | 493   | ٠      | ٠    | 1312   |       |  |
| HCM Lane V/C Ratio       | _      | 0.093 | ٠      | ٠    | 0.082  | •     |  |
| HCM Control Delay (s)    |        | 13    | ٠      | ٠    | 80     | 0     |  |
| HCM Lane LOS             |        | Ф     | ٠      | ٠    | ⋖      | ¥     |  |
| HCM 95th %tile Q(veh)    |        | 0.3   | •      | •    | 0.3    |       |  |

5:00 pm Baseline

HCM Signalized Intersection Capacity Analysis 10: Kamamalu St & Mamalahoa Hwy

|                                   | <b>†</b> | <u>/</u> | -     | ļ     | •                    | •                         |      |
|-----------------------------------|----------|----------|-------|-------|----------------------|---------------------------|------|
| Movement                          | EBT      | EBR      | WBL   | WBT   | NBL                  | NBR                       |      |
| Lane Configurations               | 4₽       |          |       | €\$   | je.                  | R.                        |      |
| Traffic Volume (vph)              | 464      | 247      | 31    | 277   | 216                  | 20                        |      |
| Future Volume (vph)               | 464      | 247      | 31    | 977   | 216                  | 20                        |      |
| Ideal Flow (vphpl)                | 1900     | 1900     | 1900  | 1900  | 1900                 | 1900                      |      |
| Total Lost time (s)               | 2.0      |          |       | 2.0   | 2.0                  | 5.0                       |      |
| Lane Util Factor                  | 0.95     |          |       | 0.95  | 0.5                  | 1.00                      |      |
| Frpb, ped/bikes                   | 66.0     |          |       | 00.1  | 9 5                  | 0.99                      |      |
| Hpb, ped/bikes                    | 9.0      |          |       | 1.00  | 9.5                  | 1.00                      |      |
|                                   | CS:0     |          |       | 00.1  | 00.1                 | 0.85<br>0.85              |      |
| Flt Protected                     | 1.00     |          |       | 0.    | 0.95                 | 1.00                      |      |
| Satd. Flow (prot)                 | 3328     |          |       | 3534  | 1770                 | 1565                      |      |
| Flt Permitted                     | 1.00     |          |       | 0.87  | 0.95                 | 1.00                      |      |
| Satd. Flow (perm)                 | 3328     |          |       | 3088  | 1770                 | 1565                      |      |
| Peak-hour factor, PHF             | 0.71     | 0.71     | 0.89  | 0.89  | 0.65                 | 0.65                      |      |
| Adj. Flow (vph)                   | 654      | 348      | 32    | 1098  | 332                  | 77                        |      |
| RTOR Reduction (vph)              | 107      | 0        | 0     | 0     | 0                    | 52                        |      |
| Lane Group Flow (vph)             | 895      | 0        | 0     | 1133  | 332                  | 25                        |      |
| Confl. Peds. (#/hr)               |          | 2        | 2     |       |                      | 2                         |      |
| Turn Type                         | NA       |          | pm+pt | NA    | Prot                 | no+md                     |      |
| Protected Phases                  | 4        |          | က     | ∞     | 2                    | က                         |      |
| Permitted Phases                  |          |          | ∞     |       |                      | 5                         |      |
| Actuated Green, G (s)             | 20.4     |          |       | 28.0  | 14.5                 | 17.1                      |      |
| Effective Green, g (s)            | 20.4     |          |       | 28.0  | 14.5                 | 17.1                      |      |
| Actuated g/C Ratio                | 0.39     |          |       | 0.53  | 0.28                 | 0.33                      |      |
| Clearance Time (s)                | 2.0      |          |       | 2.0   | 2.0                  | 2.0                       |      |
| Vehicle Extension (s)             | 3.0      |          |       | 3.0   | 3.0                  | 3.0                       |      |
| Lane Grp Cap (vph)                | 1293     |          |       | 1669  | 488                  | 658                       |      |
| v/s Ratio Prot                    | 0.27     |          |       | c0.03 | c0.19                | 00.00                     |      |
| v/s Ratio Perm                    |          |          |       | c0.33 |                      | 0.01                      |      |
| v/c Ratio                         | 0.69     |          |       | 0.68  | 0.68                 | 0.04                      |      |
| Uniform Delay, d1                 | 13.4     |          |       | 0.6   | 16.9                 | 12.1                      |      |
| Progression Factor                | 1.00     |          |       | 1.00  | 1.00                 | 1.00                      |      |
| Incremental Delay, d2             | 1.6      |          |       | 1.1   | 3.9                  | 0.0                       |      |
| Delay (s)                         | 15.0     |          |       | 10.1  | 20.8                 | 12.1                      |      |
| Level of Service                  | ш        |          |       | В     | ပ                    | В                         |      |
| Approach Delay (s)                | 15.0     |          |       | 10.1  | 19.2                 |                           |      |
| Approach LOS                      | മ        |          |       | മ     | മ                    |                           |      |
| Intersection Summary              |          |          |       |       |                      |                           |      |
| HCM 2000 Control Delay            |          |          | 13.5  | 오<br> | :M 2000 L            | HCM 2000 Level of Service | В    |
| HCM 2000 Volume to Capacity ratio | ratio    |          | 97.0  |       |                      |                           |      |
| Actuated Cycle Length (s)         |          |          | 52.5  | S     | Sum of lost time (s) | ime (s)                   | 15.0 |
| Intersection Capacity Utilization | _        |          | %6.69 | ਠੁ    | ICU Level of Service | Service                   | O    |
| Analysis Period (min)             |          |          | 15    |       |                      |                           |      |
| c Critical Lane Group             |          |          |       |       |                      |                           |      |

5:00 pm Baseline Synchro 10 Report Page 2

HCM 6th TWSC 20: KOKA Main Driveway & Hiiaka St

2026 Without Project AM 06/21/2022

|                                         |        |       |         |      | I      |      |  |
|-----------------------------------------|--------|-------|---------|------|--------|------|--|
| Int Delay, s/veh                        | 7      |       |         |      |        |      |  |
| Movement                                | EBT    | EBR   | EBR WBL | WBT  | BE     | NBR  |  |
| Lane Configurations                     | ÷      |       |         | 4    | >      |      |  |
| Traffic Vol, veh/h                      | 23     | 84    | 83      | 173  | 0      | 0    |  |
| Future Vol, veh/h                       | 23     | 84    | 93      | 173  | 0      | 0    |  |
| Conflicting Peds, #/hr                  | 0      | 7     | 7       | 0    | 0      | 0    |  |
| Sign Control                            | Free   | Free  | Free    | Free | Stop   | Stop |  |
| RT Channelized                          | ٠      | None  | •       | None | ٠      | None |  |
| Storage Length                          |        | ٠     | ٠       | ٠    | 0      | ٠    |  |
| Veh in Median Storage, #                | 0 #    |       | •       | 0    | 0      | ٠    |  |
| Grade, %                                | 0      | ٠     | ٠       | 0    | 0      | ٠    |  |
| Peak Hour Factor                        | 29     | 29    | 26      | 26   | 90     | 99   |  |
| Heavy Vehides, %<br>Mymt Flow           | 0 0    | 0 74  | 166     | 300  | 0 0    | 0 0  |  |
|                                         |        |       |         |      |        |      |  |
| Major/Minor Ma                          | Major1 | 2     | Major2  | _    | Minor1 |      |  |
| Conflicting Flow All                    | 0      | 0     | 183     | 0    | 753    | 112  |  |
| Stage 1                                 | ٠      | ٠     | •       | ٠    | 112    | ٠    |  |
| Stage 2                                 | ٠      | •     | ٠       | ٠    | 641    | ٠    |  |
| Critical Hdwy                           | ۰      |       | 4.1     | ٠    | 6.4    | 6.2  |  |
| Critical Hdwy Stg 1                     | ٠      | ٠     | ٠       | ٠    | 5.4    | ٠    |  |
| Critical Hdwy Stg 2                     | ٠      | ٠     | ٠       | ٠    | 5.4    | ٠    |  |
| Follow-up Hdwy                          | ٠      | ٠     | 2.2     | ٠    | 3.5    | 3.3  |  |
| Pot Cap-1 Maneuver                      | ٠      | ٠     | 1404    | ٠    | 380    | 947  |  |
| Stage 1                                 | ٠      | ٠     | ٠       | ٠    | 918    | ٠    |  |
| Stage 2                                 | ٠      | •     | •       | ٠    | 228    | ٠    |  |
| Platoon blocked, %                      | ٠      | ٠     |         | ٠    |        |      |  |
| Mov Cap-1 Maneuver                      | ٠      | •     | 1401    | •    | 325    | 945  |  |
| Mov Cap-2 Maneuver                      | ٠      | ٠     | ٠       | ٠    | 325    | ٠    |  |
| Stage 1                                 | •      | •     | •       | ٠    | 916    | ٠    |  |
| Stage 2                                 | ٠      | ٠     | ٠       | ٠    | 452    | ٠    |  |
|                                         |        |       |         |      |        |      |  |
| Approach                                | EB     |       | WB      |      | NB     |      |  |
| HCM Control Delay, s                    | 0      |       | 2.8     |      | 0      |      |  |
| HCM LOS                                 |        |       |         |      | ∢      |      |  |
|                                         |        |       | Ė       | 6    | 3      | į.   |  |
| Minor Lane/Major Mvmt                   | 2      | NBLn1 | EBI     | EBK  | WBL    | WBI  |  |
| Capacity (veh/h)                        |        | ٠     | •       | ٠    | 1401   | •    |  |
| HCM Lane V/C Ratio                      |        | ٠     | ٠       | ٠    | 0.119  | ٠    |  |
| HCM Control Delay (s)                   |        | 0     | ٠       | ٠    | 7.9    | 0    |  |
| HCM Lane LOS                            |        | ∢     | ٠       | ٠    | ٧      | ⋖    |  |
| ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) |        |       |         |      |        |      |  |

5:00 pm Baseline Synchro 10 Report Page 3

HCM 6th TWSC 30: KOKA Eastern Driveway & Aniahua Alanui

| Intersection             |        |         |        |      |        |       |  |
|--------------------------|--------|---------|--------|------|--------|-------|--|
| Int Delay, s/veh         | 5.5    |         |        |      |        |       |  |
| Movement                 | EBT    | EBR WBL | WBL    | WBT  | BE     | NBR   |  |
| Lane Configurations      | Ť,     |         |        | 4    | >      |       |  |
| Traffic Vol, veh/h       | 23     | 0       | _      | 243  | 107    | 45    |  |
| Future Vol, veh/h        | 23     | 0       | ~      | 243  | 107    | 45    |  |
| Conflicting Peds, #/hr   | 0      | 0       | 0      | 0    | 0      | 0     |  |
| Sign Control             | Free   | Free    | Free   | Free | Stop   | Stop  |  |
| RT Channelized           | ٠      | None    | ٠      | None | ٠      | None  |  |
| Storage Length           | ٠      | ٠       | ٠      | ٠    | 0      |       |  |
| Veh in Median Storage, # |        | •       | ٠      | 0    | 0      |       |  |
| Grade, %                 | 0      | ٠       | ٠      | 0    | 0      |       |  |
| Peak Hour Factor         | 09     | 99      | 09     | 09   | 22     | 22    |  |
| Heavy Vehicles, %        | 7      | 7       | 7      | 7    | 7      | 2     |  |
| Mvmt Flow                | 38     | 0       | 2      | 405  | 195    | 82    |  |
|                          |        |         |        |      |        |       |  |
| Major/Minor M            | Major1 | _       | Major2 | _    | Minor1 |       |  |
| Conflicting Flow All     | 0      | 0       | 88     | 0    | 447    | 38    |  |
| Stage 1                  | ٠      | ٠       | ٠      | ٠    | 88     |       |  |
| Stage 2                  | ٠      | ٠       | ٠      | ٠    | 409    |       |  |
| Critical Hdwy            | ٠      | ٠       | 4.12   | ٠    | 6.42   | 6.22  |  |
| Critical Hdwy Stg 1      | ٠      | ٠       | ٠      | ٠    | 5.45   |       |  |
| Critical Hdwy Stg 2      | ٠      | ٠       | ٠      | •    | 5.45   |       |  |
| Follow-up Hdwy           | ٠      | ٠       | 2.218  | ٠    | 3.518  | 3.318 |  |
| Pot Cap-1 Maneuver       | ٠      | ٠       | 1572   | ٠    | 269    | 1034  |  |
| Stage 1                  | ٠      | ٠       | ٠      | ٠    | 984    |       |  |
| Stage 2                  | ٠      | ٠       | ٠      | •    | 671    |       |  |
| Platoon blocked, %       | ٠      | ٠       |        | ٠    |        |       |  |
| Mov Cap-1 Maneuver       | ٠      | ٠       | 1572   | ٠    | 268    | 1034  |  |
| Mov Cap-2 Maneuver       | ٠      | ٠       | ٠      | ٠    | 268    | •     |  |
| Stage 1                  | ٠      | ٠       | ٠      | •    | 984    |       |  |
| Stage 2                  | ٠      | ٠       | ٠      | ٠    | 670    |       |  |
|                          |        |         |        |      |        |       |  |
| Approach                 | EB     |         | WB     |      | NB     |       |  |
| HCM Control Delay, s     | 0      |         | 0      |      | 14.4   |       |  |
| HCM LOS                  |        |         |        |      | Ф      |       |  |
|                          |        |         |        |      |        |       |  |
| Minor Lane/Major Mvmt    | _      | NBLn1   | EBT    | EBR  | WBL    | WBT   |  |
| Capacity (veh/h)         |        | 655     | ٠      | ٠    | 1572   | •     |  |
| HCM Lane V/C Ratio       |        | 0.422   | ٠      | ٠    | 0.001  | •     |  |
| HCM Control Delay (s)    |        | 14.4    | •      | •    | 7.3    | 0     |  |
| HCM Lane LOS             |        | മ       | •      | •    | ⋖      | A     |  |
| HCM 95th %tile Q(veh)    |        | 2.1     | •      | •    | 0      |       |  |

Synchro 10 Report Page 4 5:00 pm Baseline

HCM 6th TWSC 40: Mana Rd & Mamalahoa Hwy

2026 Without Project AM 06/21/2022

| Int Delay, s/veh         | 9.1    |          |               |      |        |         |     |  |
|--------------------------|--------|----------|---------------|------|--------|---------|-----|--|
| Movement                 | EBT    | EBR      | WBL           | WBT  | NBL    | NBR     |     |  |
| Lane Configurations      | 4      |          | j.            | *    | *      | K       |     |  |
| Fraffic Vol, veh/h       | 368    | 16       |               | 952  | 72     | 29      |     |  |
| Future Vol, veh/h        | 368    | 9        | 206           |      | 22     | 26      |     |  |
| Conflicting Peds, #/hr   | 0      | 0        | 0             | 0    | 0      | 0       |     |  |
| Sign Control             | Free   | Free     | Free          | Free | Stop   | Stop    |     |  |
| RT Channelized           | ٠      | None     | •             | None |        | Stop    |     |  |
| Storage Length           | ٠      | ٠        | 9             | ٠    | 0      | 20      |     |  |
| Veh in Median Storage, # | 0 #    | •        | ٠             | 0    | 0      | ٠       |     |  |
| Grade, %                 | 0      | ٠        | ٠             | 0    | 0      | ٠       |     |  |
| Peak Hour Factor         | 9/     | 9/       | 82            | 82   | 46     | 46      |     |  |
| Heavy Vehicles, %        | 7      | 7        | 7             | 2    | 7      | 7       |     |  |
| Mvmt Flow                | 484    | 21       | 242           | 1120 | 48     | 122     |     |  |
|                          |        |          |               |      |        |         |     |  |
| Major/Minor N            | Major1 |          | Major2        |      | Minor1 |         |     |  |
| Conflicting Flow All     | 0      | 0        | 202           | 0    | 2099   | 495     |     |  |
| Stage 1                  | ٠      | ٠        | ٠             | ٠    | 495    | ٠       |     |  |
| Stage 2                  | ٠      | ٠        | ٠             | ٠    | 1604   | ٠       |     |  |
| Critical Hdwy            | ٠      | •        | 4.12          | ٠    | 6.42   | 6.22    |     |  |
| Critical Hdwy Stg 1      | ٠      | ٠        | ٠             | ٠    | 5.45   | ٠       |     |  |
| Critical Hdwy Stg 2      | ٠      | ٠        | •             | ٠    | 5.45   | ٠       |     |  |
| Follow-up Hdwy           | ٠      | ٠        | 2.218         | ٠    | 3.518  | 3.318   |     |  |
| Pot Cap-1 Maneuver       | ٠      | •        | 1060          | ٠    | 24     | 275     |     |  |
| Stage 1                  | ٠      | ٠        | ٠             | ٠    | 613    |         |     |  |
| Stage 2                  | •      | •        | •             | •    | 181    | •       |     |  |
| Platoon blocked, %       | ٠      | ٠        |               | ٠    |        |         |     |  |
| Mov Cap-1 Maneuver       | •      | ٠        | 1060          | •    | ~ 44   | 575     |     |  |
| Mov Cap-2 Maneuver       | ٠      | ٠        | ٠             | ٠    | 74     | ٠       |     |  |
| Stage 1                  | ٠      | ٠        | •             | •    | 613    | ٠       |     |  |
| Stage 2                  | •      | •        | •             | •    | 140    | •       |     |  |
|                          |        |          |               |      |        |         |     |  |
| Approach                 | EB     |          | WB            |      | NB     |         |     |  |
| HCM Control Delay, s     | 0      |          | 1.7           |      | 96     |         |     |  |
| HCM LOS                  |        |          |               |      | ட      |         |     |  |
| Minor I ane/Maior Mvmt   |        | Bl n1    | NRI n1 NRI n2 | 표    | FBR    | FBR WBI | WBT |  |
| Capacity (veh/h)         |        | 4        | 575           |      | i      | 1060    |     |  |
| HCM Lane V/C Ratio       |        | 1.087    | 0             | ľ    |        | 0 229   |     |  |
| HCM Control Delay (s)    | S      | \$ 307.4 | 12.9          | ٠    | •      | 9.4     | •   |  |
| HCM Lane LOS             |        | ш        |               | ٠    |        | ⋖       | •   |  |
| HCM 95th %tile Q(veh)    |        | 4.5      | 0.8           |      | •      | 0.0     |     |  |
| Notes                    |        |          |               |      |        |         |     |  |
| 200                      |        |          |               |      |        |         |     |  |

5:00 pm Baseline

HCM 6th TWSC 40: Mana Rd & Mamalahoa Hwy

2026 Without Project AM 06/21/2022

| Intersection             |        |             |        |      |        |       |     |
|--------------------------|--------|-------------|--------|------|--------|-------|-----|
| Int Delay, s/veh         | 9.6    |             |        |      |        |       |     |
| Movement                 | EBT    | EBR         | WBL    | WBT  | NBL    | NBR   |     |
| Lane Configurations      | 4      |             | F      | +    | F      | N.    |     |
| Traffic Vol, veh/h       | 368    | 16          | 206    | 0    | 22     | 26    |     |
| Future Vol, veh/h        | 368    | 16          | 506    | 0    | 55     | 26    |     |
| Conflicting Peds, #/hr   | 0      | 0           | 0      | 0    | 0      | 0     |     |
|                          | Free   | Free        | Free   | Free | Stop   | Stop  |     |
| RT Channelized           | -      | None        | •      | None | ٠      | Stop  |     |
| Storage Length           |        | ٠           | 9      | ٠    | 0      | 20    |     |
| Veh in Median Storage, # |        | ٠           |        | 0    | 0      | ٠     |     |
| Grade, %                 | 0      | ٠           | ٠      | 0    | 0      | ٠     |     |
| Peak Hour Factor         | 9/     | 9/          | 82     | 82   | 46     | 46    |     |
| Heavy Vehicles, %        | 7      | 7           | 7      | 7    | 7      | 7     |     |
| Mvmt Flow                | 484    | 21          | 242    | 0    | 48     | 122   |     |
|                          |        |             |        |      |        |       |     |
| Major/Minor Ma           | Major1 | 2           | Major2 | Σ    | Minor1 |       |     |
| Conflicting Flow All     | 0      | 0           | 202    | 0    | 626    | 495   |     |
| Stage 1                  | ٠      | ٠           | ٠      | •    | 495    | ٠     |     |
| Stage 2                  |        | •           | •      | ٠    | 484    | ٠     |     |
| Critical Hdwy            | ٠      | ٠           | 4.12   | •    | 6.42   | 6.22  |     |
| Critical Hdwy Stg 1      | ٠      | ٠           | ٠      | ٠    | 5.42   | ٠     |     |
| Critical Hdwy Stg 2      | ٠      | ٠           | ٠      | ٠    |        | •     |     |
| Follow-up Hdwy           |        | •           | 2.218  | •    |        | 3.318 |     |
| Pot Cap-1 Maneuver       | ٠      | •           | 1060   | •    | 277    | 575   |     |
| Stage 1                  | ٠      | ٠           | ٠      | ٠    | 613    | ٠     |     |
| Stage 2                  | ٠      | ٠           |        | ٠    | 620    | ٠     |     |
| Platoon blocked, %       | ٠      | ٠           |        | ٠    |        |       |     |
| Mov Cap-1 Maneuver       | ٠      | ٠           | 1060   | ٠    | 214    | 575   |     |
| Mov Cap-2 Maneuver       | ٠      | ٠           | ٠      | ٠    | 214    | ٠     |     |
| Stage 1                  | ٠      | ٠           | ٠      | ٠    | 613    | •     |     |
| Stage 2                  |        | ٠           | •      | ٠    | 479    | ٠     |     |
|                          |        |             |        |      |        |       |     |
| Approach                 | B      |             | WB     |      | 8      |       |     |
| HCM Control Delay, s     | 0      |             | 9.4    |      | 16.8   |       |     |
| HCM LOS                  |        |             |        |      | ပ      |       |     |
|                          |        |             |        |      |        |       |     |
| Minor Lane/Major Mvmt    | Z      | NBLn1 NBLn2 | BLn2   | EBT  | EBR    | WBL   | WBT |
| Capacity (veh/h)         |        | 214         | 275    |      | ٠      | 1060  |     |
| HCM Lane V/C Ratio       |        | 0.223 0.212 | 0.212  | ٠    | ٠      | 0.229 |     |
| HCM Control Delay (s)    |        | 26.6        | 12.9   | ٠    | ٠      | 9.4   |     |
| HCM Lane LOS             |        | □           | Ф      | ٠    | ٠      | ⋖     | •   |
| HCM 95th %tile Q(veh)    |        | 0.8         | 0.8    | •    | ٠      | 0.0   | •   |
|                          |        |             |        |      |        |       |     |

Synchro 10 Report Page 1 5:00 pm Baseline

HCM 6th TWSC 2: Future Homestead Road & Hiiaka St

2026 Without Project PM

| a cito control           |        |       |        |      |        |       |  |
|--------------------------|--------|-------|--------|------|--------|-------|--|
| Intersection             | 1      |       |        |      |        |       |  |
| Int Delay, s/ven         | 8./    |       |        |      |        |       |  |
| Movement                 | EBT    | EBR   | WBL    | WBT  | NBL    | NBR   |  |
| Lane Configurations      | Ť,     |       |        | 4    | >      |       |  |
| Traffic Vol, veh/h       | 132    | 96    | 33     | 22   | 250    | 87    |  |
| Future Vol, veh/h        | 132    | 96    | 33     | 22   | 220    | 87    |  |
| Conflicting Peds, #/hr   | 0      | 0     | 0      | 0    | 0      | 0     |  |
|                          | Free   | Free  | Free   | Free | Stop   | Stop  |  |
| RT Channelized           | ٠      | None  |        | None |        | None  |  |
| Storage Length           |        | ٠     | ٠      | ٠    | 0      | į     |  |
| Veh in Median Storage, # | 0 #    | ٠     | •      | 0    | 0      | •     |  |
| Grade, %                 | 0      | ٠     | ٠      | 0    | 0      | i     |  |
| Peak Hour Factor         | 92     | 92    | 92     | 95   | 92     | 92    |  |
| Heavy Vehicles, %        | 7      | 7     | 2      | 7    | 2      | 2     |  |
| Mvmt Flow                | 143    | 104   | 36     | 24   | 272    | 95    |  |
|                          |        |       |        |      |        |       |  |
| Major/Minor Ma           | Major1 | _     | Major2 | _    | Minor1 |       |  |
| Conflicting Flow All     | 0      | 0     | 247    | 0    | 291    | 195   |  |
| Stage 1                  | ٠      | ٠     | •      | ٠    | 195    | •     |  |
| Stage 2                  | ٠      | •     | ٠      | ٠    | 96     | ,     |  |
| Critical Hdwy            | ٠      | ٠     | 4.12   | ٠    | 6.42   | 6.22  |  |
| Critical Hdwy Stg 1      | ٠      | ٠     | ٠      | ٠    | 5.42   |       |  |
| Critical Hdwy Stg 2      | ٠      | ٠     |        | ٠    | 5.45   |       |  |
| Follow-up Hdwy           | ٠      | ٠     | 2.218  | ٠    | 3.518  | 3.318 |  |
| Pot Cap-1 Maneuver       | ٠      | ٠     | 1319   | ٠    | 200    | 846   |  |
| Stage 1                  | ٠      | ٠     | ٠      | ٠    | 838    | i     |  |
| Stage 2                  | ٠      | ٠     | •      | ٠    | 928    | ı     |  |
| Platoon blocked, %       | ٠      | ٠     |        | ٠    |        |       |  |
| Mov Cap-1 Maneuver       | ٠      | ٠     | 1319   | ٠    | 089    | 846   |  |
| Mov Cap-2 Maneuver       | ٠      | ٠     | ٠      | ٠    | 089    | ī     |  |
| Stage 1                  | ٠      | •     | •      | ٠    | 838    | •     |  |
| Stage 2                  | ٠      | ٠     | ٠      | ٠    | 905    | •     |  |
|                          |        |       |        |      |        |       |  |
| Approach                 | 8      |       | WB     |      | RB     |       |  |
| HCM Control Delay, s     | 0      |       | 4.7    |      | 15.2   |       |  |
| HCM LOS                  |        |       |        |      | ပ      |       |  |
|                          |        |       |        |      |        |       |  |
| Minor Lane/Major Mvmt    | Z      | NBLn1 | EBT    | EBR  | WBL    | WBT   |  |
| Capacity (veh/h)         |        | 716   | ٠      | ٠    | 1319   | •     |  |
| HCM Lane V/C Ratio       |        | 0.512 | ٠      | ٠    | 0.027  | i     |  |
| HCM Control Delay (s)    |        | 15.2  | •      | ٠    | 7.8    | 0     |  |
| HCM Lane LOS             |        | ပ     | ٠      | ٠    | 4      | А     |  |
| HCM 95th %tile Q(veh)    |        | 2.9   | •      | •    | 0.1    | •     |  |

Synchro 10 Report Page 1 5:00 pm Baseline

HCM Signalized Intersection Capacity Analysis 10: Kamamalu St & Mamalahoa Hwy

|                                   | †         | *    | -     | ţ        | •         | •                         |      |
|-----------------------------------|-----------|------|-------|----------|-----------|---------------------------|------|
| Movement                          | EBT       | EBR  | WBL   | WBT      | R         | NBR                       |      |
| Lane Configurations               | ₩\$       |      |       | €1.      | *         | ¥.                        |      |
| Traffic Volume (vph)              | 1059      | 203  | 21    | 289      | 329       | 31                        |      |
| Future Volume (vph)               | 1059      | 203  | 21    | 589      | 329       | 31                        |      |
| Ideal Flow (vphpl)                | 1900      | 1900 | 1900  | 1900     | 1900      | 1900                      |      |
| Total Lost time (s)               | 2.0       |      |       | 2.0      | 2.0       | 5.0                       |      |
| Lane Util. Factor                 | 0.95      |      |       | 0.95     | 1.00      | 1.00                      |      |
| Frpb, ped/bikes                   | 1.00      |      |       | 1.00     | 100       | 66.0                      |      |
| Flpb, ped/bikes                   | 1.00      |      |       | 1.00     | 1.00      | 1.00                      |      |
| Fit                               | 0.98      |      |       | 1.00     | 1.00      | 0.85                      |      |
| Flt Protected                     | 1.00      |      |       | 1.00     | 0.95      | 1.00                      |      |
| Satd. Flow (prot)                 | 3441      |      |       | 3533     | 1770      | 1564                      |      |
| Flt Permitted                     | 1.00      |      |       | 0.81     | 0.95      | 1.00                      |      |
| Satd. Flow (perm)                 | 3441      |      |       | 2858     | 1770      | 1564                      |      |
| Peak-hour factor, PHF             | 06.0      | 06.0 | 06.0  | 06.0     | 0.72      | 0.72                      |      |
| Adj. Flow (vph)                   | 1177      | 226  | 23    | 654      | 457       | 43                        |      |
| RTOR Reduction (vph)              | 22        | 0    | 0     | 0        | 0         | 17                        |      |
| Lane Group Flow (vph)             | 1381      | 0    | 0     | 229      | 457       | 56                        |      |
| Confl. Peds. (#/hr)               |           | -    | -     |          |           | 2                         |      |
| Confl. Bikes (#/hr)               |           | -    |       |          |           |                           |      |
| Turn Type                         | A         |      | pm+pt | ¥        | Prot      | m+ov                      |      |
| Protected Phases                  | 4         |      | က     | ∞        | 2         | 3                         |      |
| Permitted Phases                  |           |      | 8     |          |           | 2                         |      |
| Actuated Green, G (s)             | 29.5      |      |       | 37.3     | 19.3      | 22.1                      |      |
| Effective Green, g (s)            | 29.5      |      |       | 37.3     | 19.3      | 22.1                      |      |
| Actuated g/C Ratio                | 0.44      |      |       | 0.56     | 0.29      | 0.33                      |      |
| Clearance Time (s)                | 2.0       |      |       | 2.0      | 2.0       | 5.0                       |      |
| Vehicle Extension (s)             | 3.0       |      |       | 3.0      | 3.0       | 3.0                       |      |
| Lane Grp Cap (vph)                | 1524      |      |       | 1629     | 512       | 636                       |      |
| v/s Ratio Prot                    | c0.40     |      |       | c0.02    | c0.26     | 0.00                      |      |
| v/s Ratio Perm                    |           |      |       | 0.22     |           | 0.01                      |      |
| v/c Ratio                         | 0.91      |      |       | 0.42     | 0.89      | 0.04                      |      |
| Uniform Delay, d1                 | 17.3      |      |       | 8.4      | 22.7      | 15.1                      |      |
| Progression Factor                | 9.        |      |       | 00.      | 9.0       | 1.00                      |      |
| Incremental Delay, d2             | 8.0       |      |       | 0.2      | 17.6      | 0.0                       |      |
| Delay (s)                         | 25.3      |      |       | 8.6      | 40.3      | 15.1                      |      |
| Level of Service                  | ပ         |      |       | ∢        | _         | മ                         |      |
| Approach Delay (s)                | 25.3      |      |       | 8.6      | 38.1      |                           |      |
| Approach LOS                      | O         |      |       | ∢        | Ω         |                           |      |
| Intersection Summary              |           |      |       |          |           |                           |      |
| HCM 2000 Control Delay            |           |      | 23.4  | 무        | M 2000    | HCM 2000 Level of Service | O    |
| HCM 2000 Volume to Capacity ratio | ity ratio |      | 0.89  |          |           |                           |      |
| Actuated Cycle Length (s)         |           |      | 9.99  | S        | m of lost | Sum of lost time (s)      | 15.0 |
| Intersection Capacity Utilization | lon       |      | 62.3% | <u>ত</u> | J Level o | ICU Level of Service      | В    |
| Analysis Period (min)             |           |      | 15    |          |           |                           |      |
|                                   |           |      |       |          |           |                           |      |

c Critical Lane Group

5:00 pm Baseline

Synchro 10 Report Page 2

HCM 6th TWSC 20: KOKA Main Driveway & Hiiaka St

2026 Without Project PM 06/21/2022

| TICH COCKION             |        |       |         |      |        |      |  |
|--------------------------|--------|-------|---------|------|--------|------|--|
| Int Delay, s/veh         | 1.6    |       |         |      |        |      |  |
| Movement                 | EBT    | EBR   | EBR WBL | WBT  | B      | NBR  |  |
| Lane Configurations      | ÷      |       |         | 4    | >      |      |  |
| raffic Vol, veh/h        | 130    | 2     | 33      | 2    | 7      | က    |  |
| Future Vol, veh/h        | 130    | 7     | 33      | 2    | 7      | က    |  |
| Conflicting Peds, #/hr   | 0      | 0     | 0       | 0    | 0      | 0    |  |
| Sign Control             | Free   | Free  | Free    | Free | Stop   | Stop |  |
| RT Channelized           | ٠      | None  | •       | None | ٠      | None |  |
| Storage Length           | ٠      | ٠     | ٠       | ٠    | 0      |      |  |
| Veh in Median Storage, # | 0 #    | ٠     |         | 0    | 0      |      |  |
| Grade, %                 | 0      | ٠     | ٠       | 0    | 0      |      |  |
| Peak Hour Factor         | 20     | 2     | 7       | 7    | 63     | 63   |  |
| Heavy Vehicles, %        | 0      | 0     | 0       | 0    | 0      | 0    |  |
| Mvmt Flow                | 186    | က     | 46      | 78   | က      | 2    |  |
|                          |        |       |         |      |        |      |  |
| Major/Minor N            | Major1 | _     | Major2  | _    | Minor1 |      |  |
| Conflicting Flow All     | 0      | 0     | 189     | 0    | 308    | 188  |  |
| Stage 1                  | ٠      | ٠     | •       | ٠    | 188    |      |  |
| Stage 2                  | ٠      | ٠     | ٠       | ٠    | 120    |      |  |
| Critical Hdwy            | ٠      | ٠     | 4.1     | ٠    | 6.4    | 6.2  |  |
| Critical Hdwy Stg 1      | ٠      | ٠     | ٠       | ٠    | 5.4    |      |  |
| Critical Hdwy Stg 2      | ٠      | ٠     | •       | ٠    | 5.4    | •    |  |
| Follow-up Hdwy           | ٠      | ٠     | 2.2     | ٠    | 3.5    | 3.3  |  |
| Pot Cap-1 Maneuver       | ٠      | 1     | 1397    | •    | 889    | 829  |  |
| Stage 1                  | ٠      | ٠     | ٠       | ٠    | 849    |      |  |
| Stage 2                  | ٠      | •     | •       | •    | 910    | •    |  |
| Platoon blocked, %       | ٠      | ٠     |         | ٠    |        |      |  |
| Mov Cap-1 Maneuver       | •      | ٠     | 1397    | •    | 999    | 826  |  |
| Mov Cap-2 Maneuver       | ٠      | ٠     | •       | ٠    | 992    | ٠    |  |
| Stage 1                  | •      | ٠     | •       | •    | 849    |      |  |
| Stage 2                  | ٠      | ٠     | ٠       | ٠    | 88     |      |  |
|                          |        |       |         |      |        |      |  |
| Approach                 | B      |       | WB      |      | B      |      |  |
| HCM Control Delay, s     | 0      |       | 4.8     |      | 9.7    |      |  |
| HCM LOS                  |        |       |         |      | ⋖      |      |  |
|                          |        |       |         |      |        |      |  |
| Minor Lane/Major Mvmt    |        | NBLn1 | EBT     | EBR  | WBL    | WBT  |  |
| Capacity (veh/h)         |        | 769   | ٠       | ٠    | 1397   |      |  |
| HCM Lane V/C Ratio       |        | 0.01  | ٠       | ٠    | 0.033  |      |  |
| HCM Control Delay (s)    |        | 9.7   | ٠       | ٠    | 7.7    | 0    |  |
| HCM Lane LOS             |        | ∢     | ٠       | ٠    | ∢      | ⋖    |  |
|                          |        |       |         |      |        |      |  |

5:00 pm Baseline

HCM 6th TWSC 30: KOKA Eastem Driveway & Aniahua Alanui

| Intersection             |        |         |        |      |        |       |  |
|--------------------------|--------|---------|--------|------|--------|-------|--|
| Int Delay, s/veh         | 1.2    |         |        |      |        |       |  |
| Movement                 | EBT    | EBR WBL |        | WBT  | NBL    | NBR   |  |
| Lane Configurations      | 2      |         |        | 4    | >      |       |  |
| Traffic Vol, veh/h       | 140    | 0       | 33     | 32   | 0      | 0     |  |
| Future Vol, veh/h        | 140    | 0       | 33     | 32   | 0      | 0     |  |
| Conflicting Peds, #/hr   | 0      | -       | _      | 0    | 0      | 0     |  |
|                          | Free   | Free    | Free   | Free |        | Stop  |  |
| RT Channelized           | •      | None    | •      | None |        | None  |  |
| Storage Length           | ٠      | ٠       | ٠      | ٠    | 0      | ı     |  |
| Veh in Median Storage, # |        | ٠       | ٠      | 0    | 0      | •     |  |
| Grade, %                 | 0      | ٠       | ٠      | 0    | 0      |       |  |
| Peak Hour Factor         | 92     | 92      | 6      | 26   | 92     | 35    |  |
| Heavy Vehicles, %        | 5      | 7       | 7      | 2    | 7      | 2     |  |
| Mvmt Flow                | 147    | 0       | 34     | 36   | 0      | 0     |  |
|                          |        |         |        |      |        |       |  |
| Major/Minor Ma           | Major1 | 2       | Major2 | 2    | Minor1 |       |  |
| Conflicting Flow All     | 0      | 0       | 148    | 0    | 252    | 148   |  |
| Stage 1                  | ٠      | ٠       | ٠      | ٠    | 148    | •     |  |
| Stage 2                  | ٠      | ٠       | ٠      | ٠    | 104    |       |  |
| Critical Hdwy            | ٠      | ٠       | 4.12   | ٠    | 6.42   | 6.22  |  |
| Critical Hdwy Stg 1      | ٠      | ٠       | ٠      | ٠    | 5.45   |       |  |
| Critical Hdwy Stg 2      | ٠      | ٠       | ٠      | ٠    | 5.45   |       |  |
| Follow-up Hdwy           | ٠      | •       | 2.218  | ٠    |        | 3.318 |  |
| Pot Cap-1 Maneuver       | ٠      | ٠       | 1434   | ٠    | 737    | 668   |  |
| Stage 1                  | ٠      | ٠       | ٠      | ٠    | 880    |       |  |
| Stage 2                  |        | ٠       | ٠      | ٠    | 920    | •     |  |
| Platoon blocked, %       | ٠      | ٠       |        | ٠    |        |       |  |
| Mov Cap-1 Maneuver       | ٠      | ٠       | 1433   | ٠    | 719    | 868   |  |
| Mov Cap-2 Maneuver       | ٠      | ٠       | ٠      | ٠    | 719    | Ů.    |  |
| Stage 1                  |        | •       | ٠      | i    | 879    |       |  |
| Stage 2                  | ٠      | •       | ٠      | •    | 868    | •     |  |
|                          |        |         |        |      |        |       |  |
| Approach                 | 出      |         | WB     |      | 8      |       |  |
| HCM Control Delay, s     | 0      |         | 3.7    |      | 0      |       |  |
| HCM LOS                  |        |         |        |      | ⋖      |       |  |
|                          |        |         |        |      |        |       |  |
| Minor Lane/Major Mvmt    | Z      | NBLn1   | EBT    | EBR  | WBL    | WBT   |  |
| Capacity (veh/h)         |        |         | •      |      | 1433   |       |  |
| HCM Lane V/C Ratio       |        | ٠       | ٠      | ٠    | 0.024  |       |  |
| HCM Control Delay (s)    |        | 0       | ٠      | ٠    | 9.7    | 0     |  |
| HCM Lane LOS             |        | ⋖       | ٠      | ٠    | ٧      | Ą     |  |
| HCM 95th %tile Q(veh)    |        | •       | •      | ٠    | 0.1    | •     |  |
|                          |        |         |        |      |        |       |  |

Synchro 10 Report Page 4 5:00 pm Baseline

HCM 6th TWSC 40: Mana Rd & Mamalahoa Hwy

2026 Without Project PM

|                          | ,,,    |             |        | ١    |        |       |     |
|--------------------------|--------|-------------|--------|------|--------|-------|-----|
| Int Delay, s/veh         | 4.1    |             |        |      |        |       |     |
| Movement                 | EBT    | EBR         | WBL    | WBT  | NBL    | NBR   |     |
| Lane Configurations      | ÷      |             | F      | +    | -      | ×     |     |
| Traffic Vol, veh/h       | 1008   | 53          | 7      | 428  | 20     | 122   |     |
| Future Vol, veh/h        | 1008   | 53          | 71     | 428  | 20     | 122   |     |
| Conflicting Peds, #/hr   |        | 0           | 0      | 0    | 0      | 0     |     |
|                          | Free   | Free        | Free   | Free | Stop   | Stop  |     |
| RT Channelized           | -      | None        | ٠      | None | ٠      | Stop  |     |
| Storage Length           |        | ٠           | 99     | ٠    | 0      | 20    |     |
| Veh in Median Storage, # | 0 #    | ٠           | ٠      | 0    | 0      | ٠     |     |
| Grade, %                 |        | ٠           | •      | 0    | 0      | ٠     |     |
| Peak Hour Factor         | 92     | 92          | 11     | 11   | 83     | 83    |     |
| des, %                   | 2      | 7           | 7      | 2    | 2      | 7     |     |
| Mvmt Flow                | 1061   | 33          | 92     | 226  | 24     | 147   |     |
| Mississ                  | Moiord | _           | Cacion | -    | Minord |       |     |
|                          | - 50   | ٦           | 4000   | ٩    | 100    | 4077  |     |
| Conflicting Flow All     | >      | >           | 7601   | >    | 181 0  | 201   |     |
| Stage 1                  | •      | •           |        | •    | 1077   | •     |     |
| Stage 2                  | •      | ٠           | ٠      | ٠    | 740    | ٠     |     |
| Critical Hdwy            | ٠      | ٠           | 4.12   | ٠    | 6.42   | 6.22  |     |
| Critical Hdwy Stg 1      | ٠      | ٠           | ٠      | ٠    | 5.42   | ٠     |     |
| Critical Hdwy Stg 2      | ٠      | ٠           |        | ٠    | 5.45   | ٠     |     |
| Follow-up Hdwy           | ٠      | ٠           | 2.218  | ٠    | 3.518  | က     |     |
| Pot Cap-1 Maneuver       | ٠      | •           | 639    | •    | 98     | 266   |     |
| Stage 1                  | ٠      | ٠           | ٠      | ٠    | 327    | ٠     |     |
| Stage 2                  | ٠      | ٠           |        | ٠    | 472    | ٠     |     |
| Platoon blocked, %       | ٠      | ٠           |        | ٠    |        |       |     |
| Mov Cap-1 Maneuver       | ٠      | ٠           | 639    | ٠    | 74     | 266   |     |
| Mov Cap-2 Maneuver       | ٠      | ٠           | ٠      | ٠    | 74     | ٠     |     |
| Stage 1                  | ٠      | ٠           | ٠      | ٠    | 327    | ٠     |     |
| Stage 2                  | ٠      | ٠           | ٠      | ٠    | 404    | ٠     |     |
|                          |        |             |        |      |        |       |     |
| Approach                 | EB     |             | WB     |      | R      |       |     |
| HCM Control Delay, s     | 0      |             | 1.6    |      | 39.9   |       |     |
| HCM LOS                  |        |             |        |      | ш      |       |     |
|                          |        |             |        |      |        |       |     |
| Minor Lane/Major Mvmt    | Z      | NBLn1 NBLn2 | JBLn2  | EBT  | EBR    | WBL   | WBT |
| Capacity (veh/h)         |        | 74          | 266    | ٠    | ٠      | 639   | •   |
| HCM Lane V/C Ratio       |        | 0.326 0.553 | 0.553  | ٠    | ٠      | 0.144 | •   |
| HCM Control Delay (s)    |        | 9.57        | 34.1   | ٠    | ٠      | 11.6  |     |
| HCM Lane LOS             |        | ட           | □      | ٠    | ٠      | മ     | •   |
|                          |        |             |        |      |        |       |     |

Synchro 10 Report Page 5 5:00 pm Baseline

HCM 6th TWSC 40: Mana Rd & Mamalahoa Hwy

2026 Without Project PM

2: Future Homestead Road & Hiiaka St

HCM 6th TWSC

2031 Without Project AM

Stop EBT EBR WBL WBT Free 9 29 29 0 Free Lane Configurations 14.
Traffic Vol, vehin 1008
Future Vol, vehin 1008
Conflicting Peds, #Ihr 0
Sign Control
RT Chamelized - N
Storage Length - N
Veh in Median Storage, # 0
Grade, % 0
Peak Hour Factor 95
Heavy Vehicles, % 2
Mwmt Flow 1061 Minor Lane/Major Mwnt Capacity (vehh) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS HCM S9th %the Q(veh) Approach HCM Control Delay, s HCM LOS Stage 1
Stage 1
Stage 2
Stage 2
Stage 2
Critical Howy Stg 1
Critical Howy Stg 2
Critical Howy Stg 2
Critical Howy Stg 2
Follow-up Howy
Pot Cap-1 Maneuver
Stage 1
Stage 2
Platoon blocked, %
Mov Cap-2 Maneuver
Mov Cap-2 Maneuver
Stage 2
Stage 1
Stage 2
Stage 1
Stage 2 Int Delay, s/veh Major/Minor

| Major/Minor | Conflicting Flow All | Stage 1 | Stage 2 | Critical Hdwy | Critical Hdwy Stg 1 | Critical Hdwy Stg 2 | Follow-up Hdwy | Pot Cap-1 Maneuver | Stage 1 | Stage 2 | Platoon blocked, % | Mov Cap-1 Maneuver | Mov Cap-2 Maneuver | Stage 1 | Stage 2 | Approach | HCM Control Delay, s | HCM LOS | Minor Lane/Major Mvm | Capacity (veh/h) | HCM Lane V/C Ratio | HCM Control Delay (s) | HCM Lane LOS | HCM 95th %tile Q(veh) |
|-------------|----------------------|---------|---------|---------------|---------------------|---------------------|----------------|--------------------|---------|---------|--------------------|--------------------|--------------------|---------|---------|----------|----------------------|---------|----------------------|------------------|--------------------|-----------------------|--------------|-----------------------|
|             | _                    |         |         |               |                     |                     |                |                    |         |         |                    |                    |                    |         |         |          |                      |         |                      |                  |                    |                       |              |                       |
|             |                      |         |         |               |                     |                     |                |                    |         |         |                    |                    |                    |         |         |          |                      |         |                      |                  |                    |                       |              |                       |
|             |                      |         |         |               |                     |                     |                |                    |         |         |                    |                    |                    |         |         |          |                      |         |                      |                  |                    |                       |              |                       |
|             |                      |         |         |               |                     |                     |                |                    |         |         |                    |                    |                    |         |         |          |                      |         |                      |                  |                    |                       |              |                       |
|             |                      |         |         |               |                     |                     |                |                    |         |         |                    |                    |                    |         |         |          |                      |         | WBL WBT              | ٠                | ٠                  | •                     | ٠            | •                     |
|             | 1077                 | ٠       | •       | 6.22          | ٠                   | ٠                   | 3.518 3.318    | 266                | •       | •       |                    | 266                | ٠                  | ٠       | ٠       |          |                      |         | WBL                  | 639              | 0 144              | 11.6                  | В            | 0.5                   |
| Minor1      | 0 1261               | 1077    | 184     | 6.42          | 5.42                | 5.42                | 3.518          | 188                | 327     | 848     |                    | 161                | 161                | 327     | 726     | 8        | 33.7                 |         | EBR                  |                  |                    | •                     | •            | •                     |
|             |                      |         | '       |               | ٠                   | •                   | ٠              | •                  | •       | •       | ٠                  |                    | ٠                  | •       | ٠       |          |                      |         | EBT                  |                  | •                  | •                     | ٠            |                       |
| Major2      | 0 1092               |         |         | 4.12          | •                   | •                   | 2.218          | 623                | •       | •       |                    | 623                | •                  |         | •       | WB       | 11.6                 |         | NBLn1 NBLn2          | 266              | 0.15 0.553         | 313 341               | _            | 3.1                   |
| Ξ           |                      |         |         |               |                     |                     |                |                    |         |         |                    |                    |                    |         |         | æ        | 0                    |         | NBLn1                | 161              | 0.15               | 31.3                  | Ω            | 0.5                   |

| Intersection             |        |       |         |         |        |      |  |
|--------------------------|--------|-------|---------|---------|--------|------|--|
| Int Delay, s/veh         | 2.4    |       |         |         |        |      |  |
| Movement                 | EBT    | EBR   | WBL     | WBT     | NBL    | NBR  |  |
| Lane Configurations      | Ť,     |       |         | 4       | >      |      |  |
| Traffic Vol, veh/h       | 107    | 126   |         | 173     | 3      | Ξ    |  |
| Future Vol, veh/h        | 107    | 126   | -       | 173     | 33     | Ξ    |  |
| Conflicting Peds, #/hr   | 0      | 0     | 0       | 0       | 0      | 0    |  |
| Sign Control             | Free   | Free  | Free    | Free    | Stop   | Stop |  |
| RT Channelized           |        | None  |         | - None  | ٠      | None |  |
| Storage Length           | ٠      | ٠     | ٠       | ٠       | 0      | ٠    |  |
| Veh in Median Storage, # |        | ٠     | ٠       | 0       | 0      | ٠    |  |
| Grade, %                 | 0      | ٠     | ٠       | 0       | 0      | ٠    |  |
| Peak Hour Factor         | 95     | 92    | 95      | 92      | 95     | 92   |  |
| Heavy Vehicles, %        | 2      | 7     | 2       | 7       | 7      | 7    |  |
| Mvmt Flow                | 116    | 137   | 108     | 188     | 34     | 12   |  |
|                          |        |       |         |         |        |      |  |
| Major/Minor              | Major1 |       | Major2  | 2       | Minor1 |      |  |
| Conflicting Flow All     | 0      | 0     | 253     | 0       | 589    | 185  |  |
| Stage 1                  |        | ٠     | ٠       |         | 185    | ٠    |  |
| Stage 2                  | ٠      | ٠     | ٠       | ٠       | 404    | ٠    |  |
| Critical Hdwy            | ٠      | ٠     | 4.12    | ٠       | 6.42   | 6.22 |  |
| Critical Hdwy Stg 1      | ٠      | ٠     | ٠       | ٠       | 5.42   | ٠    |  |
| Critical Hdwy Stg 2      |        |       | ٠       | ٠       | 5.45   | ٠    |  |
| Follow-up Hdwy           | ٠      | ٠     | - 2.218 | ٠       |        | က    |  |
| Pot Cap-1 Maneuver       | ٠      | •     | 1312    | •       | 471    | 857  |  |
| Stage 1                  | ٠      | ٠     | ٠       | ٠       | 847    | ٠    |  |
| Stage 2                  | •      | ٠     | •       | •       | 674    | •    |  |
| Platoon blocked, %       | ٠      | ٠     |         | ٠       |        |      |  |
| Mov Cap-1 Maneuver       | ٠      | •     | 1312    | •       | 428    | 857  |  |
| Mov Cap-2 Maneuver       | ٠      | ٠     | ٠       | ٠       | 428    | ٠    |  |
| Stage 1                  | •      | ٠     | ٠       | •       | 847    | •    |  |
| Stage 2                  | ٠      | ٠     | •       | ٠       | 612    | ٠    |  |
|                          |        |       |         |         |        |      |  |
| Approach                 | EB     |       | WB      |         | NB     |      |  |
| HCM Control Delay, s     | 0      |       | 2.9     |         | 13     |      |  |
| HCM LOS                  |        |       |         |         | В      |      |  |
|                          | Ш      | 2     | L       | 5       | Ç      | F    |  |
| Minor Lane/Major Mvmt    |        | NBLn1 | E       | EBK WBL | WBL    | WBI  |  |
| Capacity (veh/h)         |        | 493   | ٠       | •       | 1312   | •    |  |
| HCM Lane V/C Ratio       |        | 0.093 | ٠       |         | 0.082  | ٠    |  |
| HCM Control Delay (s)    |        | 13    | ٠       | ٠       | ∞      | 0    |  |
| HCM Lane LOS             |        | മ     | ٠       | ٠       | ⋖      | ⋖    |  |
| HCM 95th %tile Q(veh)    |        | 0.3   | •       | ٠       | 0.3    | ٠    |  |

Synchro 10 Report Page 1 5:00 pm Baseline

Synchro 10 Report Page 1

5:00 pm Baseline

HCM Signalized Intersection Capacity Analysis 10: Kamamalu St & Mamalahoa Hwy

|                                   |            | •    |       |       |                      |                           |      |
|-----------------------------------|------------|------|-------|-------|----------------------|---------------------------|------|
| Movement                          | EBT        | EBR  | WBL   | WBT   | 图                    | NBR                       |      |
| Lane Configurations               | 4.         |      |       | ₽₩    | <u>_</u>             | R.                        |      |
| Traffic Volume (vph)              | 206        | 247  | 31    | 1065  | 216                  | 20                        |      |
| Future Volume (vph)               | 206        | 247  | 31    | 1065  | 216                  | 20                        |      |
| Ideal Flow (vphpl)                | 1900       | 1900 | 1900  | 1900  | 1900                 | 1900                      |      |
| Total Lost time (s)               | 2.0        |      |       | 2.0   | 2.0                  | 5.0                       |      |
| Lane Util. Factor                 | 0.95       |      |       | 0.95  | 1.00                 | 1.00                      |      |
| Frpb, ped/bikes                   | 0.99       |      |       | 1.00  | 1.00                 | 66.0                      |      |
| Flpb, ped/bikes                   | 1.00       |      |       | 1.00  | 1.00                 | 1.00                      |      |
| Frt                               | 0.95       |      |       | 1.00  | 1.00                 | 0.85                      |      |
| Flt Protected                     | 1.00       |      |       | 1.00  | 0.95                 | 1.00                      |      |
| Satd. Flow (prot)                 | 3340       |      |       | 3534  | 1770                 | 1565                      |      |
| Flt Permitted                     | 1.00       |      |       | 0.87  | 0.95                 | 1.00                      |      |
| Satd. Flow (perm)                 | 3340       |      |       | 3065  | 1770                 | 1565                      |      |
| Peak-hour factor, PHF             | 0.71       | 0.71 | 0.89  | 0.89  | 0.65                 | 0.65                      |      |
| Adj. Flow (vph)                   | 713        | 348  | 32    | 1197  | 332                  | 77                        |      |
| RTOR Reduction (vph)              | 68         | 0    | 0     | 0     | 0                    | 41                        |      |
| Lane Group Flow (vph)             | 972        | 0    | 0     | 1232  | 332                  | 36                        |      |
| Confl. Peds. (#/hr)               |            | 7    | 2     |       |                      | 2                         |      |
| Turn Type                         | AN         |      | pm+pt | ¥     | Prot                 | hm+ov                     |      |
| Protected Phases                  | 4          |      | က     | ∞     | 2                    | က                         |      |
| Permitted Phases                  |            |      | ∞     |       |                      | 2                         |      |
| Actuated Green, G (s)             | 22.0       |      |       | 29.7  | 14.7                 | 17.4                      |      |
| Effective Green, g (s)            | 22.0       |      |       | 29.7  | 14.7                 | 17.4                      |      |
| Actuated g/C Ratio                | 0.40       |      |       | 0.55  | 0.27                 | 0.32                      |      |
| Clearance Time (s)                | 2.0        |      |       | 2.0   | 2.0                  | 5.0                       |      |
| Vehicle Extension (s)             | 3.0        |      |       | 3.0   | 3.0                  | 3.0                       |      |
| Lane Grp Cap (vph)                | 1350       |      |       | 1696  | 478                  | 644                       |      |
| v/s Ratio Prot                    | 0.29       |      |       | c0.04 | c0.19                | 0.00                      |      |
| v/s Ratio Perm                    |            |      |       | c0.36 |                      | 0.02                      |      |
| v/c Ratio                         | 0.72       |      |       | 0.73  | 0.69                 | 90:0                      |      |
| Uniform Delay, d1                 | 13.6       |      |       | 9.3   | 17.8                 | 12.8                      |      |
| Progression Factor                | 1.00       |      |       | 1.00  | 1.00                 | 1.00                      |      |
| Incremental Delay, d2             | 1.9        |      |       | 1.6   | 4.3                  | 0.0                       |      |
| Delay (s)                         | 15.5       |      |       | 10.9  | 22.2                 | 12.8                      |      |
| Level of Service                  | В          |      |       | В     | ပ                    | В                         |      |
| Approach Delay (s)                | 15.5       |      |       | 10.9  | 20.4                 |                           |      |
| Approach LOS                      | В          |      |       | Ф     | ပ                    |                           |      |
| Intersection Summary              |            |      |       |       |                      |                           |      |
| HCM 2000 Control Delay            |            |      | 14.1  | ľ     | :M 2000              | HCM 2000 Level of Service | 8    |
| HCM 2000 Volume to Capacity ratio | city ratio |      | 0.80  |       |                      |                           |      |
| Actuated Cycle Length (s)         |            |      | 54.4  | S     | Sum of lost time (s) | time (s)                  | 15.0 |
| Intersection Capacity Utilization | tion       |      | 72.3% | ₫     | J Level o            | ICU Level of Service      | O    |
| Analysis Period (min)             |            |      | 15    |       |                      |                           |      |
| c Critical Lane Group             |            |      |       |       |                      |                           |      |

Synchro 10 Report Page 2 5:00 pm Baseline

HCM 6th TWSC 20: KOKA Main Driveway & Hiiaka St

2031 Without Project AM 06/21/2022

| Int Delay, s/veh         | 7      |         |        |      |        |      |  |
|--------------------------|--------|---------|--------|------|--------|------|--|
| Movement                 | EBT    | EBR WBL | WBL    | WBT  | NBL    | NBR  |  |
| Lane Configurations      | ţ      |         |        | 4    | À      |      |  |
| raffic Vol, veh/h        | 23     | 8       | 83     | 173  | 0      | 0    |  |
| Future Vol, veh/h        | 23     | 84      | 93     | 173  | 0      | 0    |  |
| Conflicting Peds, #/hr   | 0      | 2       | 7      | 0    | 0      | 0    |  |
| Sign Control             | Free   | Free    | Free   | Free | Stop   | Stop |  |
| RT Channelized           | ٠      | None    | ٠      | None | ٠      | None |  |
| Storage Length           | ٠      | ٠       | ٠      |      | 0      | ٠    |  |
| Veh in Median Storage, # | 0 #    | ٠       |        | 0    | 0      | ٠    |  |
| Grade, %                 |        | ٠       | ٠      | 0    | 0      | ٠    |  |
| Peak Hour Factor         | 29     | 29      | 26     | 20   | 99     | 99   |  |
| Heavy Vehicles, %        | 0      | 0       | 0      | 0    | 0      | 0    |  |
| Mvmt Flow                | 33     | 142     | 166    | 309  | 0      | 0    |  |
|                          |        |         |        |      |        |      |  |
| Major/Minor Ma           | Major1 | 2       | Major2 | 2    | Minor1 |      |  |
| Conflicting Flow All     | 0      | 0       | 183    | 0    | 753    | 112  |  |
| Stage 1                  | ٠      | ٠       | ٠      | ٠    | 112    | ٠    |  |
| Stage 2                  | ٠      | ٠       | ٠      | ٠    | 641    | ٠    |  |
| Critical Hdwy            | ٠      | ۰       | 4.1    | ٠    | 6.4    | 6.2  |  |
| Critical Hdwy Stg 1      | ٠      | ٠       | ٠      | ٠    | 5.4    | ٠    |  |
| Critical Hdwy Stg 2      | ٠      | ٠       | ٠      | •    | 5.4    | •    |  |
| Follow-up Hdwy           | ٠      | ٠       | 2.2    |      | 3.5    | 3.3  |  |
| Pot Cap-1 Maneuver       | ٠      | ٠       | 1404   | •    | 380    | 947  |  |
| Stage 1                  | ٠      | ٠       | ٠      | ٠    | 918    | ٠    |  |
| Stage 2                  | ٠      | ۰       | •      | ٠    | 228    | ٠    |  |
| Platoon blocked, %       | ٠      | ٠       |        | ٠    |        |      |  |
| Mov Cap-1 Maneuver       | ٠      | ٠       | 1401   | ٠    | 325    | 945  |  |
| Mov Cap-2 Maneuver       | ٠      | ٠       | ٠      | ٠    | 325    | ٠    |  |
| Stage 1                  | ٠      | ٠       | ٠      | ٠    | 916    | ٠    |  |
| Stage 2                  | ٠      | ٠       | ٠      | ٠    | 452    | ٠    |  |
|                          |        |         |        |      |        |      |  |
| Approach                 | 留      |         | WB     |      | 贸      |      |  |
| HCM Control Delay, s     | 0      |         | 2.8    |      | 0      |      |  |
| HCM LOS                  |        |         |        |      | ⋖      |      |  |
|                          |        |         |        |      |        |      |  |
| Minor Lane/Major Mvmt    | z      | NBLn1   | EBT    | EBR  | WBL    | WBT  |  |
| Capacity (veh/h)         |        | ٠       | ٠      |      | 1401   | ٠    |  |
| HCM Lane V/C Ratio       |        | ٠       | ٠      | ٠    | 0.119  | ٠    |  |
| HCM Control Delay (s)    |        | 0       | ٠      | ٠    | 7.9    | 0    |  |
| HCM Lane LOS             |        | <       | ľ      |      | <      | ٥    |  |
| ON LOS                   |        | <       |        |      | <      | C    |  |

Synchro 10 Report Page 3 5:00 pm Baseline

HCM 6th TWSC 30: KOKA Eastem Driveway & Aniahua Alanui

| Intersection             |        |         |        |      |         |       |  |
|--------------------------|--------|---------|--------|------|---------|-------|--|
| Int Delay, s/veh         | 5.5    |         |        |      |         |       |  |
| Movement                 | EBT    | EBR WBL |        | WBT  | NBL     | NBR   |  |
| Lane Configurations      | Ť,     |         |        | 4    | 2       |       |  |
| Traffic Vol, veh/h       | 23     | 0       | _      | 243  | 107     | 45    |  |
| Future Vol, veh/h        | 23     | 0       | -      | 243  | 107     | 45    |  |
| Conflicting Peds, #/hr   | 0      | 0       | 0      | 0    | 0       | 0     |  |
|                          | Free   | Free    | Free   | Free | Stop    | Stop  |  |
| RT Channelized           | ٠      | None    | ٠      | None | •       | None  |  |
| Storage Length           | ٠      | ٠       | ٠      | ٠    | 0       | ı     |  |
| Veh in Median Storage, # | 0      | ٠       | ٠      | 0    | 0       |       |  |
| Grade, %                 | 0      | ٠       |        | 0    | 0       | ı     |  |
| Peak Hour Factor         | 09     | 09      | 99     | 09   | 22      | 22    |  |
| Heavy Vehicles, %        | 7      | 2       | 7      | 2    | 7       | 2     |  |
| Mvmt Flow                | 38     | 0       | 2      | 405  | 195     | 82    |  |
|                          |        |         |        |      |         |       |  |
| Major/Minor Ma           | Major1 | 2       | Major2 | 2    | Minor1  |       |  |
| Conflicting Flow All     | 0      | 0       | 88     | 0    | 447     | 38    |  |
| Stage 1                  |        | ٠       | •      | •    | 88      |       |  |
| Stage 2                  | ٠      | ٠       | ٠      | ٠    | 409     |       |  |
| Critical Hdwy            | ٠      | ٠       | 4.12   | ٠    | 6.42    | 6.22  |  |
| Critical Hdwy Stg 1      | ٠      | ٠       | ٠      | ٠    | 5.42    | ı     |  |
| Critical Hdwy Stg 2      | •      |         | ٠      | ٠    | 5.45    |       |  |
| Follow-up Hdwy           | ٠      | ٠       |        | ٠    |         | 3.318 |  |
| Pot Cap-1 Maneuver       | ٠      | ٠       | 1572   | ٠    | 269     | 1034  |  |
| Stage 1                  | ٠      |         | ٠      | ٠    | 984     |       |  |
| Stage 2                  | •      | ٠       | •      | ٠    | 671     |       |  |
| Platoon blocked, %       | ٠      | ٠       |        | ٠    |         |       |  |
| Mov Cap-1 Maneuver       |        |         | 1572   | •    | 268     | 1034  |  |
| Mov Cap-2 Maneuver       | ٠      | ٠       | ٠      | ٠    | 268     |       |  |
| Stage 1                  | ٠      | ٠       | ٠      | ٠    | 984     |       |  |
| Stage 2                  | ٠      | ٠       | ٠      | ٠    | 029     |       |  |
|                          |        |         |        |      |         |       |  |
| Approach                 | 留      |         | WB     |      | 8       |       |  |
| HCM Control Delay, s     | 0      |         | 0      |      | 14.4    |       |  |
| HCM LOS                  |        |         |        |      | Ф       |       |  |
|                          |        |         |        |      |         |       |  |
| Minor Lane/Major Mvmt    | 2      | NBLn1   | EBT    | EBR  | WBL     | WBT   |  |
| Capacity (veh/h)         |        | 929     | ۰      |      | 1572    |       |  |
| HCM Lane V/C Ratio       |        | 0.422   | ٠      | ٠    | - 0.001 |       |  |
| HCM Control Delay (s)    |        | 14.4    |        |      | 7.3     | 0     |  |
| HCM Lane LOS             |        | മ       | •      | •    | ⋖       | ۷     |  |
| HCM 95th %tile Q(veh)    |        | 2.1     | •      | •    | 0       | ·     |  |
|                          |        |         |        |      |         |       |  |

Synchro 10 Report Page 4 5:00 pm Baseline

HCM 6th TWSC 40: Mana Rd & Mamalahoa Hwy

2031 Without Project AM 06/21/2022

| Int Delay, s/veh          | 11.8   |             |        |                       |        |       |                                                           |             |
|---------------------------|--------|-------------|--------|-----------------------|--------|-------|-----------------------------------------------------------|-------------|
| Movement                  | EBT    | EBR         | WBL    | WBT                   | 图图     | NBR   |                                                           |             |
| Lane Configurations       | 43     |             | K      | *                     | *      | R.    |                                                           |             |
| Traffic Vol, veh/h        | 401    | 16          | 500    | 1038                  | 22     | 29.   |                                                           |             |
| Future Vol, veh/h         | 401    | 16          | 506    | 1038                  | 22     | 26    |                                                           |             |
| Conflicting Peds, #/hr    | 0      | 0           | 0      | 0                     | 0      | 0     |                                                           |             |
|                           | Free   | Free        | Free   | Free                  | Stop   | Stop  |                                                           |             |
| RT Channelized            |        | None        | ٠      | None                  | ٠      | Stop  |                                                           |             |
| Storage Length            |        | ٠           | 99     | ٠                     | 0      | 20    |                                                           |             |
| Veh in Median Storage, #  | 0 #    | ٠           | ٠      | 0                     | 0      | •     |                                                           |             |
| Grade, %                  |        | ٠           | ٠      | 0                     | 0      | ٠     |                                                           |             |
| Peak Hour Factor          | 9/     | 9/          | 82     | 82                    | 46     | 46    |                                                           |             |
| Heavy Vehicles, %         | 7      | 7           | 2      | 7                     | 2      | 7     |                                                           |             |
| Mvmt Flow                 | 528    | 71          | 242    | 1221                  | 48     | 122   |                                                           |             |
|                           |        |             |        |                       |        |       |                                                           |             |
| Major/Minor Ma            | Major1 | 2           | Major2 | 2                     | Minor1 |       |                                                           |             |
| Conflicting Flow All      | 0      | 0           | 549    | 0                     | 2244   | 539   |                                                           |             |
| Stage 1                   |        | ٠           | ٠      |                       | 539    | ٠     |                                                           |             |
| Stage 2                   | ٠      | ٠           | ٠      | ٠                     | 1705   | ٠     |                                                           |             |
| Critical Hdwy             | ٠      | ٠           | 4.12   | ٠                     | 6.42   | 6.22  |                                                           |             |
| Critical Hdwy Stg 1       | ٠      | ٠           | ٠      | ٠                     | 5.42   | ٠     |                                                           |             |
| Critical Hdwy Stg 2       | ٠      | ٠           | ٠      | •                     | 5.45   | •     |                                                           |             |
| Follow-up Hdwy            | ٠      | •           | 2.218  | ٠                     |        | 3.318 |                                                           |             |
| Pot Cap-1 Maneuver        | ٠      | ٠           | 1021   | •                     | ~ 46   | 245   |                                                           |             |
| Stage 1                   | ٠      | ٠           | ٠      | ٠                     | 585    | ٠     |                                                           |             |
| Stage 2                   | ٠      | ٠           | ٠      | •                     | 161    | •     |                                                           |             |
| Platoon blocked, %        | ٠      | ٠           |        | ٠                     |        |       |                                                           |             |
| Mov Cap-1 Maneuver        | ٠      | ٠           | 1021   | ٠                     | ~ 35   | 245   |                                                           |             |
| Mov Cap-2 Maneuver        | ٠      | ı           |        | ٠                     | ~ 35   | ٠     |                                                           |             |
| Stage 1                   | •      | •           | ٠      | •                     | 282    | ٠     |                                                           |             |
| Stage 2                   | ٠      | ٠           | ٠      | ٠                     | 123    | ٠     |                                                           |             |
|                           |        |             |        |                       |        |       |                                                           |             |
| Approach                  | 8      |             | WB     |                       | R      |       |                                                           |             |
| HCM Control Delay, s      | 0      |             | 1.6    |                       | 138.1  |       |                                                           |             |
| HCM LOS                   |        |             |        |                       | ш      |       |                                                           |             |
|                           |        |             |        |                       |        |       |                                                           |             |
| Minor Lane/Major Mvmt     | 2      | NBLn1 NBLn2 | BLn2   | EBT                   | EBR    | WBL   | WBT                                                       |             |
| Capacity (veh/h)          |        | 32          | 245    | •                     | ٠      | 1021  | •                                                         |             |
| HCM Lane V/C Ratio        |        | 1.366 0.225 | 0.225  | ٠                     | ٠      | 0.237 | -                                                         |             |
| HCM Control Delay (s)     |        | \$ 455      | 13.6   | ٠                     | ٠      | 9.6   |                                                           |             |
| HCM Lane LOS              |        | ш           | മ      | ٠                     | ٠      | ⋖     | 1                                                         |             |
| HCM 95th %tile Q(veh)     |        | 5.1         | 6.0    | •                     | •      | 6.0   |                                                           |             |
| Notes                     |        |             |        |                       |        |       |                                                           |             |
| ~ Volume exceeds ranacity | , Hig  | ÷           | 0,00   | C. Dolov ovogoda 2005 |        | 000   | ±. Computation Not Defined *: All major volume in plateon | nother ni c |
| COLOR COLUMN              |        |             |        |                       |        |       |                                                           |             |

5:00 pm Baseline

HCM 6th TWSC 40: Mana Rd & Mamalahoa Hwy

2031 Without Project AM 06/21/2022

| ntersection              | ı      | ı           |                    | ı      |         | ı     |     |
|--------------------------|--------|-------------|--------------------|--------|---------|-------|-----|
| nt Delay, s/veh          | 5.6    |             |                    |        |         |       |     |
| Movement                 | EBT    | EBR         | WBL                | WBT    | NBL     | NBR   |     |
| ane Configurations       | ÷      |             | *                  | *      | *       | *     |     |
| raffic Vol, veh/h        | 401    | 16          | 206                | 0      | 22      | 20    |     |
| Future Vol, veh/h        | 401    | 16          | 206                | 0      | 22      | 26    |     |
| Conflicting Peds, #/hr   | 0      | 0           | 0                  | 0      | 0       | 0     |     |
| Sign Control             | Free   | Free        | Free               | Free   | Stop    | Stop  |     |
| RT Channelized           | ٠      | None        | ٠                  | - None | ٠       | Stop  |     |
| Storage Length           | ٠      | ٠           | 99                 | ٠      | 0       | 20    |     |
| Veh in Median Storage, # | 0 #    | ٠           | ٠                  | 0      | 0       | ٠     |     |
| Grade, %                 | 0      | ٠           | ٠                  | 0      | 0       | ٠     |     |
| Peak Hour Factor         | 9/     | 9/          | 82                 | 82     | 46      | 46    |     |
| Heavy Vehicles, %        | 2      | 2           | 2                  | 2      | 7       | 7     |     |
| Mvmt Flow                | 528    | 21          | 242                | 0      | 48      | 122   |     |
|                          |        |             |                    |        |         |       |     |
| Major/Minor N            | Major1 | 2           | Major2             | 2      | Minor1  |       |     |
| Conflicting Flow All     | 0      | 0           | 549                | 0      | 1023    | 539   |     |
| Stage 1                  | ٠      | ٠           | ٠                  | ٠      | 539     | ٠     |     |
| Stage 2                  | ٠      | ٠           | ٠                  | ٠      | 484     | ٠     |     |
| Critical Hdwy            | ٠      | ٠           | 4.12               | ٠      | 6.42    | 6.22  |     |
| Critical Hdwy Stg 1      | ٠      | ٠           | ٠                  | ٠      | 5.42    | ٠     |     |
| Critical Hdwy Stg 2      | ٠      | ٠           | ٠                  | ٠      | 5.42    | ٠     |     |
| -ollow-up Hdwy           | ٠      | ٠           | - 2.218            | ٠      |         | 3.318 |     |
| Pot Cap-1 Maneuver       | •      | ٠           | 1021               | ٠      | 261     | 245   |     |
| Stage 1                  | ٠      | ٠           | ٠                  | ٠      | 282     | ٠     |     |
| Stage 2                  | ٠      | ٠           | ٠                  | ٠      | 620     | ٠     |     |
| Platoon blocked, %       | ٠      | ٠           |                    | ٠      |         |       |     |
| Mov Cap-1 Maneuver       | ٠      | ٠           | 1021               | ٠      | 199     | 245   |     |
| Mov Cap-2 Maneuver       | ٠      | ٠           | ٠                  | ٠      | 199     | ٠     |     |
| Stage 1                  | ٠      | ٠           | •                  | ٠      | 282     | ٠     |     |
| Stage 2                  | ٠      | ٠           | ٠                  | ٠      | 473     | ٠     |     |
|                          |        |             |                    |        |         |       |     |
| Approach                 | æ      |             | WB                 |        | 뫋       |       |     |
| ICM Control Delay, s     | 0      |             | 9.6                |        | 17.9    |       |     |
| HCM LOS                  |        |             |                    |        | ပ       |       |     |
|                          |        |             |                    |        |         |       |     |
| Minor Lane/Major Mvmt    |        | NBLn1 NBLn2 | IBL <sub>n</sub> 2 | EBT    | EBR WBL | WBL   | WBT |
| Sapacity (veh/h)         |        | 199         | 542                | ٠      | ٠       | 1021  |     |
| HCM Lane V/C Ratio       |        | 0.24        | 0.24 0.225         | ٠      | ٠       | 0.237 | •   |
| HCM Control Delay (s)    |        | 28.7        | 13.6               | ٠      | ٠       | 9.6   |     |
| HCM Lane LOS             |        | □           | Ф                  | •      | •       | ⋖     | •   |
| HCM 95th %tile Q(veh)    |        | 0.9         | 0.9                | •      | ٠       | 6.0   | •   |

Synchro 10 Report Page 1 5:00 pm Baseline

HCM 6th Signalized Intersection Summary 40: Mana Rd & Mamalahoa Hwy

2031 Without Project AM 06/22/2022

|   |          |                     |                        |                       |                     |                     |                  |                       |                        |                      |                  |                      |            |                 |                 |                      |                          |                 |                       |              |                        |              |                       |                   |                    |                          |                        |                           |                          |                              |            |                     |                       |              | 8                    | 50.3                     | 2.0                     | 62.0                        | 32.4                         | 12.9                    |                      |                    |             |
|---|----------|---------------------|------------------------|-----------------------|---------------------|---------------------|------------------|-----------------------|------------------------|----------------------|------------------|----------------------|------------|-----------------|-----------------|----------------------|--------------------------|-----------------|-----------------------|--------------|------------------------|--------------|-----------------------|-------------------|--------------------|--------------------------|------------------------|---------------------------|--------------------------|------------------------------|------------|---------------------|-----------------------|--------------|----------------------|--------------------------|-------------------------|-----------------------------|------------------------------|-------------------------|----------------------|--------------------|-------------|
|   | NBR      | K.                  |                        |                       |                     |                     | 1.00             |                       | _                      |                      | 0.4              |                      |            |                 | 1585            | 122                  | ~                        |                 |                       |              |                        |              |                       |                   | 1.00               | .,                       |                        |                           | 1.4                      |                              | C.22       |                     |                       |              |                      |                          |                         |                             |                              |                         |                      |                    |             |
|   | NBL      |                     |                        |                       | 0                   |                     | _                |                       | 8                      |                      | 0.46             |                      |            |                 | 1781            | 48                   | _                        |                 | 1.5                   |              |                        |              |                       |                   | 1.00               |                          |                        |                           | 9.0                      |                              | T.07       |                     | 23.9                  | S            |                      |                          |                         |                             |                              |                         |                      |                    |             |
| , | WBT      | +                   | 1038                   | 1038                  | 0                   |                     | 1.00             | S                     | 1870                   | 1221                 | 0.85             | 2                    | 1378       | 0.74            | 1870            | 1221                 | 1870                     | 30.4            | 30.4                  |              | 1378                   | 0.89         | 1887                  | 1.00              | 1.00               | 6.1                      | 4.2                    | 0.0                       | 4.9                      | 4                            | 2 00       | 1463                | 9.6                   | ⋖            | 4                    | 4                        |                         |                             | _                            | 3.5                     |                      |                    |             |
| - | WBL      | F                   | 206                    | 506                   | 0                   | 1.00                | 1.00             |                       | 1870                   | 242                  | 0.85             | 2                    | 604        | 0.09            | 1781            | 242                  | 1781                     | 3.0             | 3.0                   | 1.00         | 604                    | 0.40         | 799                   | 1.00              | 1.00               | 5.4                      | 0.4                    | 0.0                       | 9.0                      | L                            | 5. A       |                     |                       |              | 3                    | 10.3                     | 2.0                     | 12.0                        | 5.0                          | 0.4                     |                      | 10.4               | Ф           |
| ~ | EBR      |                     | 16                     | 16                    | 0                   | 1.00                | 1.00             |                       | 1870                   | 21                   | 0.76             | 2                    | 40         | 0.57            | 71              | 549                  | 1858                     | 1.1             | 11.1                  | 0.04         | 1058                   | 0.52         | 1360                  | 1.00              | 1.00               | 8.1                      | 0.4                    | 0.0                       | 3.1                      | c                            | . A        |                     |                       |              | 2                    | 11.2                     | 2.0                     | 18.0                        | 6.2                          | 0.4                     |                      |                    |             |
| Ť | EBT      | Ť,                  | 401                    | 404                   | 0                   |                     | 1.00             | S                     | 1870                   | 528                  | 0.76             | 2                    | 1017       | 0.57            | 1787            | 0                    | 0                        | 0.0             | 0.0                   |              | 0                      | 0.00         | 0                     | 1.00              | 0.00               | 0.0                      | 0.0                    | 0.0                       | 0.0                      | ر<br>د                       | 9. A       | 549                 | 8.5                   | ∢            |                      |                          |                         |                             |                              |                         |                      |                    |             |
|   | Movement | Lane Configurations | Traffic Volume (veh/h) | Future Volume (veh/h) | Initial Q (Qb), veh | Ped-Bike Adj(A_pbT) | Parking Bus, Adj | Work Zone On Approach | Adj Sat Flow, veh/h/In | Adj Flow Rate, veh/h | Peak Hour Factor | Percent Heavy Veh, % | Cap, veh/h | Arrive On Green | Sat Flow, veh/h | Grp Volume(v), veh/h | Grp Sat Flow(s),veh/h/In | Q Serve(g_s), s | Cycle Q Clear(g_c), s | Prop In Lane | Lane Grp Cap(c), veh/h | V/C Ratio(X) | Avail Cap(c_a), veh/h | HCM Platoon Ratio | Upstream Filter(I) | Uniform Delay (d), s/veh | Incr Delay (d2), s/veh | Initial Q Delay(d3),s/veh | %ile BackOfQ(50%),veh/In | Unsig. Movement Delay, s/veh | Lingto Los | Approach Vol, veh/h | Approach Delay, s/veh | Approach LOS | Timer - Assigned Phs | Phs Duration (G+Y+Rc), s | Change Period (Y+Rc), s | Max Green Setting (Gmax), s | Max Q Clear Time (g_c+I1), s | Green Ext Time (p_c), s | Intersection Summary | HCM 6th Ctrl Delay | HCM 6th LOS |

5:00 pm Baseline

HCM 6th TWSC 2: Future Homestead Road & Hiiaka St

2031 Without Project PM 06/21/2022

| Intersection             |        |       |        |      |           |       |  |
|--------------------------|--------|-------|--------|------|-----------|-------|--|
| Int Delay, s/veh         | 8.7    |       |        |      |           |       |  |
| Movement                 | EBT    | EBR   | WBL    | WBT  | NBL       | NBR   |  |
| Lane Configurations      | æ      |       |        | 4    | >         |       |  |
| Traffic Vol, veh/h       | 132    | 96    | 33     | 72   | 250       | 87    |  |
| Future Vol, veh/h        | 132    | 96    | 33     | 22   | 220       | 87    |  |
| Conflicting Peds, #/hr   | 0      | 0     | 0      | 0    | 0         | 0     |  |
|                          | Free   | Free  | Free   | Free | Stop      | Stop  |  |
| RT Channelized           | -      | None  | ٠      | None | ٠         | None  |  |
| Storage Length           |        | ٠     | ٠      | ٠    | 0         | ٠     |  |
| Veh in Median Storage, # | 0 #    | ٠     | ٠      | 0    | 0         | ٠     |  |
| Grade, %                 | 0      | ٠     | ٠      | 0    | 0         |       |  |
| Peak Hour Factor         | 95     | 92    | 92     | 92   | 92        | 95    |  |
| Heavy Vehicles, %        | 7      | 7     | 2      | 2    | 7         | 2     |  |
| Mvmt Flow                | 143    | 104   | 36     | 24   | 272       | 92    |  |
|                          |        |       |        |      |           |       |  |
| Major/Minor Ma           | Major1 | _     | Major2 | _    | Minor1    |       |  |
| Conflicting Flow All     | 0      | 0     | 247    | 0    | 291       | 195   |  |
| Stage 1                  | ٠      | ٠     | ٠      | ٠    | 195       | ٠     |  |
| Stage 2                  | ٠      | ٠     | ٠      | ٠    | 96        |       |  |
| Critical Hdwy            | ٠      | ٠     | 4.12   | ٠    | 6.42      | 6.22  |  |
| Critical Hdwy Stg 1      | ٠      | ٠     | ٠      | ٠    | 5.45      | ٠     |  |
| Critical Hdwy Stg 2      | ٠      | ۰     | ٠      | ٠    | 5.45      | ٠     |  |
| Follow-up Hdwy           | ٠      | ٠     |        | ٠    | 3.518     | 3.318 |  |
| Pot Cap-1 Maneuver       | ٠      | ٠     | 1319   | •    | 200       | 846   |  |
| Stage 1                  | ٠      | ٠     | ٠      | ٠    | 838       | ٠     |  |
| Stage 2                  | •      | ٠     | ٠      | •    | 928       | •     |  |
| Platoon blocked, %       |        | ٠     |        | ٠    |           |       |  |
| Mov Cap-1 Maneuver       | •      | ٠     | 1319   | •    | 089       | 846   |  |
| Mov Cap-2 Maneuver       | ٠      | ٠     | ٠      | ٠    | 089<br>98 |       |  |
| Stage 1                  | ٠      | ٠     | ٠      | •    | 838       | ٠     |  |
| Stage 2                  | ٠      | ٠     | ٠      | ٠    | 905       |       |  |
|                          |        |       |        |      |           |       |  |
| Approach                 | EB     |       | WB     |      | NB        |       |  |
| HCM Control Delay, s     | 0      |       | 4.7    |      | 15.2      |       |  |
| HCM LOS                  |        |       |        |      | ပ         |       |  |
|                          |        |       |        |      |           |       |  |
| Minor Lane/Major Mvmt    | Z      | NBLn1 | EBT    | EBR  | WBL       | WBT   |  |
| Capacity (veh/h)         |        | 716   | ٠      | ٠    | 1319      |       |  |
| HCM Lane V/C Ratio       |        | 0.512 | ٠      | ٠    | 0.027     | ٠     |  |
| HCM Control Delay (s)    |        | 15.2  | •      |      | 7.8       | 0     |  |
| HCM Lane LOS             |        | ပ     | ٠      | ٠    | ⋖         | ∢     |  |
| HCM 95th %tile Q(veh)    |        | 2.9   | •      |      | 0.1       | •     |  |
|                          |        |       |        |      |           |       |  |

Synchro 10 Report Page 1 5:00 pm Baseline

HCM Signalized Intersection Capacity Analysis 10: Kamamalu St & Mamalahoa Hwy

2031 Without Project PM 06/21/2022

c Critical Lane Group

5:00 pm Baseline

HCM 6th TWSC 20: KOKA Main Driveway & Hiiaka St

2031 Without Project PM 06/21/2022

HCM 6th TWSC 30: KOKA Eastern Driveway & Aniahua Alanui 2031 Without Project PM 06/21/2022

| Intersection             |        |           |        |      |        |      |  |
|--------------------------|--------|-----------|--------|------|--------|------|--|
| Int Delay, s/veh         | 1.6    |           |        |      |        |      |  |
| Movement                 | EBT    | EBR       | WBL    | WBT  | NBL    | NBR  |  |
| Lane Configurations      | ¢      |           |        | 4    | 2      |      |  |
| Traffic Vol, veh/h       | 130    | 7         | 33     | 50   | 7      | က    |  |
| Future Vol, veh/h        | 130    | 7         | 33     | 50   | 7      | က    |  |
| Conflicting Peds, #/hr   | 0      | 0         | 0      | 0    | 0      | 0    |  |
| Sign Control             | Free   | Free Free | Free   | Free | Stop   | Stop |  |
| RT Channelized           |        | None      | ٠      | None |        | None |  |
| Storage Length           |        | ٠         | ٠      | ٠    | 0      |      |  |
| Veh in Median Storage, # | 0 # '  | ٠         | ٠      | 0    | 0      |      |  |
| Grade, %                 | 0      | ٠         | ٠      | 0    | 0      |      |  |
| Peak Hour Factor         | 2      | 2         | 7      | 7    | 83     | 63   |  |
| Heavy Vehicles, %        | 0      | 0         | 0      | 0    | 0      | 0    |  |
| Mvmt Flow                | 186    | က         | 46     | 28   | က      | 2    |  |
|                          |        |           |        |      |        |      |  |
| Major/Minor              | Major1 | 2         | Major2 | M    | Minor1 |      |  |
| Conflicting Flow All     | 0      | 0         | 189    | 0    | 308    | 188  |  |
| Stage 1                  |        | ٠         | ٠      | ٠    | 188    |      |  |
| Stage 2                  |        | ٠         | ٠      | ٠    | 120    |      |  |
| Critical Hdwy            |        | ٠         | 4.1    |      | 6.4    | 6.2  |  |
| Critical Hdwy Stg 1      | ٠      | ٠         | ٠      | ٠    | 5.4    | ٠    |  |
| Critical Hdwy Stg 2      | ٠      | ٠         | ٠      |      | 5.4    |      |  |

|             | 188                  |         |         | 6.2           |                     |                     | 3.3            | 826                |         |         |                    | 826                |                    |         |         |          |                      |         | WBT                   |                  |                    | 0                     | ¥            |                       |
|-------------|----------------------|---------|---------|---------------|---------------------|---------------------|----------------|--------------------|---------|---------|--------------------|--------------------|--------------------|---------|---------|----------|----------------------|---------|-----------------------|------------------|--------------------|-----------------------|--------------|-----------------------|
| Minor1      | 308                  | 188     | 120     | 6.4           | 5.4                 | 5.4                 | 3.5            | 889                | 849     | 910     |                    | 999                | 999                | 849     | 880     | 乮        | 9.7                  | ⋖       | EBR WBL               | 1397             | 0.033              | 7.7                   | ∢            | 0.1                   |
|             | 0                    | ٠       | •       | ٠             |                     | ٠                   | •              | ٠                  | •       | ٠       | '                  | ٠                  | •                  | •       | '       |          |                      |         |                       |                  | •                  | ٠                     | •            | ٠                     |
| Major2      | 189                  | ٠       |         | 4.1           |                     | •                   | 2.2            | 1397               |         |         |                    | 1397               |                    | •       |         | WB       | 4.8                  |         | EBT                   |                  | ٠                  | ٠                     | •            |                       |
|             | 0                    | ٠       | ٠       |               | ٠                   | •                   | ٠              | ٠                  | ٠       |         |                    |                    | ٠                  | ٠       |         |          |                      |         | NBLn1 EBT             | 769              | 0.01               | 9.7                   | ⋖            | 0                     |
| Major1      | 0                    | ٠       | ٠       |               | ٠                   | ٠                   | ٠              | ٠                  | ٠       |         | •                  |                    | ٠                  | ٠       | •       | 出        | 0                    |         |                       |                  |                    |                       |              |                       |
| Major/Minor | Conflicting Flow All | Stage 1 | Stage 2 | Critical Hdwy | Critical Hdwy Stg 1 | Critical Hdwy Stg 2 | Follow-up Hdwy | Pot Cap-1 Maneuver | Stage 1 | Stage 2 | Platoon blocked, % | Mov Cap-1 Maneuver | Mov Cap-2 Maneuver | Stage 1 | Stage 2 | Approach | HCM Control Delay, s | HCM LOS | Minor Lane/Major Mvmt | Capacity (veh/h) | HCM Lane V/C Ratio | HCM Control Delay (s) | HCM Lane LOS | HCM 95th %tile Q(veh) |

| Synchro 10 Report<br>Page 3 |
|-----------------------------|
| 5:00 pm Baseline            |

| Intersection             |        |       |         |      |        |       |  |
|--------------------------|--------|-------|---------|------|--------|-------|--|
| Int Delay, s/veh         | 1.2    |       |         |      |        |       |  |
| Movement                 | EBT    | BR    | WBL     | WBT  | BE     | NBR   |  |
| Lane Configurations      | Ť.     |       |         | 4    | >      |       |  |
| Traffic Vol, veh/h       | 140    | 0     | 33      | 32   | 0      | 0     |  |
| Future Vol, veh/h        | 140    | 0     | 33      | 32   | 0      | 0     |  |
| Conflicting Peds, #/hr   | 0      | -     | _       | 0    | 0      | 0     |  |
| Sign Control             | Free   | Free  | Free    | Free | Stop   | Stop  |  |
| RT Channelized           | ٠      | None  | ٠       | None |        | None  |  |
| Storage Length           | ٠      | ٠     | ٠       | ٠    | 0      |       |  |
| Veh in Median Storage, # | 0 #    | ٠     | ٠       | 0    | 0      |       |  |
| Grade, %                 | 0      | ٠     | ٠       | 0    | 0      |       |  |
| Peak Hour Factor         | 92     | 92    | 97      | 26   | 92     | 35    |  |
| Heavy Vehicles, %        | 7      | 2     | 7       | 7    | 7      | 7     |  |
| Mvmt Flow                | 147    | 0     | 34      | 36   | 0      | 0     |  |
|                          |        |       |         |      |        |       |  |
| Major/Minor N            | Major1 | _     | Major2  | 2    | Minor1 |       |  |
| Conflicting Flow All     | 0      | 0     | 148     | 0    | 252    | 148   |  |
| Stage 1                  | ٠      | ٠     | ٠       | ٠    | 148    |       |  |
| Stage 2                  | ٠      | ٠     | ٠       | ٠    | 104    |       |  |
| Critical Hdwy            | ٠      | ٠     | 4.12    | ٠    | 6.42   | 6.22  |  |
| Critical Hdwy Stg 1      | ٠      | ٠     | ٠       | ٠    | 5.45   |       |  |
| Critical Hdwy Stg 2      | •      | ٠     | ٠       | ٠    | 5.45   |       |  |
| Follow-up Hdwy           |        |       | - 2.218 |      |        | 3.318 |  |
| Pot Cap-1 Maneuver       | •      | •     | 1434    | •    | 737    | 836   |  |
| Stage 1                  | ٠      | ٠     | ٠       | ٠    | 880    |       |  |
| Stage 2                  | •      | •     | •       | •    | 920    | •     |  |
| Platoon blocked, %       | ٠      | ٠     |         | ٠    |        |       |  |
| Mov Cap-1 Maneuver       | •      | •     | 1433    | •    | 719    | 868   |  |
| Mov Cap-2 Maneuver       | ٠      | ٠     | ٠       | ٠    | 719    |       |  |
| Stage 1                  | ٠      | ٠     | ٠       | ٠    | 879    |       |  |
| Stage 2                  | ٠      | ٠     | ٠       | ٠    | 868    |       |  |
|                          |        |       |         |      |        |       |  |
| Approach                 | EB     |       | WB      |      | NB     |       |  |
| HCM Control Delay, s     | 0      |       | 3.7     |      | 0      |       |  |
| HCM LOS                  |        |       |         |      | ⋖      |       |  |
|                          |        |       |         |      |        |       |  |
| Minor Lane/Major Mvmt    |        | NBLn1 | EBT     | EBR  | WBL    | WBT   |  |
| Capacity (veh/h)         |        | ٠     | ٠       | •    | 1433   |       |  |
| HCM Lane V/C Ratio       |        | ٠     | ٠       | •    | 0.024  |       |  |
| HCM Control Delay (s)    |        | 0     | ٠       | ٠    | 9.7    | 0     |  |
| HCM Lane LOS             |        | ⋖     | ٠       | ٠    | ⋖      | ⋖     |  |
| HCM 95th %tile Q(veh)    |        | •     |         | ٠    | 0.1    |       |  |
|                          |        |       |         |      |        |       |  |

Synchro 10 Report Page 4 5:00 pm Baseline

2031 Without Project PM 06/21/2022

HCM 6th TWSC 40: Mana Rd & Mamalahoa Hwy

2031 Without Project PM 06/21/2022

| Int Delay, s/veh         | 4.8    |             |        |      |        |       |     |
|--------------------------|--------|-------------|--------|------|--------|-------|-----|
| Movement                 | EBT    | EBR         | WBL    | WBT  | NBL    | NBR   |     |
| Lane Configurations      | æ      |             | *      | *    | ×      | *     |     |
| Traffic Vol, veh/h       | 1098   | 53          | 71     | 467  | 70     | 122   |     |
| Future Vol, veh/h        | 1098   | ೪           | 7      | 467  | 8      | 122   |     |
| Conflicting Peds, #/hr   | 0      | 0           | 0      | 0    | 0      | 0     |     |
| Sign Control             | Free   | Free        | Free   | Free | Stop   | Stop  |     |
| RT Channelized           | ٠      | None        | ٠      | None | ٠      | Stop  |     |
| Storage Length           |        | ٠           | 9      | •    | 0      | 22    |     |
| Veh in Median Storage, # | 0 #.   | •           | ٠      | 0    | 0      | ٠     |     |
| Grade, %                 | 0      | ٠           | ٠      | 0    | 0      | ٠     |     |
| Peak Hour Factor         | 92     | 92          | 11     | 11   | 83     | 83    |     |
| Heavy Vehicles, %        | 2      | 2           | 2      | 2    | 2      | 2     |     |
| Mvmt Flow                | 1156   | 31          | 92     | 909  | 54     | 147   |     |
|                          |        |             |        |      |        |       |     |
| Major/Minor N            | Major1 | _           | Major2 | 2    | Minor1 |       |     |
| Conflicting Flow All     | 0      | 0           | 0 1187 | 0    | 0 1962 | 1172  |     |
| Stage 1                  | •      | •           | ٠      | ٠    | 1172   | ٠     |     |
| Stage 2                  | ٠      | ٠           | ٠      | ٠    | 790    | ٠     |     |
| Critical Hdwy            | ٠      | ٠           | 4.12   | •    | 6.42   | 6.22  |     |
| Critical Hdwy Stg 1      | ٠      | ٠           |        | ٠    | 5.42   | ٠     |     |
| Critical Hdwy Stg 2      | •      | •           | •      | •    |        | ı     |     |
| Follow-up Hdwy           | ٠      | ٠           | 7      | ٠    |        | 3.318 |     |
| Pot Cap-1 Maneuver       | •      | •           | 288    | ٠    | 02     | 234   |     |
| Stage 1                  | ٠      | ٠           | ٠      | ٠    | 294    | ٠     |     |
| Stage 2                  | ٠      | •           | ٠      | •    | 447    | ٠     |     |
| Platoon blocked, %       | ٠      | ٠           |        | ٠    |        |       |     |
| Mov Cap-1 Maneuver       | ٠      | •           | 288    | •    | 26     | 234   |     |
| Mov Cap-2 Maneuver       | ٠      | ٠           | ٠      | ٠    | 29     | ٠     |     |
| Stage 1                  | ٠      | •           | ٠      | •    | 294    | ٠     |     |
| Stage 2                  | ٠      | ٠           | ٠      | ٠    | 377    | ٠     |     |
|                          |        |             |        |      |        |       |     |
| Approach                 | EB     |             | WB     |      | NB     |       |     |
| HCM Control Delay, s     | 0      |             | 1.6    |      | 51.6   |       |     |
| HCM LOS                  |        |             |        |      | ட      |       |     |
|                          |        |             |        |      |        |       |     |
| Minor Lane/Major Mvmt    |        | NBLn1 NBLn2 | VBLn2  | EBT  | EBR    | WBL   | WBT |
| Capacity (veh/h)         |        | 29          | 234    | ٠    | ٠      | 288   |     |
| HCM Lane V/C Ratio       |        | 0.408 0.628 | 0.628  | ٠    | ٠      | 0.157 |     |
| HCM Control Delay (s)    |        | 103         | 43.2   | ٠    | ٠      | 12.3  |     |
| HCM Lane LOS             |        | ш           | ш      | ٠    | ٠      | Ф     | •   |
| HCM 95th %tile Q(veh)    |        | 1.5         | 3.8    |      | •      | 9.0   |     |

|                  |          |                     |                    |                   |                        |              |                |                |                          |          |                  |                   |           |               |                      |         |         |               |                     |                     |                |                    |         |         |                    |                    |                    |         |         |          |                      |         | WBT                   | •                | •                  | •                     |              |                       |
|------------------|----------|---------------------|--------------------|-------------------|------------------------|--------------|----------------|----------------|--------------------------|----------|------------------|-------------------|-----------|---------------|----------------------|---------|---------|---------------|---------------------|---------------------|----------------|--------------------|---------|---------|--------------------|--------------------|--------------------|---------|---------|----------|----------------------|---------|-----------------------|------------------|--------------------|-----------------------|--------------|-----------------------|
|                  | NBR      | *                   | 122                | 122               | 0                      | Stop         | Stop           | 20             |                          | ٠        | 83               | 7                 | 147       |               | 1172                 | •       | ٠       | 6.22          | ٠                   | ٠                   | 3.318          | 234                | ٠       |         |                    | 234                | ٠                  | ٠       | ٠       |          |                      |         | WBL                   | 288              | 0.157              | 12.3                  | Ф            | 9.0                   |
|                  | NBL      | r                   | 70                 | 50                | 0                      | Stop         | ٠              | 0              | 0                        | 0        | 83               | 7                 | 24        | Minor1        | 1356                 | 1172    | 184     | 6.42          | 5.42                | 5.45                | 3.518 3.318    | 165                | 594     | 848     |                    | 139                | 139                | 294     | 716     | RB       | 42.2                 | ш       | EBR WBL               | ٠                | •                  | ٠                     | ٠            | •                     |
|                  | WBT      | +                   | 0                  | 0                 | 0                      | Free         | - None         |                | 0                        | 0        | 11               | 7                 | 0         | Σ             | 0                    | •       |         | •             |                     | ٠                   | ·              | •                  | •       | •       |                    | ٠                  | ٠                  | •       | •       |          |                      |         | EBT                   | ٠                | ٠                  | ٠                     | ٠            | •                     |
|                  | WBL      | r                   | 7                  | 71                | 0                      | Free         | -              | 9              | ٠                        |          | 11               | 7                 | 92        | Major2        | 0 1187               | ٠       | ٠       | 4.12          | ٠                   | ٠                   | 2.218          | 288                | ٠       | ٠       |                    | 288                | ٠                  | ٠       | ٠       | WB       | 12.3                 |         | BLn2                  | 234              | .628               | 43.2                  | ш            | 3.8                   |
|                  | EBR      |                     | 53                 | 83                | 0                      | Free         | None           | ٠              |                          | ٠        | 92               | 7                 | 31        | Σ             | 0                    | ٠       |         | ٠             |                     | ٠                   |                | •                  | ٠       | ٠       | ٠                  | •                  | ٠                  |         | ٠       |          |                      |         | NBLn1 NBLn2           | 139              |                    | 36.3                  | ш            | 9.0                   |
| 2.8              | EBT      | æ,                  | 1098               | 1098              | 0                      | Free         | -              |                |                          | 0        | 92               | 7                 | 1156      | Major1        | 0                    | ٠       | ٠       | ٠             | ٠                   | ٠                   | ٠              | •                  | ٠       | ٠       | •                  | ٠                  | ٠                  | ٠       | ٠       | æ        | 0                    |         | Z                     |                  |                    |                       |              |                       |
| Int Delay, s/veh | Movement | Lane Configurations | Traffic Vol, veh/h | Future Vol, veh/h | Conflicting Peds, #/hr | Sign Control | RT Channelized | Storage Length | Veh in Median Storage, # | Grade, % | Peak Hour Factor | Heavy Vehicles, % | Mvmt Flow | Major/Minor M | Conflicting Flow All | Stage 1 | Stage 2 | Critical Hdwy | Critical Hdwy Stg 1 | Critical Hdwy Stg 2 | Follow-up Hdwy | Pot Cap-1 Maneuver | Stage 1 | Stage 2 | Platoon blocked, % | Mov Cap-1 Maneuver | Mov Cap-2 Maneuver | Stage 1 | Stage 2 | Approach | HCM Control Delay, s | HCM LOS | Minor Lane/Major Mvmt | Capacity (veh/h) | HCM Lane V/C Ratio | HCM Control Delay (s) | HCM Lane LOS | HCM 95th %tile Q(veh) |

5:00 pm Baseline

Synchro 10 Report Page 5

5:00 pm Baseline

line

HCM 6th Signalized Intersection Summary 40: Mana Rd & Mamalahoa Hwy

2031 Without Project PM 06/22/2022

|                              | <b>†</b> | ~    | -    | ţ    | •    | •    |      |
|------------------------------|----------|------|------|------|------|------|------|
| Movement                     | EBT      | EBR  | WBL  | WBT  | NBL  | NBR  |      |
| Lane Configurations          | ÷        |      | F    | *    | r    | ×.   |      |
| Traffic Volume (veh/h)       | 1098     | 53   | 71   | 467  | 50   | 122  |      |
| Future Volume (veh/h)        | 1098     | 59   | 71   | 467  | 50   | 122  |      |
| Initial Q (Qb), veh          | 0        | 0    | 0    | 0    | 0    | 0    |      |
| Ped-Bike Adj(A_pbT)          |          | 1.00 | 1.00 |      | 1.00 | 1.00 |      |
| Parking Bus, Adj             | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |      |
| Work Zone On Approach        | 8        |      |      | 8    | S    |      |      |
| Adj Sat Flow, veh/h/In       | 1870     | 1870 | 1870 | 1870 | 1870 | 1870 |      |
| Adj Flow Rate, veh/h         | 1156     | 31   | 95   | 909  | 54   | 147  |      |
| Peak Hour Factor             | 0.95     | 0.95 | 0.77 | 0.77 | 0.83 | 0.83 |      |
| Percent Heavy Veh, %         | 7        | 2    | 7    | 2    | 2    | 7    |      |
| Cap, veh/h                   | 1212     | 33   | 213  | 1452 | 196  | 255  |      |
| Arrive On Green              | 29.0     | 29.0 | 0.05 | 0.78 | 0.11 | 0.11 |      |
| Sat Flow, veh/h              | 1813     | 49   | 1781 | 1870 | 1781 | 1585 |      |
| Grp Volume(v), veh/h         | 0        | 1187 | 92   | 909  | 24   | 147  |      |
| Grp Sat Flow(s),veh/h/In     | 0        | 1862 | 1781 | 1870 | 1781 | 1585 |      |
| Q Serve(g_s), s              | 0.0      | 51.3 | 1.2  | 9.4  | 1.1  | 9.7  |      |
| Cycle Q Clear(g_c), s        | 0.0      | 51.3 | 1.2  | 9.4  |      | 9.7  |      |
| Prop In Lane                 |          | 0.03 | 1.00 |      | 1.00 | 1.00 |      |
| Lane Grp Cap(c), veh/h       | 0        | 1245 | 213  | 1452 | 196  | 255  |      |
| V/C Ratio(X)                 | 0.00     | 0.95 | 0.43 | 0.42 | 0.12 | 0.58 |      |
| Avail Cap(c_a), veh/h        | 0        | 1310 | 223  | 1529 | 364  | 404  |      |
| HCM Platoon Ratio            | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |      |
| Upstream Filter(I)           | 0.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |      |
| Uniform Delay (d), s/veh     | 0.0      | 13.3 | 22.5 | 33   | 35.3 | 34.2 |      |
| Incr Delay (d2), s/veh       | 0.0      | 14.8 | 1.4  | 0.2  | 0.3  | 2.1  |      |
| Initial Q Delay(d3),s/veh    | 0.0      | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |      |
| %ile BackOfQ(50%),veh/In     | 0.0      | 20.0 | 1.3  | 1.8  | 0.5  | 2.9  |      |
| Unsig. Movement Delay, s/veh |          |      |      |      |      |      |      |
| LnGrp Delay(d),s/veh         | 0.0      | 28.1 | 23.9 | 3.5  | 35.6 | 36.2 |      |
| LnGrp LOS                    | ⋖        | ပ    | ٥    | ⋖    |      | ٥    |      |
| Approach Vol, veh/h          | 1187     |      |      | 869  | 171  |      |      |
| Approach Delay, s/veh        | 28.1     |      |      | 6.1  | 36.1 |      |      |
| Approach LOS                 | ပ        |      |      | ∢    | ۵    |      |      |
| Timer - Assigned Phs         |          | 2    | က    | 4    |      |      | ω    |
| Phs Duration (G+Y+Rc), s     |          | 14.7 | 9.5  | 63.9 |      |      | 73.4 |
| Change Period (Y+Rc), s      |          | 2.0  | 2.0  | 2.0  |      |      | 5.0  |
| Max Green Setting (Gmax), s  |          | 18.0 | 2.0  | 62.0 |      |      | 72.0 |
| Max Q Clear Time (g_c+I1), s |          | 9.6  | 3.2  | 53.3 |      |      | 11.4 |
| Green Ext Time (p_c), s      |          | 0.3  | 0.0  | 9.9  |      |      | 4.1  |
| Intersection Summary         |          |      |      |      |      |      |      |
| HCM 6th Ctd Dolow            | l        | l    | 24.2 | l    | l    |      |      |
| HCM 6th 10s                  |          |      | S. C |      |      |      |      |
| HCM But LOS                  |          |      | د    |      |      |      |      |

Synchro 10 Report Page 1 5:00 pm Baseline

HCM 6th TWSC 2: Future Homestead Road & Hiiaka St

2041 Without Project AM 06/21/2022

| Int Delay, s/veh         | 2.4    |       |         |      |        |       |  |
|--------------------------|--------|-------|---------|------|--------|-------|--|
| Movement                 | EBT    | EBR   | WBL     | WBT  | BE     | NBR   |  |
| Lane Configurations      | £,     |       |         | 4    | >      |       |  |
| Traffic Vol, veh/h       | 107    | 126   | 66      | 173  | 31     | Ξ     |  |
| Future Vol, veh/h        | 107    | 126   | 66      | 173  | 31     | Ξ     |  |
| Conflicting Peds, #/hr   | 0      | 0     | 0       | 0    | 0      | 0     |  |
| Sign Control             | Free   | Free  | Free    | Free | Stop   | Stop  |  |
| RT Channelized           | -      | None  |         | None | ٠      | None  |  |
| Storage Length           |        | ٠     | ٠       | ٠    | 0      | ٠     |  |
| Veh in Median Storage, # | 0 #    | ٠     | ٠       | 0    | 0      | ٠     |  |
| Grade, %                 | 0      | ٠     | ٠       | 0    | 0      | ٠     |  |
| Peak Hour Factor         | 95     | 92    | 92      | 92   | 92     | 92    |  |
| Heavy Vehicles, %        | 7      | 7     | 7       | 7    | 7      | 7     |  |
| Mvmt Flow                | 116    | 137   | 108     | 188  | 34     | 12    |  |
|                          |        |       |         |      |        |       |  |
| Major/Minor Ma           | Major1 | 2     | Major2  | 2    | Minor1 |       |  |
| Conflicting Flow All     | 0      | 0     | 253     | 0    | 289    | 185   |  |
| Stage 1                  | ٠      | ٠     | ٠       | ٠    | 185    | ٠     |  |
| Stage 2                  | ٠      | ٠     | •       | ٠    | 404    | •     |  |
| Critical Hdwy            | ٠      | ٠     | 4.12    | ٠    | 6.42   | 6.22  |  |
| Critical Hdwy Stg 1      | ٠      | •     | ٠       | ٠    | 5.42   | •     |  |
| Critical Hdwy Stg 2      | ٠      | ٠     | ٠       | ٠    | 5.42   | ٠     |  |
| Follow-up Hdwy           | ٠      | ٠     | - 2.218 | ٠    | 3.518  | 3.318 |  |
| Pot Cap-1 Maneuver       |        | ٠     | 1312    | ٠    | 471    | 827   |  |
| Stage 1                  | ٠      | ٠     | •       | ٠    | 847    | •     |  |
| Stage 2                  | ٠      | ٠     | ٠       | ٠    | 674    | ٠     |  |
| Platoon blocked, %       | ٠      | ٠     |         | ٠    |        |       |  |
| Mov Cap-1 Maneuver       | ٠      | ٠     | 1312    | ٠    | 428    | 857   |  |
| Mov Cap-2 Maneuver       |        | ٠     | ٠       | ٠    | 428    | ٠     |  |
| Stage 1                  | ٠      | ٠     | ٠       | •    | 847    | ٠     |  |
| Stage 2                  | ٠      | ٠     | ٠       | ٠    | 612    | ٠     |  |
|                          |        |       |         |      |        |       |  |
| Approach                 | B      |       | WB      |      | B      |       |  |
| HCM Control Delay, s     | 0      |       | 2.9     |      | 13     |       |  |
| HCM LOS                  |        |       |         |      | മ      |       |  |
|                          |        |       |         |      |        |       |  |
| Minor Lane/Major Mvmt    | Z      | NBLn1 | EBT     | EBR  | WBL    | WBT   |  |
| Capacity (veh/h)         |        | 493   | ٠       |      | 1312   |       |  |
| HCM Lane V/C Ratio       |        | 0.093 | •       | ٠    | 0.082  | ٠     |  |
| HCM Control Delay (s)    |        | 13    |         | •    | ∞      | 0     |  |
| HCM Lane LOS             |        | α     | ١       | ١    | <      | <     |  |
| 001000                   |        | 2     |         |      | C      | ζ     |  |

Synchro 10 Report Page 1 5:00 pm Baseline

HCM Signalized Intersection Capacity Analysis 10: Kamamalu St & Mamalahoa Hwy

2041 Without Project AM 06/21/2022

| 600 247<br>600 247<br>600 247<br>1900 1900<br>5.0 0.95<br>0.96<br>1.00 0.96<br>1.00 3361<br>1.00 3361<br>1.00 3361<br>1.00 3361<br>1.00 347<br>1.00 347<br>1.10 4.71<br>1.12 0 0.71<br>1.127 0 0 0.71<br>2.57 25.7 25.7 25.7 25.7 25.7 25.7 25.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 417<br>1284<br>1900<br>1900<br>1900<br>1900<br>1009<br>1009<br>1009<br>100 | 216<br>216<br>1900<br>1.00<br>1.00<br>1.00<br>1.00<br>0.95<br>1770<br>0.95<br>332<br>0 0.95<br>332<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100<br>50<br>50<br>50<br>50<br>1.00<br>1.00<br>1.00<br>1.06<br>1.06<br>1.06<br>1.06<br>1.0                                                                                             |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 600 247<br>600 247<br>1900 1900<br>5.0<br>0.99<br>0.09<br>1.00<br>3361<br>1.00<br>3361<br>1.00<br>3361<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1. |                                                                            | 216<br>216<br>1900<br>5.0<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50<br>1900<br>5.0<br>5.0<br>10.0<br>10.0<br>10.0<br>11.00<br>1565<br>11.00<br>1665<br>11.00<br>17.7<br>34<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43      |      |
| 600 247<br>1900 1900<br>5.0<br>0.95<br>0.99<br>1.00<br>0.96<br>1.00<br>3361<br>1.00<br>3361<br>1.00<br>3361<br>1.00<br>3361<br>1.00<br>348<br>845 348<br>845 348<br>845 348<br>44 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            | 216<br>1900<br>5.0<br>1.00<br>1.00<br>1.00<br>1.00<br>0.95<br>1770<br>0.95<br>1770<br>0.65<br>332<br>0<br>14.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50<br>1900<br>5.0<br>1.00<br>0.99<br>1.00<br>1.00<br>1565<br>1.00<br>1565<br>1.00<br>1565<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.0                               |      |
| 1900 1900 1900 1900 1900 1900 1900 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                            | 1900<br>5.0<br>1.00<br>1.00<br>1.00<br>0.95<br>1770<br>0.95<br>1770<br>0.95<br>1770<br>0.95<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1 | 1900<br>5.0<br>0.99<br>0.085<br>0.085<br>1.00<br>1565<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.0                                                                   |      |
| 5.0<br>0.95<br>0.99<br>1.00<br>0.96<br>1.00<br>3361<br>1.00<br>3361<br>1.00<br>381<br>(vph) 1127<br>0<br>(vph) 1127<br>2<br>NA 4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                            | 5.0<br>1.00<br>1.00<br>1.00<br>1.00<br>0.95<br>1770<br>0.95<br>1770<br>0.95<br>332<br>332<br>332<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.0<br>1.00<br>0.39<br>1.00<br>0.85<br>1.00<br>1.565<br>1.565<br>0.65<br>43<br>43<br>43<br>43<br>2<br>2<br>2<br>3<br>43<br>5<br>5<br>5<br>17.5<br>17.5<br>17.5<br>17.5<br>17.5<br>17.5 |      |
| 0.99<br>0.99<br>1.00<br>0.96<br>1.00<br>3361<br>1.00<br>3361<br>0.71<br>0.71<br>0.71<br>0.71<br>0.71<br>0.71<br>0.71<br>0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00<br>0.99<br>0.85<br>11.00<br>1565<br>1.00<br>1565<br>0.65<br>77<br>34<br>43<br>43<br>43<br>43<br>5<br>5<br>5                                                                       |      |
| 0.99<br>1.00<br>0.96<br>1.00<br>3361<br>1.00<br>3361<br>1.00<br>3361<br>1.00<br>3361<br>1.00<br>348<br>66 0<br>1127 0<br>1127 0<br>1 1127 2<br>2 25.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            | 1.00<br>1.00<br>1.00<br>0.95<br>1770<br>0.95<br>1770<br>332<br>332<br>8<br>14.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.99 1.00 1.00 1.00 1.66 7.7 3.4 3.2 2 2 2 3.7 7.7 3.4 3.7 7.7 3.7 7.7 3.7 7.7 3.7 7.7 7.7 7.7                                                                                         |      |
| 1.00<br>0.96<br>1.00<br>3361<br>1.00<br>3361<br>0.71<br>0.71<br>0.71<br>0.71<br>1.65<br>0<br>1.127<br>0<br>1.127<br>2<br>2<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                            | 1.00<br>1.00<br>1.00<br>1.05<br>1.77<br>1.77<br>1.70<br>1.06<br>3.32<br>3.32<br>9.0<br>1.06<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00<br>0.85<br>1.66<br>1.00<br>1.665<br>7.7<br>3.4<br>4.3<br>4.3<br>2<br>2<br>1.7<br>3<br>5<br>5<br>1.7.5                                                                             |      |
| 0.96<br>1.00<br>3361<br>1.00<br>3361<br>0.71 0.71<br>66 0<br>1127 0<br>NA A<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M M M M                                                                    | 1.00<br>0.95<br>1770<br>0.95<br>1770<br>0.65<br>332<br>0<br>0<br>332<br>Prot<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.85<br>1.00<br>1.00<br>1.565<br>0.05<br>0.05<br>7.7<br>3.4<br>43<br>43<br>43<br>43<br>5<br>5<br>5<br>5<br>17.5                                                                        |      |
| 1.00<br>3361<br>1.00<br>3361<br>0.71<br>0.71<br>0.71<br>0.71<br>0.71<br>0 0.71<br>0 0<br>1127<br>0 0<br>1 127<br>0 0<br>1 4<br>4 4<br>4 4<br>25.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            | 0.95<br>1770<br>0.95<br>1770<br>0.65<br>332<br>332<br>0<br>0<br>0<br>1770<br>1770<br>1770<br>1770<br>1770<br>1770<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.00<br>11.665<br>11.00<br>11.00<br>11.665<br>11.665<br>13.3<br>13.3<br>14.3<br>14.0<br>17.5<br>17.5<br>17.5                                                                          |      |
| 3361<br>1.00<br>3361<br>0.71 0.71<br>0.71 0.71<br>845 348<br>66 0<br>1127 0<br>NA<br>A<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            | 1770<br>0.95<br>1770<br>0.65<br>332<br>0<br>332<br>Prot<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1565<br>1.00<br>1.00<br>1.65<br>7.7<br>34<br>4.3<br>2<br>2<br>2<br>2<br>3<br>3<br>17.5<br>17.5                                                                                         |      |
| 100<br>3361<br>0.71 0.71<br>845 348<br>66 0<br>11127 0<br>NA A<br>4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            | 0.95<br>1770<br>0.65<br>332<br>0<br>332<br>Prot<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,00<br>1565<br>0.75<br>77<br>34<br>43<br>2<br>2<br>2<br>2<br>3<br>5<br>5<br>17.5<br>17.5                                                                                              |      |
| 3361<br>0.71 0.71<br>845 348<br>66 0<br>1127 0<br>NA A<br>4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            | 0.65<br>332<br>0<br>332<br>Prot<br>5<br>14.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1565<br>0.05<br>77<br>34<br>43<br>43<br>2<br>2<br>2<br>2<br>3<br>5<br>5<br>17.5                                                                                                        |      |
| 0.71 0.71<br>845 348<br>845 348<br>166 0<br>1127 0<br>NA 4<br>4 4<br>25.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                            | 0.65<br>332<br>0<br>332<br>Prot<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.65<br>77<br>34<br>43<br>2<br>2<br>m+ov<br>3<br>5<br>5<br>17.5                                                                                                                        |      |
| (vph) 845 348 (vph) 66 0 0 (vph) 1127 0 2 NA NA 4 4 (s) 25.7 (s) 25.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            | 332<br>0<br>332<br>Prot<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 77<br>34<br>43<br>2<br>2<br>2<br>m+ov<br>3<br>5<br>17.5                                                                                                                                |      |
| (vph) 66 0 (vph) 1127 2 2 NA NA 4 4 4 4 (s) 25.7 (s) 25.7 (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            | 9332<br>Prot<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34<br>43<br>2<br>2<br>2<br>2<br>2<br>3<br>3<br>5<br>5<br>17.5                                                                                                                          |      |
| (s) 25.7 (vph) (vp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                            | 332<br>Prot<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                               |      |
| NA A 4 4 4 (s) (s) 25.7 (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            | Prot 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2<br>m+ov<br>3<br>5<br>17.5<br>17.5                                                                                                                                                    |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            | Prot<br>5<br>14.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m+ov<br>3<br>5<br>17.5<br>17.5                                                                                                                                                         |      |
| 4<br>5 (s) 25.7<br>(s) 25.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3<br>5<br>17.5<br>17.5                                                                                                                                                                 |      |
| (s)<br>(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5<br>17.5<br>17.5                                                                                                                                                                      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33.5                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.5<br>17.5                                                                                                                                                                           |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33.5                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.5                                                                                                                                                                                   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                        |      |
| J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.58                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.30                                                                                                                                                                                   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.0                                                                                                                                                                                    |      |
| /ehicle Extension (s) 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.0                                                                        | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.0                                                                                                                                                                                    |      |
| ane Grp Cap (vph) 1484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1764                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 902                                                                                                                                                                                    |      |
| //s Ratio Prot 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c0.04                                                                      | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                   |      |
| u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c0.44                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.02                                                                                                                                                                                   |      |
| 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.82                                                                       | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.07                                                                                                                                                                                   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.0                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.5                                                                                                                                                                                   |      |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00                                                                                                                                                                                   |      |
| ncremental Delay, d2 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.3                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                    |      |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.3                                                                       | 3 26.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.6                                                                                                                                                                                   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | В                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | В                                                                                                                                                                                      |      |
| y (s) 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.3                                                                       | 3 24.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        |      |
| Approach LOS B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ш                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                        |      |
| ntersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                        |      |
| av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15.8                                                                       | HCM 2000 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HCM 2000 Level of Service                                                                                                                                                              | 8    |
| pacity ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.89                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 58.2                                                                       | Sum of lost time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ime (s)                                                                                                                                                                                | 15.0 |
| Utilization 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .7.7%                                                                      | ICU Level of Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Service                                                                                                                                                                                | ۵    |
| Analysis Period (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                        |      |

5:00 pm Baseline Synchro 10 Report Page 2

HCM 6th TWSC 20: KOKA Main Driveway & Hijaka St

2041 Without Project AM 06/21/2022

| Intersection             |        |       |        |      |        |      |  |
|--------------------------|--------|-------|--------|------|--------|------|--|
| Int Delay, s/veh         | 2      |       |        |      |        |      |  |
| Movement                 | EBT    | EBR   | WBL    | WBT  | BE     | NBR  |  |
| Lane Configurations      | 2      |       |        | 4    | >      |      |  |
| Traffic Vol, veh/h       | 23     | 84    | 93     | 173  | 0      | 0    |  |
| Future Vol, veh/h        | 23     | 84    | 93     | 173  | 0      | 0    |  |
| Conflicting Peds, #/hr   | 0      | 2     | 7      | 0    | 0      | 0    |  |
| Sign Control             | Free   | Free  | Free   | Free | Stop   | Stop |  |
| RT Channelized           | ٠      | None  | ٠      | None | ٠      | None |  |
| Storage Length           | ٠      | ٠     | ٠      | ٠    | 0      |      |  |
| Veh in Median Storage, # | 0 #    | ٠     | ٠      | 0    | 0      | ٠    |  |
| Grade, %                 | 0      | ٠     | ٠      | 0    | 0      |      |  |
| Peak Hour Factor         | 26     | 29    | 26     | 26   | 09     | 09   |  |
| Heavy Vehicles, %        | 0      | 0     | 0      | 0    | 0      | 0    |  |
| Mvmt Flow                | 33     | 142   | 166    | 309  | 0      | 0    |  |
|                          |        |       |        |      |        |      |  |
| Major/Minor N            | Major1 | _     | Major2 | 2    | Minor1 |      |  |
| Conflicting Flow All     | 0      | 0     | 183    | 0    | 753    | 112  |  |
| Stage 1                  | ٠      |       |        | ٠    | 112    |      |  |
| Stage 2                  | ٠      | ٠     | ٠      | •    | 641    |      |  |
| Critical Hdwy            | ٠      | ٠     | 4.1    | •    | 6.4    | 6.2  |  |
| Critical Hdwy Stg 1      | ٠      | ٠     | ٠      | •    | 5.4    | ٠    |  |
| Critical Hdwy Stg 2      | ٠      | ٠     | ٠      | ٠    | 5.4    | •    |  |
| Follow-up Hdwy           | ٠      | ٠     | 2.2    | ٠    | 3.5    | 3.3  |  |
| Pot Cap-1 Maneuver       | •      | ٠     | 1404   |      | 380    | 947  |  |
| Stage 1                  | ٠      | ٠     | ٠      | ٠    | 918    | ٠    |  |
| Stage 2                  | ٠      | •     | •      | ٠    | 228    | ٠    |  |
| Platoon blocked, %       | ٠      | ٠     |        | ٠    |        |      |  |
| Mov Cap-1 Maneuver       | ٠      | •     | 1401   | ٠    | 325    | 942  |  |
| Mov Cap-2 Maneuver       | ٠      | ٠     | ٠      |      | 325    |      |  |
| Stage 1                  | •      | ٠     | •      |      | 916    | •    |  |
| Stage 2                  | ٠      | ٠     | ٠      | ٠    | 452    |      |  |
|                          |        |       |        |      |        |      |  |
| Approach                 | 8      |       | WB     |      | B      |      |  |
| HCM Control Delay, s     | 0      |       | 2.8    |      | 0      |      |  |
| HCM LOS                  |        |       |        |      | ⋖      |      |  |
|                          |        |       |        |      |        |      |  |
| Minor Lane/Major Mvmt    |        | NBLn1 | EBT    | EBR  | WBL    | WBT  |  |
| Capacity (veh/h)         |        | ٠     | ٠      | ٠    | 1401   |      |  |
| HCM Lane V/C Ratio       |        | ٠     | ٠      | ٠    | 0.119  | ٠    |  |
| HCM Control Delay (s)    |        | 0     | ٠      | •    | 7.9    | 0    |  |
| HCM Lane LOS             |        | ⋖     | •      | ٠    | ⋖      | ⋖    |  |
| HCM 95th %tile Q(veh)    |        | •     | •      | •    | 0.4    | •    |  |

5:00 pm Baseline Synchro 10 Report Page 3

HCM 6th TWSC 30: KOKA Eastern Driveway & Aniahua Alanui

45

EBT EBR WBL WBT NBL NBR

5.5

Int Delay, s/veh

op Stop None

Stop

243 107 243 10 0 0 0 ee Free \$\circ\$ None

0 Pree

Lane Configurations 14.
Traffic Vol, veh/h 23.
Conflicting Peds, #hrr 0
Sign Control
Sign Control
Sign Stronge Length - Neh in Median Storage Length - Neh in Median Storage, # 0
Feak Hour Factor 60
Heavy Vehicles, % 2
Mwmt Flow 38

55 - 2

60 2 405

0 2 0

0 0 0 2 195

2041 Without Project AM

2041 Without Project AM

06/21/2022

HCM 6th TWSC 40: Mana Rd & Mamalahoa Hwy

| Intersection             |      |           |      |      |      |      |  |
|--------------------------|------|-----------|------|------|------|------|--|
| Int Delay, s/veh         | 19.1 |           |      |      |      |      |  |
| Movement                 | EBT  | EBR WBL   | WBL  | WBT  | NBL  | NBR  |  |
| Lane Configurations      | ÷    |           | ×    | *    | r    | *    |  |
| Traffic Vol, veh/h       | 476  | 16        | 206  | 1232 | 75   | 26   |  |
| Future Vol, veh/h        | 476  | 16        | 206  | 1232 | 75   | 26   |  |
| Conflicting Peds, #/hr   | 0    | 0         | 0    | 0    | 0    | 0    |  |
| Sign Control             | Free | Free Free | Free | Free | Stop | Stop |  |
| RT Channelized           | ٠    | None      | ٠    | None |      | Stop |  |
| Storage Length           | ٠    | ٠         | 09   | ٠    | 0    | 20   |  |
| Veh in Median Storage, # | 0 #  | ٠         | ٠    | 0    | 0    | •    |  |
| Grade, %                 | 0    | ٠         |      | 0    | 0    |      |  |
| Peak Hour Factor         | 9/   | 9/        | 82   | 82   | 46   | 46   |  |
| Heavy Vehicles, %        | 7    | 2         | 7    | 7    | 7    | 7    |  |
| Mvmt Flow                | 979  | 21        | 242  | 1449 | 48   | 122  |  |
|                          |      |           |      |      |      |      |  |

|               |                      |         |         |               |                     |                     |                |                    |         |         |                    |                    |                    |         |         |          |                      |         | WBT                   |                  |                    |                       |              |                       |
|---------------|----------------------|---------|---------|---------------|---------------------|---------------------|----------------|--------------------|---------|---------|--------------------|--------------------|--------------------|---------|---------|----------|----------------------|---------|-----------------------|------------------|--------------------|-----------------------|--------------|-----------------------|
|               | 637                  | ٠       | ٠       | 6.22          | ٠                   | ٠                   | 3.318          | 477                | ٠       | ٠       |                    | 477                | ٠                  | ٠       | ٠       |          |                      |         | EBR WBL               | 939              | 0.258              | 10.2                  | В            | -                     |
| Minor1        | 2570                 | 637     | 1933    | 6.42          | 5.45                | 5.45                | 3.518 3.318    | ~ 29               | 527     | 124     |                    | ~ 22               | ~ 22               | 527     | 95      | B        | 268.1                | ட       | EBR                   | ٠                | ٠                  | ٠                     | ٠            | ٠                     |
| 2             | 0                    | ٠       | ٠       | ٠             | ٠                   | ٠                   | ٠              | ٠                  | ٠       | ٠       | ٠                  | ٠                  | ٠                  | ٠       | ٠       |          |                      |         | EBT                   | ٠                | ٠                  | ٠                     | ٠            | ٠                     |
| Major2        | 647                  | ٠       | •       | 4.12          | •                   | ٠                   | 2.218          | 939                | •       | ٠       |                    | 939                | ٠                  | ٠       | ٠       | WB       | 1.5                  |         | BLn2                  | 477              | .255               | 15.1                  | ပ            | _                     |
| Σ             | 0                    | ٠       | ٠       | ٠             | ٠                   | ٠                   |                | ٠                  | ٠       | ٠       | ٠                  | ٠                  | ٠                  | ٠       | •       |          |                      |         | NBLn1 NBLn2           | 22               | 2.174 0.255        | \$ 912.2              | ட            | 6.1                   |
| Major1        | 0                    | ٠       | ٠       | ٠             |                     | ٠                   | ٠              | ٠                  |         | ٠       |                    | ٠                  | ٠                  | ٠       | ٠       | B        | 0                    |         |                       |                  | .,                 | \$                    |              |                       |
| Major/Minor M | Conflicting Flow All | Stage 1 | Stage 2 | Critical Hdwy | Critical Hdwy Stg 1 | Critical Hdwy Stg 2 | Follow-up Hdwy | Pot Cap-1 Maneuver | Stage 1 | Stage 2 | Platoon blocked, % | Mov Cap-1 Maneuver | Mov Cap-2 Maneuver | Stage 1 | Stage 2 | Approach | HCM Control Delay, s | HCM LOS | Minor Lane/Major Mvmt | Capacity (veh/h) | HCM Lane V/C Ratio | HCM Control Delay (s) | HCM Lane LOS | HCM 95th %tile Q(veh) |

0 447 38 - 38 - 38 - 409 - 6.42 6.22 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41 - 5.41

4.12

Conflicting Flow All
Stage 1
Stage 2
Critical Howy Sig 1
Critical Howy Sig 2
Follow-up Howy
Pot Cap-1 Manneuver
Stage 1

88

- 2.218 - 1572

- 1572

Stage 2
Platoon blocked, %
Mov Cap-1 Maneuver
Mov Cap-2 Maneuver
Stage 1
Stage 2

8N 4.41

0 8

0

Approach HCM Control Delay, s HCM LOS

|                  |                    |                       |              |                       |       | →: Volume exceeds capacity  \$: Delay exceeds 300s  +: Computation Not Defined  *: All major volume in platoon    Computation   Computatio |
|------------------|--------------------|-----------------------|--------------|-----------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |                    | •                     |              |                       |       | putation Not Defined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 939              | 0.258              | - 10.2                | <u>.</u>     |                       |       | +: Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ٠                |                    | •                     |              |                       |       | soos spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 22 477           | 0.255              | 15.1                  | ပ            | <del>-</del>          |       | lay exce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 52               | 2.174 0.255        | \$912.2 15.1          | ഥ            | 6.1                   |       | \$: De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Capacity (veh/h) | HCM Lane V/C Ratio | HCM Control Delay (s) | HCM Lane LOS | HCM 95th %tile Q(veh) | Notes | ~: Volume exceeds capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

5:00 pm Baseline

5:00 pm Baseline

NBLn1 EBT EBR WBL WBT
655 - 1572 0.422 - 0.001 14.4 - 7.3 0
2.1 - 0.01

Minor Lane/Major Mvmt Capacity (vehh) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS HCM B5th %tle Q(veh)

⋖

Synchro 10 Report Page 4

2041 Without Project AM 06/21/2022

HCM 6th Signalized Intersection Summary 40: Mana Rd & Mamalahoa Hwy

2041 Without Project AM

| 4 Delen - 6 - 1          | Ĺ      |             |           |      |        | l     |     |
|--------------------------|--------|-------------|-----------|------|--------|-------|-----|
| Int Delay, s/veh         | 9.6    |             |           |      |        |       |     |
| Movement                 | EBT    | EBR         | WBL       | WBT  | NBL    | NBR   |     |
| Lane Configurations      | ÷      |             | *         | *    | r      | *     |     |
| raffic Vol, veh/h        | 476    |             | 206       | 0    | 75     | 29    |     |
| Future Vol, veh/h        | 476    | 16          | 206       | 0    | 22     | 29    |     |
| Conflicting Peds, #/hr   | 0      | 0           | 0         | 0    | 0      | 0     |     |
| Sign Control             | Free   | Free        | Free      | Free | Stop   | Stop  |     |
| RT Channelized           | ٠      | - None      | ٠         | None | ٠      | Stop  |     |
| Storage Length           | ٠      | ٠           | 09        | •    | 0      | 20    |     |
| Veh in Median Storage, # |        | ٠           | ٠         | 0    | 0      |       |     |
| Grade, %                 | 0      | ٠           | ٠         | 0    | 0      | ٠     |     |
| Peak Hour Factor         | 9/     | 92          | 82        | 82   | 46     | 46    |     |
| Heavy Vehicles, %        | 2      | 2           |           | 7    | 7      | 7     |     |
| Mvmt Flow                | 626    | 21          | 242       | 0    | 48     | 122   |     |
| Major/Minor I            | Major1 |             | Major2    | _    | Minor1 |       |     |
| Conflicting Flow All     | 0      | 0           | 647       | 0    | 1121   | 637   |     |
| Stage 1                  | ٠      | ٠           | ٠         |      | 637    |       |     |
| Stage 2                  | ٠      | ٠           | ٠         | ٠    | 484    | ٠     |     |
| Critical Hdwy            | ٠      | ٠           | 4.12      | •    | 6.42   | 6.22  |     |
| Critical Hdwy Stg 1      | •      | ٠           | ٠         | ٠    | 5.42   | ٠     |     |
| Critical Hdwy Stg 2      | ٠      | ٠           | ٠         | ٠    | 5.42   | ٠     |     |
| Follow-up Hdwy           | ٠      | ٠           | - 2.218   | ٠    | 3.518  | 3.318 |     |
| Pot Cap-1 Maneuver       | •      | •           | 939       | ٠    | 228    | 477   |     |
| Stage 1                  | ٠      | ٠           | ٠         | ٠    | 527    | ٠     |     |
| Stage 2                  | •      | •           | ٠         |      | 620    |       |     |
| Platoon blocked, %       | ٠      | ٠           |           | ٠    |        |       |     |
| Mov Cap-1 Maneuver       | •      | •           | 939       |      | 169    | 477   |     |
| Mov Cap-2 Maneuver       | ٠      | ٠           | ٠         | ٠    | 169    | ٠     |     |
| Stage 1                  | •      | •           | ٠         | ٠    | 527    | ٠     |     |
| Stage 2                  | ٠      | ٠           | ٠         | ٠    | 460    | ٠     |     |
|                          |        |             |           |      |        |       |     |
| Approach                 | EB     |             | WB        |      | NB     |       |     |
| HCM Control Delay, s     | 0      |             | 10.2      |      | 20.6   |       |     |
| HCM LOS                  |        |             |           |      | ပ      |       |     |
|                          |        |             |           |      |        |       |     |
| Winor Lane/Major Mvmt    |        | NBLn1 NBLn2 | JBLn2     | EBT  | EBR    | WBL   | WBT |
| Capacity (veh/h)         |        | 169         | 477       | ٠    | ٠      | 939   |     |
| HCM Lane V/C Ratio       |        | 0.283 0.255 | 0.255     | ٠    | ٠      | 0.258 |     |
| HCM Control Delay (s)    |        | 34.5        | 34.5 15.1 | ٠    | ٠      | 10.2  |     |
| HCM Lane LOS             |        | ٥           | C         | ٠    | •      | В     |     |
|                          |        |             |           |      |        | •     |     |

|               |          |                 |        |        |             |      |     | Grp Sa  |
|---------------|----------|-----------------|--------|--------|-------------|------|-----|---------|
| or            | Major1   | Maj             | Major2 | Minor1 | _           |      |     | Q Serv  |
| Flow All      | 0        | 9 0             | 647    | 0 1121 |             | 637  |     | Cycle   |
| je 1          | ٠        |                 |        | - 637  | 7           |      |     | Prop Ir |
| je 2          | ٠        |                 |        | - 484  | 4           |      |     | Lan     |
| wy            | ٠        | 4               | 4.12   | 6.42   | 2 6.22      | 22   |     | N/C     |
| wy Stg 1      | ٠        |                 |        | 5.42   | 2           |      |     | Ava     |
| wy Stg 2      |          |                 |        | 5 42   | 2           |      |     | HCM     |
| Hdwy          | ٠        | - 22            | 2.218  | 3.51   | 3.518 3.318 | 18   |     | Nps     |
| Maneuver      | ٠        |                 | 939    | - 228  | 8 477       | 1    |     | Unifor  |
| je 1          |          |                 |        | - 527  | 7           |      |     | Incr    |
| je 2          |          |                 |        | - 620  | 0           |      |     | Initial |
| ocked, %      |          |                 |        |        |             |      |     | %ile    |
| 1 Maneuver    |          | •               | 939    | - 169  | 9 477       | 11   |     | Uns     |
| 2 Maneuver    | ٠        |                 |        | - 169  | 6           |      |     | LnG     |
| Je 1          | ٠        | ٠               |        | - 527  |             |      |     | LnGrp   |
| je 2          | ٠        |                 |        | - 460  | 0           |      |     | App     |
|               |          |                 |        |        |             |      |     | Appros  |
|               | 8        |                 | WB     | Z      | 贸           |      |     | Appros  |
| trol Delay, s | 0        | 1               | 10.2   | 20.6   | 9           |      |     | Timer - |
|               |          |                 |        |        | ပ           |      |     | Phs Du  |
|               |          |                 |        |        |             |      |     | Chang   |
| e/Major Mvmt  |          | NBLn1 NBLn2 EBT | .n2 EE |        | EBR WBL     |      | WBT | Max     |
| veh/h)        |          | 169 4           | 477    |        | 6           | 939  |     | Max Q   |
| V/C Ratio     |          | 0.283 0.255     | 255    |        | 0.258       | 22   |     | liaaio  |
| rol Delay (s) | (e       | 34 5 15 1       | 5.1    |        | 2           | 10.2 |     | Inte    |
| SOT           |          | ۵               | ပ      |        |             | В    | •   | HCM 6   |
| %tile Q(veh)  | <u>ا</u> | <del>[</del> .  | -      |        |             | _    |     | S       |

|                              | Ť         | >    | -    | ļ    | ✓    | •    |      |
|------------------------------|-----------|------|------|------|------|------|------|
| Movement                     | EBT       | EBR  | WBL  | WBT  | NBL  | NBR  |      |
| Lane Configurations          | <b>\$</b> |      | ×    | *    | je.  | ¥.   |      |
| Traffic Volume (veh/h)       | 476       | 16   | 506  | 1232 | 22   | 26   |      |
| Future Volume (veh/h)        | 476       | 16   | 506  | 1232 | 22   | 26   |      |
| Initial Q (Qb), veh          | 0         | 0    | 0    | 0    | 0    | 0    |      |
| Ped-Bike Adj(A_pbT)          |           | 1.00 | 9.   |      | 1.00 | 1.00 |      |
| Parking Bus, Adj             | 1.00      | 1.00 | 1.00 | 0:   | 1.00 | 1.00 |      |
| Work Zone On Approach        | 2         | į    | į    | 2    | 2    | į    |      |
| Adj Sat Flow, veh/h/In       | 1870      | 1870 | 1870 | 1870 | 1870 | 1870 |      |
| Adj Flow Rate, veh/h         | 929       | 51   | 242  | 1449 | 48   | 122  |      |
| Peak Hour Factor             | 0.76      | 0.76 | 0.85 | 0.85 | 0.46 | 0.46 |      |
| Percent Heavy Veh, %         | 2         | 2    | 2    | 2    | 2    | 2    |      |
| Cap, veh/h                   | 1274      | 43   | 602  | 1519 | 164  | 236  |      |
| Arrive On Green              | 0.71      | 0.71 | 90.0 | 0.81 | 0.09 | 60.0 |      |
| Sat Flow, veh/h              | 1799      | 09   | 1781 | 1870 | 1781 | 1585 |      |
| Grp Volume(v), veh/h         | 0         | 647  | 242  | 1449 | 48   | 122  |      |
| Grp Sat Flow(s),veh/h/ln     | 0         | 1859 | 1781 | 1870 | 1781 | 1585 |      |
| Q Serve(g_s), s              | 0.0       | 16.3 | 3.6  | 9.79 | 5.6  | 7.4  |      |
| Cycle Q Clear(g_c), s        | 0.0       | 16.3 | 3.6  | 9.79 | 5.6  | 7.4  |      |
| Prop In Lane                 |           | 0.03 | 1.00 |      | 1.00 | 1.00 |      |
| Lane Grp Cap(c), veh/h       | 0         | 1316 | 602  | 1519 | 164  | 236  |      |
| V/C Ratio(X)                 | 0.00      | 0.49 | 0.40 | 0.95 | 0.29 | 0.52 |      |
| Avail Cap(c_a), veh/h        | 0         | 1333 | 902  | 1645 | 306  | 362  |      |
| HCM Platoon Ratio            | 1.00      | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |      |
| Upstream Filter(I)           | 0.00      | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |      |
| Uniform Delay (d), s/veh     | 0.0       | 6.8  | 5.2  | 8.2  | 44.3 | 41.1 |      |
| Incr Delay (d2), s/veh       | 0.0       | 0.3  | 0.4  | 12.5 | 1.0  | 1.8  |      |
| Initial Q Delay(d3),s/veh    | 0.0       | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |      |
| %ile BackOfQ(50%),veh/In     | 0.0       | 2.0  | 0.8  | 17.5 | 1.2  | 2.9  |      |
| Unsig Movement Delay, s/veh  |           |      |      |      |      |      |      |
| LnGrp Delay(d),s/veh         | 0.0       | 7.1  | 2.6  | 20.6 | 45.3 | 42.8 |      |
| LnGrp LOS                    | ∢         | ⋖    | ∢    | O    |      |      |      |
| Approach Vol, veh/h          | 647       |      |      | 1691 | 170  |      |      |
| Approach Delay, s/veh        | 7.1       |      |      | 18.5 | 43.5 |      |      |
| Approach LOS                 | ∢         |      |      | മ    | Ω    |      |      |
| Timer - Assigned Phs         |           | 2    | 3    | 4    |      |      | 8    |
| Phs Duration (G+Y+Rc), s     |           | 14.7 | 10.9 | 79.1 |      |      | 90.0 |
| Change Period (Y+Rc), s      |           | 2.0  | 2.0  | 20   |      |      | 5.0  |
| Max Green Setting (Gmax), s  |           | 18.0 | 12.0 | 75.0 |      |      | 92.0 |
| Max Q Clear Time (g_c+I1), s |           | 9.4  | 2.6  | 18.3 |      |      | 9.69 |
| Green Ext Time (p_c), s      |           | 0.3  | 0.4  | 4.5  |      |      | 15.4 |
| Intersection Summary         |           |      |      |      |      |      |      |
| HCM 6th Ctrl Delav           |           |      | 17.3 |      |      |      |      |
| HCM 6th LOS                  |           |      | В    |      |      |      |      |
|                              |           |      |      |      |      |      |      |

5:00 pm Baseline

Synchro 10 Report Page 1

5:00 pm Baseline

HCM 6th TWSC 2: Future Homestead Road &

out Project PM 06/21/2022

| Tijaka Ot | & Hijaka St |
|-----------|-------------|
|-----------|-------------|

| a of constant          |        |       |        |      |        |       |  |
|------------------------|--------|-------|--------|------|--------|-------|--|
| Intersection           |        |       |        |      |        |       |  |
| Int Delay, s/veh       | 8.7    |       |        |      |        |       |  |
| Movement               | EBT    | EBR   | WBL    | WBT  | BE     | NBR   |  |
| Lane Configurations    | æ      |       |        | 4    | >      |       |  |
| Traffic Vol, veh/h     | 132    | 96    | 33     | 72   | 250    | 87    |  |
| Future Vol, veh/h      | 132    | 96    | 33     | 72   | 220    | 87    |  |
| Conflicting Peds, #/hr | 0      | 0     | 0      | 0    | 0      | 0     |  |
| Sign Control           | Free   | Free  | Free   | Free | Stop   | Stop  |  |
| RT Channelized         | ٠      | None  |        | None | ٠      | None  |  |
| Storage Length         |        | ٠     | ٠      | ٠    | 0      | 1     |  |
| Veh in Median Storage, | 0 #.   | ٠     | ٠      | 0    | 0      |       |  |
| Grade, %               |        | ٠     | ٠      | 0    | 0      |       |  |
| Peak Hour Factor       | 92     | 92    | 92     | 92   | 92     | 92    |  |
| Heavy Vehicles, %      | 7      | 7     | 7      | 7    | 7      | 2     |  |
| Mvmt Flow              | 143    | 104   | 36     | 74   | 272    | 95    |  |
|                        |        |       |        |      |        |       |  |
| Major/Minor N          | Major1 | _     | Major2 | Ν    | Minor1 |       |  |
| Conflicting Flow All   | 0      | 0     | 247    | 0    | 291    | 195   |  |
| Stage 1                | ٠      | ٠     | ٠      | ٠    | 195    |       |  |
| Stage 2                | ٠      | ٠     | ٠      | ٠    | 96     | 1     |  |
| Critical Hdwy          | ٠      | ٠     | 4.12   | •    | 6.42   | 6.22  |  |
| Critical Hdwy Stg 1    | ٠      | ٠     | ٠      | ٠    | 5.42   | •     |  |
| Critical Hdwy Stg 2    | ٠      | ٠     | •      | ٠    | 5.42   |       |  |
| Follow-up Hdwy         | ٠      | ٠     | 2.218  | •    | 3.518  | 3.318 |  |
| Pot Cap-1 Maneuver     | ٠      | ٠     | 1319   | ٠    | 90     | 846   |  |
| Stage 1                | ٠      | ٠     | ٠      | ٠    | 838    | •     |  |
| Stage 2                | ٠      | •     | •      | ı    | 928    |       |  |
| Platoon blocked, %     | ٠      | ٠     |        | ٠    |        |       |  |
| Mov Cap-1 Maneuver     | •      | ٠     | 1319   | ٠    | 089    | 846   |  |
| Mov Cap-2 Maneuver     | ٠      | ٠     | ٠      | ٠    | 089    | •     |  |
| Stage 1                | ٠      | ٠     | •      | ٠    | 838    |       |  |
| Stage 2                | ٠      | ٠     | ٠      | ٠    | 905    |       |  |
|                        |        |       |        |      |        |       |  |
| Approach               | 田      |       | WB     |      | R      |       |  |
| HCM Control Delay, s   | 0      |       | 4.7    |      | 15.2   |       |  |
| HCM LOS                |        |       |        |      | ပ      |       |  |
|                        |        |       |        |      |        |       |  |
| Minor Lane/Major Mvmt  |        | NBLn1 | EBT    | EBR  | WBL    | WBT   |  |
| Capacity (veh/h)       |        | 716   | ٠      | ٠    | 1319   | •     |  |
| HCM Lane V/C Ratio     |        | 0.512 | ٠      | •    | 0.027  | •     |  |
| HCM Control Delay (s)  |        | 15.2  |        |      | 7.8    | 0     |  |
| HCM Lane LOS           |        | ပ     | ٠      | ٠    | ⋖      | A     |  |
| HCM 95th %tile Q(veh)  |        | 2.9   | •      | •    | 0.1    | •     |  |
|                        |        |       |        |      |        |       |  |

Synchro 10 Report Page 1 5:00 pm Baseline

2041 Without Project PM 06/21/2022 HCM Signalized Intersection Capacity Analysis 10: Kamamalu St & Mamalahoa Hwy

|                                                          | Ť      | <i>&gt;</i> | <b>&gt;</b> | <b>↓</b> | •                    | •                         |       |
|----------------------------------------------------------|--------|-------------|-------------|----------|----------------------|---------------------------|-------|
| Movement                                                 | EBT    | EBR         | WBL         | WBT      | NBL                  | NBR                       |       |
| Lane Configurations                                      | ₩\$    |             |             | 44       | je.                  | R.                        |       |
| Traffic Volume (vph)                                     | 1370   | 203         | 21          | 762      | 329                  | 31                        |       |
| Future Volume (vph)                                      | 1370   | 203         | 21          | 762      | 329                  | 31                        |       |
| Ideal Flow (vphpl)                                       | 1900   | 1900        | 1900        | 1900     | 1900                 | 1900                      |       |
| Total Lost time (s)                                      | 2.0    |             |             | 2.0      | 2.0                  | 5.0                       |       |
| Lane Util, Factor                                        | 0.95   |             |             | 0.95     | 1.00                 | 1.00                      |       |
| Frpb, ped/bikes                                          | 1.00   |             |             | 1.00     | 1.00                 | 0.99                      |       |
| Flpb, ped/bikes                                          | 1.00   |             |             | 1.00     | 1.00                 | 1.00                      |       |
| 표                                                        | 0.98   |             |             | 1.00     | 1.00                 | 0.85                      |       |
| Flt Protected                                            | 1.00   |             |             | 1.00     | 0.95                 | 1.00                      |       |
| Satd. Flow (prot)                                        | 3460   |             |             | 3535     | 1770                 | 1562                      |       |
| Flt Permitted                                            | 1.00   |             |             | 0.75     | 0.95                 | 1.00                      |       |
| Satd. Flow (perm)                                        | 3460   |             |             | 2649     | 1770                 | 1562                      |       |
| Peak-hour factor, PHF                                    | 06.0   | 06.0        | 06.0        | 06.0     | 0.72                 | 0.72                      |       |
| Adj. Flow (vph)                                          | 1522   | 226         | 23          | 847      | 457                  | 43                        |       |
| RTOR Reduction (vph)                                     | 13     | 0           | 0           | 0        | 0                    | 13                        |       |
| Lane Group Flow (vph)                                    | 1735   | 0           | 0           | 870      | 457                  | 30                        |       |
| Confl. Peds. (#/hr)                                      |        | _           | -           |          |                      | 2                         |       |
| Confl. Bikes (#/hr)                                      |        | -           |             |          |                      |                           |       |
| Turn Type                                                | ¥      |             | pm+pt       | ΑN       | Prot                 | bm+ov                     |       |
| Protected Phases                                         | 4      |             | က           | ∞        |                      | က                         |       |
| Permitted Phases                                         |        |             | ∞           |          |                      | 2                         |       |
| Actuated Green, G (s)                                    | 46.2   |             |             | 54.1     | 24.0                 | 26.9                      |       |
| Effective Green, g (s)                                   | 46.2   |             |             | 54.1     | 24.0                 | 26.9                      |       |
| Actuated g/C Ratio                                       | 0.52   |             |             | 0.61     | 0.27                 | 0.31                      |       |
| Clearance Time (s)                                       | 2.0    |             |             | 2.0      | 2.0                  | 2.0                       |       |
| Vehicle Extension (s)                                    | 3.0    |             |             | 3.0      | 3.0                  | 3.0                       |       |
| Lane Grp Cap (vph)                                       | 1814   |             |             | 1655     | 482                  | 292                       |       |
| v/s Ratio Prot                                           | c0.50  |             |             | c0.02    | c0.26                | 0.00                      |       |
| v/s Ratio Perm                                           |        |             |             | 0.31     |                      | 0.02                      |       |
| v/c Ratio                                                | 96.0   |             |             | 0.53     | 0.95                 | 0.05                      |       |
| Uniform Delay, d1                                        | 20.0   |             |             | 9.7      | 31.4                 | 21.6                      |       |
| Progression Factor                                       | 1.00   |             |             | 1.00     | 1.00                 | 1.00                      |       |
| Incremental Delay, d2                                    | 12.3   |             |             | 0.3      | 28.0                 | 0.0                       |       |
| Delay (s)                                                | 32.3   |             |             | 10.0     | 59.5                 | 21.6                      |       |
| Level of Service                                         | ပ      |             |             | ∢        | ш                    | O                         |       |
| Approach Delay (s)                                       | 32.3   |             |             | 10.0     | 56.2                 |                           |       |
| Approach LOS                                             | ပ      |             |             | ∢        | ш                    |                           |       |
| Intersection Summary                                     |        |             |             |          |                      |                           |       |
| 10M 2000 O-14-1 D-1-1                                    |        |             | 6           |          | 0000                 | 9-1                       | (     |
| HCM 2000 Control Delay HCM 2000 Volume to Capacity ratio | ratio  |             | 29.9        | Ĭ        | 1000Z W.             | HCM ZUUU Level of Service | ی     |
| TOWN 2000 VOIGHIE IS CAPACIE                             | ) land |             | 3           | ć        | 1.1                  | 3                         | 0 1.7 |
| Actuated Cycle Length (s)                                | ,      |             | 70.08       | ನ ⊆      | Sum or lost time (s) | time (s)                  | 13.0  |
| mersection capacity offization                           | =      |             | 0.8.0       | 2        | ICO Level OI Service | Service                   | د     |
| Analysis Period (min)                                    |        |             | 2           |          |                      |                           |       |

c Critical Lane Group

5:00 pm Baseline

HCM 6th TWSC 20: KOKA Main Driveway & Hiiaka St

2041 Without Project PM 06/21/2022

HCM 6th TWSC 30: KOKA Eastern Driveway & Aniahua Alanui

2041 Without Project PM 06/21/2022

C Driveway & Hiiaka St

|              |                  | NBR         |                     | က                  | က                 | 0                      | Stop         | None           | ·              |                          | •        | 63               | 0                 | 2         |  |
|--------------|------------------|-------------|---------------------|--------------------|-------------------|------------------------|--------------|----------------|----------------|--------------------------|----------|------------------|-------------------|-----------|--|
|              |                  | NBL NBR     | ×                   | 7                  | 7                 | 0                      | Stop Stop    | ٠              | 0              | 0                        | 0        | 63               | 0                 | က         |  |
|              |                  |             | 4                   | 70                 | 20                | 0                      |              | None           | ٠              | 0                        | 0        | 7                | 0                 | 78        |  |
|              |                  | EBR WBL WBT |                     | 33                 | 33                | 0                      | Free Free    | ٠              | ٠              | ٠                        | ٠        | 7                | 0                 | 46        |  |
|              |                  | EBR         |                     | 7                  | 7                 | 0                      | Free Free    | None           | ٠              | ٠                        | ٠        | 2                | 0                 | က         |  |
|              | 1.6              | EBT         | ÷                   | 130                | 130               | 0                      | Free         | ٠              | •              | 0 #                      | 0        | 2                | 0                 | 186       |  |
| Intersection | Int Delay, s/veh | Movement    | Lane Configurations | Traffic Vol, veh/h | Future Vol, veh/h | Conflicting Peds, #/hr | Sign Control | RT Channelized | Storage Length | Veh in Median Storage, # | Grade, % | Peak Hour Factor | Heavy Vehicles, % | Mvmt Flow |  |

| _           | 8 188                |         | . 0     | 4 6.2         | 4                   | -                   | 5 3.3          | 8 859              | -       | - 0     |                    | 5 859              |                    | -       |         | m        | 7                    | ⋖       | L WBT                 |                  | ٠.                 | 0 4                   | A<br>A       |                       |
|-------------|----------------------|---------|---------|---------------|---------------------|---------------------|----------------|--------------------|---------|---------|--------------------|--------------------|--------------------|---------|---------|----------|----------------------|---------|-----------------------|------------------|--------------------|-----------------------|--------------|-----------------------|
| Minor1      | 0 308                | - 188   | - 120   | - 6.4         | - 5.4               | 5.4                 | 3.5            | - 688              | - 849   | - 910   |                    | - 665              | - 665              | - 849   | - 880   | R        | 9.7                  |         | EBR WBL               | - 1397           | - 0.033            | 7.7                   |              |                       |
| Major2      | 189                  | ٠       |         | 4.1           |                     | ٠                   | 2.2            | 1397               |         |         |                    | 1397               |                    | ٠       |         | WB       | 4.8                  |         |                       |                  |                    | ٠                     |              | ٠                     |
|             | 0 0                  |         |         |               |                     |                     |                |                    |         |         |                    |                    |                    |         |         | B        | 0                    |         | NBLn1 EBT             | 692              | 0.01               | 9.7                   | ⋖            | <b>c</b>              |
| Major1      | _                    |         |         |               | _                   | ~                   |                | /er                |         |         | .0                 | iver               | iver               |         |         |          | y, s                 |         | Mvmt                  |                  | qi                 | y (s)                 |              | (veh)                 |
| Major/Minor | Conflicting Flow All | Stage 1 | Stage 2 | Critical Hdwy | Critical Hdwy Stg 1 | Critical Hdwy Stg 2 | Follow-up Hdwy | Pot Cap-1 Maneuver | Stage 1 | Stage 2 | Platoon blocked, % | Mov Cap-1 Maneuver | Mov Cap-2 Maneuver | Stage 1 | Stage 2 | Approach | HCM Control Delay, s | HCM LOS | Minor Lane/Major Mvmt | Capacity (veh/h) | HCM Lane V/C Ratio | HCM Control Delay (s) | HCM Lane LOS | HCM 95th %tile O(yeh) |

| ווסוו ספון יפווכ עלייכון | > | - |                  |
|--------------------------|---|---|------------------|
|                          |   |   |                  |
|                          |   |   |                  |
|                          |   |   |                  |
|                          |   |   |                  |
| 5:00 pm Baseline         |   |   | Synchro 10 Repor |

|              |                  | NBR      |                     | 0                  | 0                 | 0                      | Stop         | None           |                |                          |          |                  | 5                 |                |        | 148                  |         |         | 6.22          |                     | ٠                   | 3.318          | 836                |         |         |                    | 868                |                    |         |         |          |                      |         | WBT                   |                  |                    | 0                     | ⋖            |
|--------------|------------------|----------|---------------------|--------------------|-------------------|------------------------|--------------|----------------|----------------|--------------------------|----------|------------------|-------------------|----------------|--------|----------------------|---------|---------|---------------|---------------------|---------------------|----------------|--------------------|---------|---------|--------------------|--------------------|--------------------|---------|---------|----------|----------------------|---------|-----------------------|------------------|--------------------|-----------------------|--------------|
|              |                  | NBL      | >                   | 0                  | 0                 | 0                      | Stop         |                | 0              | 0                        | 0        | 92               | 2                 | 0              | Minor1 | 252                  | 148     | 5       | 6.42          | 5.45                | 5.42                | 3.518          | 737                | 88      | 920     |                    | 719                | 719                | 879     | 88      | 8        | 0                    | ⋖       | WBL                   | 1433             | 0.024              | 9.7                   | ٥            |
|              |                  | WBT      | 4                   | 32                 | 32                | 0                      | Free         | None           | ٠              | 0                        | 0        | 6                | 7                 | 88             |        | 0                    | •       | ٠       | ٠             | ٠                   | ٠                   | ٠              | ٠                  | ٠       |         | ٠                  | ٠                  | ٠                  | •       | ٠       |          |                      |         | EBR                   |                  | ٠                  | ٠                     |              |
|              |                  | WBL      |                     | 33                 | 33                | _                      | Free         | ٠              | ٠              | ٠                        | ٠        | 97               | 7                 | <del>2</del> 2 | Major2 | 148                  | ٠       | ٠       | 4.12          | ٠                   | ٠                   | 2.218          | 1434               | ٠       |         |                    | 1433               | ٠                  | •       | ٠       | WB       | 3.7                  |         | EBT                   |                  | ٠                  | ٠                     |              |
|              |                  | EBR      |                     | 0                  | 0                 | _                      | Free         | None           | ٠              | ٠                        | ٠        | 32               | 7                 | 0              | 2      | 0                    | ٠       | ٠       | ٠             | ٠                   | •                   | ٠              | ٠                  | ٠       | ٠       | •                  | •                  | ٠                  |         | •       |          |                      |         | NBLn1                 |                  | ٠                  | 0                     | <            |
|              | 1.2              | EBT      | ÷                   | 140                | 140               | 0                      | Free         | ٠              |                | 0 #                      |          | 92               | 7                 | 14/            | Major1 | 0                    | ٠       | ٠       | •             | ٠                   | ٠                   | ٠              | ٠                  | •       | ٠       | ٠                  | ٠                  | •                  | •       | ٠       | 8        | 0                    |         | _                     |                  |                    |                       |              |
| Intersection | Int Delay, s/veh | Movement | Lane Configurations | Traffic Vol, veh/h | Future Vol, veh/h | Conflicting Peds, #/hr | Sign Control | RT Channelized | Storage Length | Veh in Median Storage, # | Grade, % | Peak Hour Factor | Heavy Vehicles, % | Mvmt How       |        | Conflicting Flow All | Stage 1 | Stage 2 | Critical Hdwy | Critical Hdwy Stg 1 | Critical Hdwy Stg 2 | Follow-up Hdwy | Pot Cap-1 Maneuver | Stage 1 | Stage 2 | Platoon blocked, % | Mov Cap-1 Maneuver | Mov Cap-2 Maneuver | Stage 1 | Stage 2 | Approach | HCM Control Delay, s | HCM LOS | Minor Lane/Major Mvmt | Capacity (veh/h) | HCM Lane V/C Ratio | HCM Control Delay (s) | HCM Lane LOS |

pm Baseline

Synchro 10 Report Page 4

5:00 pm Baseline

2041 Without Project PM

HCM 6th TWSC 40: Mana Rd & Mamalahoa Hwy

Intersection Int Delay, s/veh

2041 Without Project PM 06/21/2022

|                          |        |               | I        |        |        |       |     |
|--------------------------|--------|---------------|----------|--------|--------|-------|-----|
| Int Delay, s/veh         | 8.1    |               |          |        |        |       |     |
| Movement                 | EBT    | EBR           | WBL      | WBT    | NBL    | NBR   |     |
| Lane Configurations      | Ť,     |               | *        | *      | *      | R.    |     |
| Traffic Vol, veh/h       | 1304   | 53            | 7        | 554    | 20     | 122   |     |
| Future Vol, veh/h        | 1304   | 53            | 71       | 224    | 50     | 122   |     |
| Conflicting Peds, #/hr   | 0      | 0             | 0        | 0      | 0      | 0     |     |
| Sign Control             | Free   | Free          | Free     | Free   | Stop   | Stop  |     |
| RT Channelized           | ٠      | None          | ٠        | None   | ٠      | Stop  |     |
| Storage Length           | ٠      | ٠             | 09       | ٠      | 0      | 20    |     |
| Veh in Median Storage, # | 0 #    | ٠             | ٠        | 0      | 0      | ٠     |     |
| Grade, %                 |        | ٠             | ٠        | 0      | 0      | ٠     |     |
| Peak Hour Factor         | 95     | 92            | 11       | 11     | 83     | 83    |     |
| Heavy Vehicles, %        | 7      | 7             | 7        | 7      | 7      | 7     |     |
| Mvmt Flow                | 1373   | 33            | 92       | 719    | 24     | 147   |     |
| Major/Minor N            | Major1 | _             | Major2   | _      | Minor1 |       |     |
| low All                  | 0      | 0             | 1404     | 0      | 2292   | 1389  |     |
| Stage 1                  | •      | ٠             | ٠        | ٠      | 1389   | ٠     |     |
| Stage 2                  | ٠      | ٠             | ٠        | ٠      | 903    | •     |     |
| Critical Hdwy            | ٠      | ٠             | 4.12     | ٠      | 6.42   | 6.22  |     |
| Critical Hdwy Stg 1      | ٠      | ٠             | ٠        | ٠      | 5.45   | ٠     |     |
| Critical Hdwy Stg 2      |        | ٠             | •        | ٠      | 5.42   | ٠     |     |
| Follow-up Hdwy           | ٠      | ٠             | 2 2 1 8  | ٠      | 3.518  | 3.318 |     |
| Pot Cap-1 Maneuver       | ٠      | ٠             | 486      | ٠      | 43     | 175   |     |
| Stage 1                  | ٠      | •             | ٠        | ٠      | 231    | ٠     |     |
| Stage 2                  | •      | •             | •        | ٠      | 396    | ٠     |     |
| Platoon blocked, %       | ٠      | ٠             |          | ٠      |        |       |     |
| Mov Cap-1 Maneuver       | •      | •             | 486      | •      | 32     | 175   |     |
| Mov Cap-2 Maneuver       | ٠      | ٠             | ٠        | ٠      | 35     | •     |     |
| Stage 1                  | •      | •             | •        | ٠      | 231    | •     |     |
| Stage 2                  | ٠      | ٠             | ٠        | ٠      | 321    | ٠     |     |
|                          |        |               |          |        |        |       |     |
| Approach                 | B      |               | WB       |        | æ      |       |     |
| HCM Control Delay, s     | 0      |               | 1.6      |        | 105.2  |       |     |
| HCM LOS                  |        |               |          |        | ш      |       |     |
| Minor Lane/Major Mvmt    |        | NRI n1 NRI n2 | <u> </u> | Ħ<br>H | 8      | M.    | WBT |
| Canacity (veh/h)         |        | 3,5           | 175      |        | į .    | 486   |     |
| HCM I ane V/C Ratio      |        | 0 688         | 0.84     | ٠      | ľ      | 0 19  |     |
| HCM Control Delay (s)    |        | 229 5         | 848      | ٠      | ٠      | 141   |     |
| HCM Lane LOS             |        | ш             | <u>_</u> | •      | ŀ      | m     |     |
|                          |        |               |          |        |        |       |     |

| Lane Configurations      | +       |             |         | •    | K    | *     |     |
|--------------------------|---------|-------------|---------|------|------|-------|-----|
| 5 1 H                    | Ž.      |             | -       | -    |      | _     |     |
| I ramic vol, ven/n       | 1304    | 53          | 7       | 0    | 20   | 122   |     |
| Future Vol, veh/h        | 1304    | 23          | 7       | 0    | 20   | 122   |     |
| Conflicting Peds, #/hr   | 0       | 0           | 0       | 0    | 0    | 0     |     |
| Sign Control             | Free    | Free        | Free    | Free | Stop | Stop  |     |
| RT Channelized           |         | None        | ٠       | None | ٠    | Stop  |     |
| Storage Length           | ٠       | ٠           | 9       | ٠    | 0    | 20    |     |
| Veh in Median Storage, # |         | ٠           | ٠       | 0    | 0    | ٠     |     |
| Grade, %                 | 0       | ٠           | ٠       | 0    | 0    | ٠     |     |
| Peak Hour Factor         | 92      | 92          |         | 11   | 83   | 83    |     |
| Heavy Vehides, %         | 2       | 7           | 2       | 7    | 7    | 7     |     |
| Mvmt Flow                | 1373    | 33          | 95      | 0    | 74   | 147   |     |
|                          |         | -           | 9       | -    | 3    |       |     |
|                          | Major I | _           | Majorz  | 2    | MINO |       |     |
| Conflicting Flow All     | 0       | 0           | 1404    | 0    | 1573 | 1389  |     |
| Stage 1                  | •       | ٠           | ٠       | ٠    | 1389 | ٠     |     |
| Stage 2                  | ٠       | ٠           | ٠       | ٠    | 184  | ٠     |     |
| Critical Hdwy            |         | ٠           | 4.12    | ٠    | 6.42 | 6.22  |     |
| Critical Hdwy Stg 1      | ٠       | ٠           | ٠       | ٠    | 5.42 | ٠     |     |
| Critical Hdwy Stg 2      | ٠       | ٠           | ٠       | ٠    | 5.45 | ٠     |     |
| Follow-up Hdwy           | ٠       | ٠           | - 2.218 | ٠    |      | 3.318 |     |
| Pot Cap-1 Maneuver       | ٠       | ٠           | 486     | ٠    | 121  | 175   |     |
| Stage 1                  | ٠       | ٠           | ٠       | ٠    | 231  | ٠     |     |
| Stage 2                  | •       | ٠           | ٠       | ٠    | 848  | ٠     |     |
| Platoon blocked, %       | ٠       | ٠           |         | ٠    |      |       |     |
| Mov Cap-1 Maneuver       | ٠       | ٠           | 486     | ٠    | 86   | 175   |     |
| Mov Cap-2 Maneuver       | ٠       | ٠           | ٠       | ٠    | 88   | ٠     |     |
| Stage 1                  | •       | •           | •       | ٠    | 231  | i     |     |
| Stage 2                  | ٠       | ٠           | ٠       | ٠    | 889  | ٠     |     |
|                          |         |             |         |      |      |       |     |
| Approach                 | EB      |             | WB      |      | NB   |       |     |
| HCM Control Delay, s     | 0       |             | 14.1    |      | 80.4 |       |     |
| HCM LOS                  |         |             |         |      | щ    |       |     |
|                          |         |             |         |      |      |       |     |
| Minor Lane/Major Mvmt    |         | NBLn1 NBLn2 | VBLn2   | EBT  | EBR  | WBL   | WBT |
| Capacity (veh/h)         |         | 86          | 175     | ٠    | ٠    | 486   |     |
| HCM Lane V/C Ratio       |         | 0.246       | 0.84    | ٠    | ٠    | 0.19  |     |
| HCM Control Delay (s)    |         | 53.3        | 84.8    | ٠    | ٠    | 14.1  |     |
| HCM Lane LOS             |         | ш           | ш       | ٠    | ٠    | ш     |     |
| HCM 95th %tile O(veh)    | _       | 00          | 20      |      |      | 1     |     |

Synchro 10 Report Page 1

5:00 pm Baseline

Synchro 10 Report Page 5

5:00 pm Baseline

HCM 6th Signalized Intersection Summary 40: Mana Rd & Mamalahoa Hwy

2041 Without Project PM 06/22/2022

| are Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FBT EBR WBI WBT NBI   WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1304 29 71 554 1304 29 71 554 1304 29 71 554 1308 29 71 554 1300 1.00 1.00 1.00 1.00 1.00 1100 1.00 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| 1304 29 77 554 20 122 1304 29 77 554 20 122 1304 29 77 554 20 122 1304 120 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1304 29 71 554 1304 29 77 554 1304 29 77 554 1304 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1470 1870 1870 1870 1373 31 92 719 0.95 0.95 0.77 0.77 0 1822 2 2 2 2 2 2 2 2 2 1386 31 120 1549 0.07 0.76 0.76 0.03 0.83 0 0.76 0.76 0.03 0.83 0 0.00 1066 2.5 15.6 0.0 1066 2.5 15.6 0.0 1066 2.5 15.6 0.0 1066 2.5 15.6 0.0 1067 1.00 1.00 1.00 0.00 0.09 0.77 0.46 0 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| 1304 29 71 554 20 122  0 0 0 0 0 0 0  1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1304 29 71 554  0 0 0 0 0 0  100 1.00 1.00 1.00 1.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| No N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| 1870 1870 1870 1870 1870 1870 1870 1870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1870 1870 1870 1870 1870 1870 1870 1870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| 1373 31 92 779 24 147 0.05 0.05 0.77 0.77 0.83 0.83 2 2 2 2 2 2 2 1386 31 120 1549 183 216 0.07 0.10 0.10 0.10 1404 92 779 779 158 0.0 106.6 2.5 15.6 1.8 12.8 0.0 106.6 2.5 15.6 1.8 12.8 0.0 106.6 2.5 15.6 1.8 12.8 0.0 106.6 2.5 15.6 1.8 12.8 0.0 106.6 2.5 15.6 1.8 12.8 0.0 106.7 0.07 1.00 1.00 1.00 0.09 1.00 1.00 1.00 1.00 1.00 0.00 0.09 0.10 1.00 1.00 1.00 0.00 0.09 0.10 1.00 1.00 1.00 0.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1373 31 92 719 0.05 0.95 0.77 0.77 0.77 1386 31 120 1549 0.76 0.03 0.83 0.83 0.83 0.84 0.00 1404 92 719 0.0 1666 2.5 15.6 0.00 1066 2.5 15.6 0.00 0.99 0.77 0.46 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •     |
| 0.95 0.95 0.77 0.77 0.83 0.83 0.83 0.95 0.70 0.77 0.83 0.83 0.83 0.70 0.76 0.70 0.83 0.83 0.83 0.70 0.76 0.76 0.70 0.83 0.10 0.10 0.76 0.76 0.70 0.83 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.95 0.95 0.77 0.77 120 1386 31 120 1348 31 120 1348 31 120 1348 31 120 1348 31 120 1348 31 120 1348 31 120 1348 31 120 1348 31 120 1348 31 130 1348 31 130 130 130 130 130 130 130 130 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 186   31   12   12   2   2   2   2   2   2   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 138 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| 1386 31 120 1549 183 216  10 162 41 1781 1870 1781 1585  0 1404 92 779 24 147  0 1863 1781 1870 1781 1585  0 0 1866 2.5 15.6 1.8 12.8  0 0 1066 2.5 15.6 1.8 12.8  0 0 106 2.5 15.6 1.8 12.8  0 0 1417 120 1549 183 216  0 0 1417 120 1549 183 216  0 0 1417 120 1549 183 216  0 0 1417 141 158 20 249  1.00 1.00 1.00 1.00 1.00 1.00  0 0 10 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1386 31 120 1549<br>1076 0,76 0,76 0,83 083<br>1822 41 1781 1870 1<br>0 1404 92 719 1<br>0 1863 1781 1870 1<br>0 0 1066 2.5 15.6<br>0.0 1066 2.5 15.6<br>0.0 1066 2.5 15.6<br>0.0 1477 120 1549<br>0.0 0,99 0,77 0,46<br>0.0 1,00 1,00 1,00<br>0.0 1,00 1,00 1,00<br>0.0 16.9 49.8 3.5 4<br>0.0 16.9 49.8 3.5 4<br>0.0 216 211 0.2<br>0.0 16.9 49.8 3.5 4<br>0.0 386 70.9 3.7 4<br>A D E A A<br>1404 811<br>8 5.0 5.0 5.0 5.0<br>8 5.0 5.0 5.0<br>8 5.0 5.0 5.0<br>11), s 14.8 4.5 108.6<br>11), s 14.8 4.5 108.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| 0.76 0.76 0.03 0.83 0.10 0.10 0.1822 41 7781 1870 1781 1585 0.0 1083 1781 1870 1781 1585 0.0 108.6 2.5 15.6 1.8 12.8 0.0 106.6 2.5 15.6 1.8 12.8 0.0 106.6 2.5 15.6 1.8 12.8 0.0 1477 120 1549 183 216 0.0 0.0 0.10 1.00 1.00 1.00 1.00 0.0 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.76 0.76 0.03 0.83 1822 44 1781 1870 0 1404 92 179 0 0 1883 1781 1870 0.0 106.6 2.5 15.6 0.0 106.6 2.5 15.6 0.0 1477 120 1549 0.00 0.99 0.77 0.46 0.0 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.0 0.0 21.6 2.1 10.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21.6 2.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.9 49.8 3.5 0.0 0.0 0.0 0.0 0.0 0.0 1.00 1.00 0.0 0.0 1.00 0.0 0.0 16.9 49.8 3.5 0.0 0.0 1.00 0.0 0.0 16.9 49.8 3.5 0.0 0.0 1.00 0.0 0.0 16.9 49.8 3.5 0.0 0.0 1.00 0.0 0.0 16.9 49.8 3.5 0.0 0.0 1.00 0.0 0.0 16.9 49.8 3.5 0.0 0.0 1.00 0.0 0.0 16.9 49.8 3.5 0.0 0.0 1.00 0.0 0.0 0.0 1.00 0.0 0.0 1.00 0.0 0.0 0.0 1.00 0.0 0.0 0.0 1.00 0.0 0.0 0.0 1.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| 1822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1822 41 1781 1870 11<br>0 1404 92 719<br>0 1863 1781 1870 11<br>0.0 106.6 2.5 15.6<br>0.0 106.6 2.5 15.6<br>0.0 106.6 2.5 15.6<br>0.0 106.0 2.5 15.6<br>0.0 147 120 1549<br>0.00 0.99 0.77 0.46 C<br>0.10 1.00 1.00 1.00 1.00<br>0.0 1.00 1.00 1.00 1.00<br>0.0 1.6 9.8 3.5 E<br>0.0 21.6 21.1 0.2<br>0.0 21.6 21.1 0.2<br>0.0 38.6 70.9 3.7 E<br>A D E A B<br>11.3 E<br>2 3 4 811<br>8 5.0 5.0 5.0 5.0<br>10.1 S.W. 14.8 4.5 108.6<br>11.1 S. 14.8 4.5 108.6<br>11.1 S. 14.8 4.5 108.6<br>11.1 S. 14.8 4.5 108.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| 0 1404 92 719 24 147 0 1883 1781 1870 1781 1585 0.0 106.6 2.5 15.6 1.8 12.8 0.0 106.6 2.5 15.6 1.8 12.8 0.0 106.6 2.5 15.6 1.8 12.8 0.0 1417 120 15.49 183 216 0.0 0 1421 134 1588 220 249 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 1404 92 719 10 1863 1781 1870 1 10 1863 1781 1870 1 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| 0 1863 1781 1870 1781 1585 0.0 106.6 2.5 15.6 1.8 12.8 0.0 106.6 2.5 15.6 1.8 12.8 0.0 1477 120 15.49 183 216 0.0 1437 120 15.49 183 216 0.0 1437 121 144 1588 230 249 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.99 0.77 0.46 0.13 0.88 0.0 16.9 48.8 3.5 59.4 59.8 0.0 16.9 48.8 3.5 59.4 59.8 0.0 16.9 48.8 3.5 59.4 59.8 0.0 16.9 48.8 3.5 59.4 59.8 0.0 16.9 48.8 3.5 59.7 65.9 0.0 38.6 70.9 3.7 59.7 65.9 0.0 38.6 70.9 3.7 59.7 65.9 0.0 38.6 11.3 65.0 0.0 38.6 11.3 65.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 1863 1781 1870 17<br>0.0 106.6 2.5 15.6<br>0.0 106.6 2.5 15.6<br>0.0 106.6 2.5 15.6<br>0.0 1417 120 1549<br>0.0 1421 134 156<br>1.0 100 1.00 1.00 1.00<br>0.0 1.00 1.00 1.00 1.00<br>0.0 21.6 21.1 0.2<br>0.0 16.9 49.8 3.5 6<br>0.0 16.9 49.8 3.5 6<br>0.0 16.9 49.8 3.5 6<br>0.0 16.9 49.8 3.5 6<br>0.0 38.6 21.1 0.2<br>0.0 0.0 0.0<br>0.0 0.0 0.0<br>1.0 16.9 49.8 3.5 6<br>0.0 38.6 21.1 0.2<br>0.0 38.6 4.0 4.0<br>0.0 38.6 20.9 3.7 6<br>0.0 38.6 70.9                                                                                                                                                                                                                                                                                                                                                             |       |
| 0.0 106.6 2.5 15.6 1.8 12.8 12.8 10.0 106.6 2.5 15.6 1.8 12.8 12.8 12.8 10.0 1477 20.0 10.0 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0 106.6 2.5 15.6 0.0 106.6 2.5 15.6 0.0 106.6 2.5 15.6 0.0 0.02 0.02 1.00 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| Color   Colo   | Col. s 0.0 106.6 2.5 15.6 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| 0.02 1.00 1.00 1.00 1.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02 1.00 0.041 120 1549 0.00 0.039 0.77 1689 0.01 1421 134 1568 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| 0 1417 120 1549 183 216 0 0 0.099 0.77 0.46 0.13 0.68 0 0 0 0.100 1.00 1.00 1.00 1.00 0 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 1417 120 1549<br>0 0 0.09 0.77 0.46<br>0 0 1421 134 1688<br>1 100 1.00 1.00 1.00<br>0 0 0 16.9 49.8 3.5<br>0 0 16.9 49.8 3.5<br>0 0 0 0.0 0.0 0.0<br>1 0 0 0.0 0.0 0.0<br>1 0 0 0.0 0.0 0.0<br>1 0 0 0.0 0.0<br>1 0 0 0.0 0.0<br>1 0 0 0.0 0.0<br>1 1 1 3<br>1 1 |       |
| 0.00 0.99 0.77 0.46 0.13 0.68 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00 0.99 0.77 0.46 0.00 0.00 0.70 0.70 0.46 0.70 0.00 0.00 0.70 0.00 0.00 0.00 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 0 1421 134 1568 220 249<br>1.00 1.00 1.00 1.00 1.00 1.00<br>0.0 16.9 49.8 3.5 59.4 59.8<br>0.0 21.6 21.1 0.2 0.3 6.1<br>0.0 0.0 0.0 0.0 0.0 0.0<br>1.0 0.0 0.0 0.0 0.0 0.0<br>0.0 38.6 70.9 3.7 59.7 65.9<br>A D E A E E<br>1404 8 11.3 65.0<br>b S 5.0 5.0 5.0<br>xx, s 18.0 6.0 111.0<br>11.3 14.8 4.5 108.6<br>11.3 0.0 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 1421 134 1568 100 100 100 100 100 100 100 100 100 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100 100 100 100 100 100 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| 0.0 16.9 49.8 3.5 59.4 59.8 0.0 0.0 21.6 21.1 0.2 0.3 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0 16.9 49.8 3.5 5 6.0 21.6 21.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| 0.0 21.6 21.1 0.2 0.3 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8/veh 0.0 21.6 21.1 0.2 8/veh 0.0 38.6 70.9 3.7 5 4.0 4.0 4.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -     |
| siveh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sheh 0.0 0.0 0.0 0.0 0.0 sheh 0.0 38.6 70.9 3.7 5 4.0 4.0 4.0 4.0 38.6 70.9 3.7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| s/veh 0.0 43.5 4.0 4.0 0.8 5.4 5.4 5.4 6.0 0.8 5.4 5.4 6.0 0.0 38.6 70.9 3.7 59.7 65.9 5.6 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s/veh 0.0 43.5 4.0 4.0 s/veh 0.0 38.6 70.9 3.7 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| siveh 0.0 38.6 70.9 3.7 59.7 65.9 4.7 40.4 811 171 40.4 811 171 8.5 0.0 8.9 115.7 8.5 0.0 1.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5 0.0 2.1 8.5  | siveh 0.0 38.6 70.9 3.7 A D E A A B 11.3 B 11.3 B 20.0 9.9 116.7 S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.4   |
| 0.0 38.6 70.9 3.7 59.7 65.9  140.4 E 81 171 38.6 D B E  2 3 4  \$ 20.0 9.9 115.7  \$ 5.0 5.0 5.0  \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0 38.6 70.9 3.7 140.4 E 81.1 38.6 E 20.0 9.9 115.7 5.0 5.0 5.0 117.0 E 117.3 E 20.0 9.9 115.7 5.0 5.0 5.0 5.0 117.0 E 117.5 18.0 6.0 111.0 E 117.5 18.0 E 117.5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| A D E A E E  1404 811 171  38.6 81 171  2 3 4  2 3 4  5 20.0 9.9 115.7  5 5.0 5.0 5.0  11,5 14.8 4.5 108.6  11,5 31.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A D E A 1404 811 38.6 811 B B B 2 3 4 20.0 9.9 115.7 \$ 5.0 5.0 5.0 \$ \text{sys} 18.0 6.0 111.0 \$ \text{sys} 14.8 4.5 108.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 1404 811 171 38.6 11.3 65.0 D 2 3 4 E 20.0 9.9 115.7 s 5.0 5.0 5.0 5.0 x), s 18.0 6.0 111.0 H), s 0.1 0.0 2.1 31.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1404 811<br>38.6 11.3<br>D 2 3 4<br>2 20.0 9.9 115.7<br>5 5.0 5.0 5.0<br>xy,s 18.0 6.0 111.0<br>l),s 14.8 4.5 108.6<br>11),s 0.1 0.0 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| 38.6 11.3 65.0<br>2 3 4<br>2 2.0 9.9 115.7<br>5 5.0 5.0 5.0<br>1), s 14.8 4.5 108.6<br>11, s 0.1 0.0 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.6 11.3 D 2 3 4 s 20.0 9.9 116.7 s 5.0 5.0 5.0 5.0 5.0 111.0 xx,s 18.0 6.0 111.0 11),s 14.8 4.5 108.6 11,s 0.1 0.0 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| D B E 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s 20.0 9.9 115.7 s 50 50 50 111.0 lt), s 14.8 4.5 108.6 lt), s 17.3 s 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| s 20.0 9.9 115.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s 20.0 9.9<br>x, 50 50<br>x, 14.8 4.5<br>11), s 0.1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| s 200 9.9 115.7<br>xy, s 5.0 5.0 5.0<br>xy, s 18.0 6.0 111.0<br>11), s 14.8 4.5 108.6<br>31.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s 20.0 9.9<br>x, s 5.0 5.0<br>x, s 18.0 6.0<br>11), s 0.1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ω     |
| x), s 5.0 5.0 5.0 x), s 18.0 6.0 111.0 11.0 11.0 11.1 11.0 11.1 11.0 11.1 11.0 11.1 11.0 11.1 11.0 11.1 11.0 11.1 11.0 11.1 11.0 11.1 11.0 11.1 11.0 11.1 11.0 11.1 11.0 11.1 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11 | x <sub>1</sub> , s 5.0 5.0 5.0 1.1, s 18.0 6.0 6.0 1.1, s 14.8 4.5 4.5 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.1 0.0 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 125.5 |
| x), s 18.0 6.0 111.0 12<br>11), s 14.8 4.5 108.6 7<br>0.1 0.0 2.1 31.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (x), s 18.0 6.0 11), s 14.8 4.5 0.1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.0   |
| II), s 14.8 4.5 108.6<br>0.1 0.0 2.1<br>31.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11), s 14.8 4.5 0.1 0.0 3.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 122.0 |
| 0.1 0.0 2.1<br>31.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17.6  |
| ry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ıry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.3   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |

5:00 pm Baseline

Synchro 10 Report Page 1

#### Future With Project Intersection Analysis Worksheets Appendix E

HCM 6th TWSC 2: Future Homestead Road & Hiiaka St

| Major/Minor M         | Major1 | 2     | Major2 | 2       | Minor1      |      |  |
|-----------------------|--------|-------|--------|---------|-------------|------|--|
| Conflicting Flow All  | 0      | 0     | 270    | 0       | 638         | 195  |  |
| Stage 1               |        | ٠     |        | ٠       | 195         | •    |  |
| Stage 2               |        |       | ٠      | ٠       | 443         |      |  |
| Critical Hdwy         |        | ٠     | 4.12   | ٠       | 6.42        | 6.22 |  |
| Critical Hdwy Stg 1   |        |       | ٠      | ٠       | 5.42        |      |  |
| Critical Hdwy Stg 2   |        | ٠     | ٠      | ٠       | 5.42        |      |  |
| Follow-up Hdwy        |        | •     | 2.218  | ٠       | 3.518 3.318 | 318  |  |
| Pot Cap-1 Maneuver    |        | ٠     | 1293   | ٠       | 44          | 846  |  |
| Stage 1               |        | ٠     | ٠      | ٠       | 838         |      |  |
| Stage 2               |        | ٠     | ٠      | ٠       | 647         |      |  |
| Platoon blocked, %    |        | ٠     |        | ٠       |             |      |  |
| Mov Cap-1 Maneuver    |        | ٠     | 1293   | ٠       | 395         | 846  |  |
| Mov Cap-2 Maneuver    |        |       | ٠      | ٠       | 395         |      |  |
| Stage 1               |        | ٠     | ٠      | ٠       | 838         |      |  |
| Stage 2               |        |       | ٠      | ٠       | 579         |      |  |
|                       |        |       |        |         |             |      |  |
| Approach              | 出      |       | WB     |         | R           |      |  |
| HCM Control Delay, s  | 0      |       | 3      |         | 13.7        |      |  |
| HCM LOS               |        |       |        |         | Ф           |      |  |
|                       |        |       |        |         |             |      |  |
| Minor Lane/Major Mvmt |        | NBLn1 | EBT    | EBR WBL | WBL         | WBT  |  |
| Capacity (veh/h)      |        | 468   |        | •       | 1293        |      |  |
| HCM Lane V/C Ratio    | 0      | 0.111 | ٠      | ٠       | 0.093       |      |  |
| HCM Control Delay (s) |        | 13.7  |        | ٠       | 8.1         | 0    |  |
| HCM Lane LOS          |        | ω     | ٠      | ٠       | ⋖           | ¥    |  |
| HCM 95th %tile Q(veh) |        | 0.4   | •      | •       | 0.3         | •    |  |
|                       |        |       |        |         |             |      |  |

Synchro 10 Report Page 1 5:00 pm Baseline

HCM Signalized Intersection Capacity Analysis 10: Kamamalu St & Mamalahoa Hwy

2026 With Project AM 06/21/2022

|                                   | †         | ~    | <b>&gt;</b> | ţ        | •                    | •                         |      |
|-----------------------------------|-----------|------|-------------|----------|----------------------|---------------------------|------|
| Movement                          | EBT       | EBR  | WBL         | WBT      | NBL                  | NBR                       |      |
| Lane Configurations               | 44        |      |             | 44       | F                    | R.                        |      |
| Traffic Volume (vph)              | 452       | 259  | 31          | 974      | 219                  | 20                        |      |
| Future Volume (vph)               | 452       | 259  | 31          | 974      | 219                  | 20                        |      |
| Ideal Flow (vphpl)                | 1900      | 1900 | 1900        | 1900     | 1900                 | 1900                      |      |
| Total Lost time (s)               | 2.0       |      |             | 2.0      | 2.0                  | 2.0                       |      |
| Lane Util, Factor                 | 0.95      |      |             | 0.95     | 1.00                 | 1.00                      |      |
| Frpb, ped/bikes                   | 0.99      |      |             | 00.      | 1.00                 | 0.99                      |      |
| Flpb, ped/bikes                   | 1.00      |      |             | 1.00     | 1.00                 | 1.00                      |      |
| Frt                               | 0.95      |      |             | 1.00     | 1.00                 | 0.85                      |      |
| Flt Protected                     | 1.00      |      |             | 1.00     | 0.95                 | 1.00                      |      |
| Satd. Flow (prot)                 | 3318      |      |             | 3534     | 1770                 | 1565                      |      |
| Flt Permitted                     | 1.00      |      |             | 0.88     | 0.95                 | 1.00                      |      |
| Satd. Flow (perm)                 | 3318      |      |             | 3102     | 1770                 | 1565                      |      |
| Peak-hour factor, PHF             | 0.71      | 0.71 | 0.89        | 0.89     | 0.65                 | 0.65                      |      |
| Adj. Flow (vph)                   | 637       | 365  | 32          | 1094     | 337                  | 77                        |      |
| RTOR Reduction (vph)              | 126       | 0    | 0           | 0        | 0                    | 52                        |      |
| Lane Group Flow (vph)             | 928       | 0    | 0           | 1129     | 337                  | 25                        |      |
| Confl. Peds. (#/hr)               |           | 2    | 2           |          |                      | 2                         |      |
| Turn Type                         | ¥         |      | pm+pt       | ΑN       | Prot                 | no+md                     |      |
| Protected Phases                  | 4         |      | က           | 80       | 5                    | က                         |      |
| Permitted Phases                  |           |      | ∞           |          |                      | 5                         |      |
| Actuated Green, G (s)             | 20.9      |      |             | 28.5     | 14.5                 | 17.1                      |      |
| Effective Green, g (s)            | 20.9      |      |             | 28.5     | 14.5                 | 17.1                      |      |
| Actuated g/C Ratio                | 0.39      |      |             | 0.54     | 0.27                 | 0.32                      |      |
| Clearance Time (s)                | 2.0       |      |             | 2.0      | 2.0                  | 5.0                       |      |
| Vehicle Extension (s)             | 3.0       |      |             | 3.0      | 3.0                  | 3.0                       |      |
| Lane Grp Cap (vph)                | 1308      |      |             | 1689     | 484                  | 652                       |      |
| v/s Ratio Prot                    | 0.26      |      |             | c0.03    | c0.19                | 0.00                      |      |
| v/s Ratio Perm                    |           |      |             | c0.33    |                      | 0.01                      |      |
| v/c Ratio                         | 0.67      |      |             | 29.0     | 0.70                 | 0.04                      |      |
| Uniform Delay, d1                 | 13.2      |      |             | 8.8      | 17.3                 | 12.3                      |      |
| Progression Factor                | 1.00      |      |             | 1.00     | 1.00                 | 1.00                      |      |
| Incremental Delay, d2             | 13        |      |             | 1.0      | 4.3                  | 0.0                       |      |
| Delay (s)                         | 14.5      |      |             | 6.6      | 21.6                 | 12.3                      |      |
| Level of Service                  | മ         |      |             | ⋖        | ပ                    | Ф                         |      |
| Approach Delay (s)                | 14.5      |      |             | 6.6      | 19.9                 |                           |      |
| Approach LOS                      | ш         |      |             | ∢        | В                    |                           |      |
| Intersection Summary              |           |      |             |          |                      |                           |      |
| HCM 2000 Control Delay            |           |      | 13.3        | ¥        | 3M 2000              | HCM 2000 Level of Service | В    |
| HCM 2000 Volume to Capacity ratio | ity ratio |      | 92.0        |          |                      |                           |      |
| Actuated Cycle Length (s)         |           |      | 53.0        | S        | Sum of lost time (s) | time (s)                  | 15.0 |
| Intersection Capacity Utilization | ou        |      | %0.07       | <u>0</u> | U Level o            | ICU Level of Service      | O    |
| Analysis Period (min)             |           |      | 15          |          |                      |                           |      |
| c Critical Lane Group             |           |      |             |          |                      |                           |      |

5:00 pm Baseline

HCM 6th TWSC 20: KOKA Main Driveway & Hiiaka St

HCM 6th TWSC 30: KOKA Eastern Driveway & Aniahua Alanui

5.5 EBT EBR WBL WBT NBL NBR

Intersection Int Delay, s/veh

2026 With Project AM 06/21/2022

2026 With Project AM 06/21/2022

| Int Delay, s/veh         | 2      |      |        |      |        |      |  |
|--------------------------|--------|------|--------|------|--------|------|--|
| Movement                 | EBT    | EBR  | WBL    | WBT  | NBL    | NBR  |  |
| Lane Configurations      | æ      |      |        | ₹    | >      |      |  |
| Traffic Vol, veh/h       | 56     | 8    | 93     | 185  | 0      | 0    |  |
| Future Vol, veh/h        | 56     | 8    | 93     | 185  | 0      | 0    |  |
| Conflicting Peds, #/hr   | 0      | 7    | 7      | 0    | 0      | 0    |  |
| Sign Control             | Free   | Free | Free   | Free | Stop   | Stop |  |
| RT Channelized           | ٠      | None | ٠      | None |        | None |  |
| Storage Length           | •      | ٠    | ٠      | ٠    | 0      | ,    |  |
| Veh in Median Storage, # | 0 #    | ٠    | ٠      | 0    | 0      |      |  |
| Grade, %                 | 0      | ٠    | ٠      | 0    | 0      | ,    |  |
| Peak Hour Factor         | 29     | 29   | 29     | 26   | 9      | 09   |  |
| Heavy Vehicles, %        | 0      | 0    | 0      | 0    | 0      | 0    |  |
| Mvmt Flow                | 44     | 142  | 166    | 330  | 0      | 0    |  |
|                          |        |      |        |      |        |      |  |
| Major/Minor M            | Major1 | 2    | Major2 | 2    | Minor1 |      |  |
| Conflicting Flow All     | 0      | 0    | 188    | 0    | 779    | 117  |  |
| Stage 1                  | ٠      | ٠    | ٠      | ٠    | 117    |      |  |
| Stage 2                  | •      | ٠    | ٠      | ٠    | 995    | ,    |  |
| Critical Hdwy            | ٠      | ٠    | 4.1    | ٠    | 6.4    | 6.2  |  |
| Critical Hdwy Stg 1      | •      | ٠    | ٠      | ٠    | 5.4    | ,    |  |
| Critical Hdwy Stg 2      | ٠      | ٠    | ٠      | ٠    | 5.4    |      |  |
| Follow-up Hdwy           | ٠      | ٠    | 2.2    | ٠    | 3.5    | 3.3  |  |
| Pot Cap-1 Maneuver       | ٠      | ٠    | 1398   | ٠    | 367    | 941  |  |
| Stage 1                  | ٠      | ٠    | ٠      | ٠    | 913    | ı    |  |
| Stage 2                  | ٠      | ٠    | ٠      | ٠    | 217    |      |  |
| Platoon blocked, %       | •      | ٠    |        | ٠    |        |      |  |
| Mov Cap-1 Maneuver       | ٠      | ٠    | 1395   | ٠    | 313    | 939  |  |
| Mov Cap-2 Maneuver       | ٠      | ٠    | ٠      | ٠    | 313    | ı    |  |
| Stage 1                  | ٠      | ٠    | ٠      | ٠    | 911    |      |  |
| Stage 2                  | ٠      | ٠    | ٠      | ٠    | 442    |      |  |
|                          |        |      |        |      |        |      |  |
| Approach                 | 留      |      | WB     |      | BB.    |      |  |
| HCM Control Delay, s     | 0      |      | 2.7    |      | 0      |      |  |

|                       |          |   | ۰      |     | ٠      |     |  |
|-----------------------|----------|---|--------|-----|--------|-----|--|
| Major/Minor           | Major1   | Ž | Major2 | Σ   | Minor1 |     |  |
| Conflicting Flow All  | 0        | 0 | 188    | 0   | 779    | 117 |  |
| Stage 1               |          |   | ٠      | ٠   | 117    | •   |  |
| Stage 2               |          |   |        | ٠   | 662    |     |  |
| Critical Hdwy         |          |   | 4.1    | ٠   | 6.4    | 6.2 |  |
| Critical Hdwy Stg 1   |          |   |        | ٠   | 5.4    | •   |  |
| Critical Hdwy Stg 2   |          |   | ٠      | ٠   | 5.4    | •   |  |
| Follow-up Hdwy        |          |   | 2.2    | ٠   | 3.5    | 3.3 |  |
| Pot Cap-1 Maneuver    | ٠        |   | 1398   | ٠   | 367    | 941 |  |
| Stage 1               |          |   |        | ٠   | 913    | •   |  |
| Stage 2               |          |   | ٠      | ٠   | 217    | •   |  |
| Platoon blocked, %    |          |   |        | ٠   |        |     |  |
| Mov Cap-1 Maneuver    |          |   | 1395   | ٠   | 313    | 939 |  |
| Mov Cap-2 Maneuver    |          |   | ٠      | ٠   | 313    | ı   |  |
| Stage 1               |          |   | ٠      | ٠   | 911    |     |  |
| Stage 2               |          | ٠ | ٠      | ٠   | 442    | ı   |  |
|                       |          |   |        |     |        |     |  |
| Approach              | 8        |   | WB     |     | 8      |     |  |
| HCM Control Delay, s  | 0        |   | 2.7    |     | 0      |     |  |
| HCM LOS               |          |   |        |     | ∢      |     |  |
|                       |          |   |        |     |        |     |  |
| Minor Lane/Major Mvmt | nt NBLn1 |   | EBT    | EBR | WBL    | WBT |  |
| Capacity (veh/h)      |          |   | ٠      | ٠   | 1395   |     |  |
| HCM Lane V/C Ratio    |          | ٠ | ٠      | ٠   | 0.119  | ı   |  |
| HCM Control Delay (s) | _        | 0 | ٠      | ٠   | 7.9    | 0   |  |
| HCM Lane LOS          |          | ⋖ |        | •   | ⋖      | A   |  |
| HCM 95th %tile Q(veh) | <u> </u> |   | ٠      | ٠   | 0.4    |     |  |

|             | 43                   |         |        | 6.22          |                     |                     | 318            | 1027     |         |        |                    | 1027    |                    |         |        |          |                      |         | WBT                   |                  |                    | 0                     | ٧      |           |   |
|-------------|----------------------|---------|--------|---------------|---------------------|---------------------|----------------|----------|---------|--------|--------------------|---------|--------------------|---------|--------|----------|----------------------|---------|-----------------------|------------------|--------------------|-----------------------|--------|-----------|---|
| Minor1      | 472                  | 43      | 429    | 6.42          | 5.42                | 5.42                | 3.518 3.318    | 551 1027 | 979     | 657    |                    | 220     | 220                | 626     | 929    | R        | 14.9                 | В       | EBT EBR WBL           | - 1566           | - 0.001            | 7.3                   | 4      | 0         |   |
|             | 0                    | ٠       | •      | ٠             | ٠                   |                     | •              | ٠        | ٠       | ٠      | ٠                  | ٠       | ٠                  | ٠       | ٠      |          |                      |         | EBR                   |                  | ٠                  | •                     | ٠      |           |   |
| Major2      | 43                   | ٠       | ٠      | 4.12          | •                   | •                   | 2.218          | - 1566   | •       | ٠      |                    | 1566    | ٠                  | ٠       | ٠      | WB       | 0                    |         | EBT                   |                  | ٠                  | •                     | ٠      | •         |   |
|             | 0                    | ٠       | ٠      | ٠             | •                   | •                   | ٠              | ٠        | •       | ٠      | •                  | ٠       | ٠                  | ٠       | ٠      |          |                      |         | NBLn1                 | 638              | 0.433              | 14.9                  | В      | 2.2       |   |
| Major1      | 0                    | ٠       | •      | ٠             | ٠                   | •                   | ٠              | •        | ٠       | ٠      | ٠                  | ٠       | ٠                  | •       | ٠      | 8        | 0                    |         |                       |                  |                    |                       |        | _         |   |
|             | . All                |         |        |               | tg 1                | tg 2                | >              | euver    |         |        | %,'c               | neuver  | neuver             |         |        |          | elay, s              |         | finor Lane/Major Mvmt | =                | Ratio              | HCM Control Delay (s) | "      | Q(veh)    |   |
| fajor/Minor | Conflicting Flow All | Stage 1 | tage 2 | Critical Hdwy | Critical Hdwy Stg 1 | Critical Hdwy Stg 2 | Follow-up Hdwy | o-1 Man  | Stage 1 | tage 2 | Platoon blocked, % | ip-1 Ma | Mov Cap-2 Maneuver | Stage 1 | tage 2 | 당        | ICM Control Delay, s | SC      | ane/Ma                | Capacity (veh/h) | 1CM Lane V/C Ratio | ontro D               | ane LO | 5th %tile |   |
| Major/N     | Conflict             | O)      | (O)    | Critical      | Critical            | Critical            | Follow-        | Pot Cap  | 0)      | (O)    | Platoon            | Mov Ca  | Mov Ca             | 0)      | 0)     | Approach | HCM C                | HCM LOS | MinorL                | Capacit          | HCM L              | HCMC                  | HCM L  | HCM 9     |   |
|             |                      |         |        |               |                     |                     |                |          |         |        |                    |         |                    |         |        |          |                      |         |                       |                  |                    |                       |        |           |   |
|             |                      |         |        |               |                     |                     |                |          |         |        |                    |         |                    |         |        |          |                      |         |                       |                  |                    |                       |        |           | _ |
|             | 79 117               |         |        | .4 6.2        |                     |                     | .5 3.3         | 57 941   |         | - 11   |                    | 13 939  | 13 -               |         | 42 -   | B)       | 0                    | A       | 3L WBT                | - 36             | - 01               | 0 6:                  | А      | . 4       |   |

Synchro 10 Report Page 4 5:00 pm Baseline

Synchro 10 Report Page 3

5:00 pm Baseline

2026 With Project AM

HCM 6th TWSC 40: Mana Rd & Mamalahoa Hwy

2026 With Project AM 06/21/2022

9.5 Intersection Int Delay, s/veh

|               | 491                  | •       |         | 6.22          |                     |                     | 3.318          | 218                |         |         |                    | 218                |                    |         |         |  |          |                      |         |
|---------------|----------------------|---------|---------|---------------|---------------------|---------------------|----------------|--------------------|---------|---------|--------------------|--------------------|--------------------|---------|---------|--|----------|----------------------|---------|
| Minor1        | 0 2109               | - 491   | - 1618  | 6.42 6.22     | 5.42                | 5.42                | 3 518 3 318    | - 26               | - 615   | - 178   |                    | - ~ 43             | - ~ 43             | - 615   | - 135   |  | NB       | 96.4                 | ட       |
|               |                      |         | ľ       | ٠.            | ľ                   |                     |                |                    | ľ       |         | ·                  | ~                  |                    |         |         |  | 3        | _                    |         |
| Major2        | 201                  |         |         | 4.12          |                     |                     | 2.218          | . 1063             |         |         | _                  | . 1063             | _                  |         |         |  | WB       | 1.8                  |         |
|               | 0                    | ٠       | ľ       |               | ľ                   |                     | •              | ٠                  | ľ       |         | •                  | ٠                  | •                  |         | ·       |  |          |                      |         |
| Major1        | 0                    | •       |         |               |                     |                     | ٠              | ٠                  |         |         | ٠                  | •                  | ٠                  | •       | •       |  | EB       | 0                    |         |
| Major/Minor N | Conflicting Flow All | Stage 1 | Stage 2 | Critical Hdwy | Critical Hdwy Stg 1 | Critical Hdwy Stg 2 | Follow-up Hdwy | Pot Cap-1 Maneuver | Stage 1 | Stage 2 | Platoon blocked, % | Mov Cap-1 Maneuver | Mov Cap-2 Maneuver | Stage 1 | Stage 2 |  | Approach | HCM Control Delay, s | HCM LOS |

| WBT                                               |                  |                    | ٠                     |              | ٠                     |       |
|---------------------------------------------------|------------------|--------------------|-----------------------|--------------|-----------------------|-------|
| WBL                                               | 1063             | 0.241              | 9.5                   | ∢            | 6.0                   |       |
| EBR                                               |                  | ٠                  | •                     | ٠            | ٠                     |       |
| EBT                                               |                  | ٠                  | ٠                     | ٠            | ٠                     |       |
| JBLn2                                             | 43 578           | 0.222              | 13                    | Ф            | 0.8                   |       |
| NBLn1 N                                           | 43               | 1112 0222          | \$ 320.2 13           | ட            | 4.5                   |       |
| Minor Lane/Major Mvmt NBLn1 NBLn2 EBT EBR WBL WBT | Capacity (veh/h) | HCM Lane V/C Ratio | HCM Control Delay (s) | HCM Lane LOS | HCM 95th %tile Q(veh) | Notes |

~: Volume exceeds capacity 
\$. Delay exceeds 300s +: Computation Not Defined \*: All major volume in platoon

5:00 pm Baseline

Synchro 10 Report Page 5

| Intersection   Fig.   Note     | 1.440                  |        |        |        |      |        |       |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------|--------|--------|------|--------|-------|-----|
| S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Intersection           | ŗ      |        |        |      |        |       |     |
| FBT EBR WBI NBI NBI NBR   NBR   NBR   NBR   NBI NBI NBR      | int Delay, s/ven       | 0.0    |        |        |      |        |       |     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Movement               | EBT    | EBR    | WBL    | WBT  | NBL    | NBR   |     |
| 365   16   218   0   22   59     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lane Configurations    | Ť.     |        | Je.    | *    | *      | W.    |     |
| 365   16   218   0   22   59     Free Free Free Stop   0   0   0     None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Traffic Vol, veh/h     | 365    | 16     | 218    | 0    | 55     | 29    |     |
| Nome   Nome   Stop   Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Future Vol, veh/h      | 365    | 16     | 218    | 0    | 75     | 29    |     |
| Free   Free   Free   Stop   Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Conflicting Peds, #/hr | 0      | 0      | 0      | 0    | 0      | 0     |     |
| None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sign Control           | Free   | Free   |        | Free | Stop   | Stop  |     |
| 99c, # 0 - 60 - 0 50  76 76 85 85 46 46  2 2 2 2 2 2  2 2 2 2 2  2 2 2 2 2  2 2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2  2 2 2  | RT Channelized         | ٠      | None   |        | None | •      | Stop  |     |
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Storage Length         | ٠      | ٠      | 09     | ٠    | 0      | 20    |     |
| Najort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Veh in Median Storage, |        | ٠      | ٠      | 0    | 0      | ٠     |     |
| 76   76   85   85   46   46     480   21   256   0   48   128     480   21   256   0   48   128     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Grade, %               |        | ٠      | ٠      | 0    | 0      | ٠     |     |
| Agiort   Majort   Minort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Peak Hour Factor       | 9/     | 9/     | 82     | 82   | 46     | 46    |     |
| Majort   Major2   Minort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Heavy Vehicles, %      | 2      | 7      | 2      | 2    | 7      | 2     |     |
| Majort   Major2   Minort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mvmt Flow              | 480    | 21     | 256    | 0    | 48     | 128   |     |
| Major1   Major2   Minor1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |        |        |        |      |        |       |     |
| 0 0 0 501 0 1003 491   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | lajor1 |        | Major2 | ~    | linor1 |       |     |
| rr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conflicting Flow All   | 0      | 0      | 201    | 0    | 1003   | 491   |     |
| rr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stage 1                | ٠      | ٠      | •      | •    | 491    | ٠     |     |
| rr 4.12 - 6.42 6.22 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42 - 5.42     | Stage 2                | ٠      | ٠      | ٠      | ٠    | 512    | ٠     |     |
| rr 5.42 5.42 5.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Critical Hdwy          | ٠      | •      |        | ٠    | 6.42   | 6.22  |     |
| FIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Critical Hdwy Stg 1    | ٠      | ٠      | ٠      | ٠    | 5.42   | ٠     |     |
| FIT 2.218 - 3518 3.318  FIT 1063 - 268 578  FIT 1063 - 268 578  FIT 1063 - 203 578  FIT 1063 - 203  FIT 1063 - 203  FIT 1063  FIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Critical Hdwy Stg 2    | ٠      | ٠      | ۰      | ٠    | 5.45   | ٠     |     |
| Fig. 1063 - 268 578  er - 1063 - 263 578  er - 1063 - 203 578  er - 457 - 615  Fig. 1083 - 203 774  Fig. 1084 WB WB  wmt NBLn1 NBLn2 EBT EBR WBL WB  co 0.236 0.222 - 0.241  (s) 28.1 13 - 9.5  er) - 6.95  er) - 6.96  er) - 6.97  er) -  | Follow-up Hdwy         | ٠      | ٠      | 2.218  |      | 3.518  | 3.318 |     |
| er - 1063 - 203 578 er - 1063 - 203 578 er - 1064 - 203 578 er - 1065 - 203 - 204 er - 1063 - 203 578 er - 1063 - 203 er - 1063 - 203 er - 1063 er | Pot Cap-1 Maneuver     | •      | •      | 1063   | •    | 268    | 218   |     |
| er 1063 - 203 578 er 1063 - 203 578 er 203 - 203 678 er 1063 - 203 78 er 1063 - 203 678 er 1063 - 203 ev 1063 ev 1063 ev 1063 ev 602 ev 1063 ev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stage 1                | ٠      | ٠      | ٠      | ٠    | 615    | ٠     |     |
| er 1063 - 203 578 er 1063 - 203 578 er 457 - 203 er 615 - 615 er 457 - 615 er 615 - 615                                                                                                                                       | Stage 2                | •      | •      | •      | •    | 602    | •     |     |
| EB WB NB WB WB WB WB C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Platoon blocked, %     | ٠      | ٠      |        | ٠    |        |       |     |
| EB WB NB  NBLn1NBLn2 EBT EBR WBL WB  203 578 - 1063  0.236 0.222 - 0.241  28.1 13 - 9.5  0.9 0.8 - 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mov Cap-1 Maneuver     | •      | •      |        | •    | 203    | 218   |     |
| EB WB NB  0 9.5 17.1  C C  C C  C C  C C  C C  C C  C C  C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mov Cap-2 Maneuver     | ٠      | •      | ٠      | ٠    | 203    | ٠     |     |
| EB WB NB  0 9.5 17.1  C C  C C  NBLn1 NBLn2 EBT EBR WBL WB  203 578 - 1063  0.236 0.222 - 0.241  28.1 13 - 9.5  D B - 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stage 1                | •      | •      | •      | •    | 615    | •     |     |
| NBLn1 NBLn2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stage 2                | ٠      | ٠      | ٠      | ٠    | 457    | ٠     |     |
| EB   WB   NB   NB   NB   NB   NB   NB   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |        |        |        |      |        |       |     |
| 0 9.5 17.1 C C C C NBLn1NBLn2 EBT EBR WBL WB 203 578 - 1063 0.236 0.222 - 0.241 28.1 13 - 9.5 D B - 9.5 0.9 0.8 - 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Approach               | 8      |        | WB     |      | B      |       |     |
| C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HCM Control Delay, s   | 0      |        | 9.5    |      | 17.1   |       |     |
| NBLr1 NBLn2 EBT EBR WBL WB<br>203 578 - 1063<br>0.256 0.222 - 0.241<br>28.1 13 - 9.5<br>D B - A<br>0.9 0.8 - 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HCM LOS                |        |        |        |      | ပ      |       |     |
| NBLn1 NBLn2 EBT EBR WBL WB' 203 578 - 1063 0.236 0.222 - 0.241 28.1 13 - 24.1 D B - A 0.9 0.8 - 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |        |        |        |      |        |       |     |
| 203 578 - 1063<br>0.256 0.222 - 0.241<br>28.1 13 - 9.5<br>D B - A<br>0.9 0.8 - 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Minor Lane/Major Mvmt  |        | IBLn11 | VBLn2  | EBT  | EBR    | WBL   | WBT |
| 0.236 0.222 - 0.241<br>28.1 13 - 9.5<br>D B - A<br>0.9 0.8 - 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Capacity (veh/h)       |        | 203    | 578    | ۰    |        | 1063  |     |
| 28.1 13 - 9.5<br>D B - A<br>0.9 0.8 - 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HCM Lane V/C Ratio     |        | 0.236  | 0.222  |      | ٠      | 0.241 | •   |
| D B A 0.9 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HCM Control Delay (s)  |        | 28.1   | 13     | •    | ٠      | 9.5   |     |
| 8:0 6:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HCM Lane LOS           |        | □      | ω      | ٠    | ٠      | ⋖     | •   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HCM 95th %tile Q(veh)  |        | 0.0    | 0.8    | ٠    | ٠      | 0.9   | •   |

5:00 pm Baseline

### HCM 6th Signalized Intersection Summary 40: Mana Rd & Mamalahoa Hwy

2026 With Project AM 06/22/2022

|   |          |                     |                        |                       |                     |                     |                  |                       |                        |                      |                  |                      |            |                 |                 |                      |                          |                 |                       |              |                        |              |                       |                   |                    |                          |                        |                           |                          |                              |                      |           |                     |                       |              | $\infty$             | 39.4                     | 5.0                     | 52.0                        | 24.2                         | 10.3                    |                      |                    |             |
|---|----------|---------------------|------------------------|-----------------------|---------------------|---------------------|------------------|-----------------------|------------------------|----------------------|------------------|----------------------|------------|-----------------|-----------------|----------------------|--------------------------|-----------------|-----------------------|--------------|------------------------|--------------|-----------------------|-------------------|--------------------|--------------------------|------------------------|---------------------------|--------------------------|------------------------------|----------------------|-----------|---------------------|-----------------------|--------------|----------------------|--------------------------|-------------------------|-----------------------------|------------------------------|-------------------------|----------------------|--------------------|-------------|
| • | NBR      | R.                  | - 23                   | 29                    | 0                   | 1.00                | 1.00             |                       | 1870                   | 128                  | 0.46             | 2                    | 339        | 0.11            | 1585            | 128                  | 1585                     | 3.4             | 3.4                   | 1.00         | 339                    | 0.38         | 743                   | 1.00              | 1.00               | 16.7                     | 0.7                    | 0.0                       | 1.1                      |                              | 17.4                 | m         |                     |                       |              |                      |                          |                         |                             |                              |                         |                      |                    |             |
| • | NBL      | r                   | . 22                   | 22                    | 0                   | 1.00                | 1.00             | S                     | 1870                   | 48                   | 0.46             | 2                    | 190        | 0.11            | 1781            | 48                   | 1781                     | 1.2             | 1.2                   | 1.00         | 190                    | 0.25         | 645                   | 1.00              | 1.00               | 20.4                     | 0.7                    | 0.0                       | 0.5                      |                              | 21.1                 | ပ         | 176                 | 18.4                  | В            |                      |                          |                         |                             |                              |                         |                      |                    |             |
| ļ | WBT      | *                   | 940                    | 940                   | 0                   |                     | 1.00             | 2                     | 1870                   | 1106                 | 0.85             | 7                    | 1294       | 69.0            | 1870            | 1106                 | 1870                     | 22.2            | 22.2                  |              | 1294                   | 0.85         | 1956                  | 1.00              | 1.00               | 5.8                      | 2.5                    | 0.0                       | 2.8                      |                              | 8.3                  | ⋖         | 1362                | 6.7                   | ∢            | 4                    | 29.1                     | 2.0                     | 35.0                        | 11.5                         | 5.9                     |                      |                    |             |
| - | WBL      | K                   | 218                    | 218                   | 0                   | 1.00                | 1.00             |                       | 1870                   | 256                  | 0.85             | 7                    | 299        | 0.11            | 1781            | 256                  | 1781                     | 3.1             | 3.1                   | 1.00         | 288                    | 0.43         | 839                   | 1.00              | 1.00               | 5.8                      | 0.5                    | 0.0                       | 0.5                      |                              | 6.3                  | ⋖         |                     |                       |              | က                    | 10.3                     | 2.0                     | 12.0                        | 5.1                          | 0.4                     |                      | 9.2                | ⋖           |
| - | EBR      |                     | 16                     | 16                    | 0                   | 1.00                | 1.00             |                       | 1870                   | 21                   | 0.76             | 7                    | 38         | 0.48            | 78              | 501                  | 1856                     | 9.5             | 9.5                   | 0.04         | 006                    | 0.56         | 1307                  | 1.00              | 1.00               | 9.0                      | 0.5                    | 0.0                       | 5.6                      |                              | 9.6                  | ∢         |                     |                       |              | 2                    | 10.3                     | 2.0                     | 18.0                        | 5.4                          | 0.4                     |                      |                    |             |
| † | EBT      | 2,                  | 365                    | 365                   | 0                   |                     | 1.00             | S                     | 1870                   | 480                  | 92.0             | 2                    | 862        | 0.48            | 1779            | 0                    | 0                        | 0.0             | 0.0                   |              | 0                      | 0.00         | 0                     | 1.00              | 0.00               | 0.0                      | 0.0                    | 0.0                       | 0.0                      |                              | 0.0                  | ⋖         | 201                 | 9.6                   | ⋖            |                      |                          |                         |                             |                              |                         |                      |                    |             |
|   | Movement | Lane Configurations | Traffic Volume (veh/h) | Future Volume (veh/h) | Initial Q (Qb), veh | Ped-Bike Adj(A_pbT) | Parking Bus, Adj | Work Zone On Approach | Adj Sat Flow, veh/h/In | Adj Flow Rate, veh/h | Peak Hour Factor | Percent Heavy Veh, % | Cap, veh/h | Arrive On Green | Sat Flow, veh/h | Grp Volume(v), veh/h | Grp Sat Flow(s),veh/h/ln | Q Serve(g_s), s | Cycle Q Clear(g_c), s | Prop In Lane | Lane Grp Cap(c), veh/h | V/C Ratio(X) | Avail Cap(c_a), veh/h | HCM Platoon Ratio | Upstream Filter(I) | Uniform Delay (d), s/veh | Incr Delay (d2), s/veh | Initial Q Delay(d3),s/veh | %ile BackOfQ(50%),veh/ln | Unsig. Movement Delay, s/veh | LnGrp Delay(d),s/veh | LnGrp LOS | Approach Vol, veh/h | Approach Delay, s/veh | Approach LOS | Timer - Assigned Phs | Phs Duration (G+Y+Rc), s | Change Period (Y+Rc), s | Max Green Setting (Gmax), s | Max Q Clear Time (g_c+I1), s | Green Ext Time (p_c), s | Intersection Summary | HCM 6th Ctrl Delay | HCM 6th LOS |

Synchro 10 Report Page 1 5:00 pm Baseline

HCM 6th TWSC 2: Future Homestead Road & Hiiaka St

2026 With Project PM 06/21/2022

| nt Dolov skych                          | 0 5    |       |         |      |        |       |  |
|-----------------------------------------|--------|-------|---------|------|--------|-------|--|
| III Delay, s/veri                       | e.     |       |         |      |        |       |  |
| Movement                                | EBT    | EBR   | EBR WBL | WBT  | NBL    | NBR   |  |
| -ane Configurations                     | ÷      |       |         | 4    | À      |       |  |
| raffic Vol, veh/h                       | 148    | 103   | 37      | 56   | 260    | 103   |  |
| Future Vol, veh/h                       | 148    | 103   | 37      | 56   | 260    | 103   |  |
| Conflicting Peds, #/hr                  | 0      | 0     | 0       | 0    | 0      | 0     |  |
| Sign Control                            | Free   | Free  | Free    | Free | Stop   | Stop  |  |
| RT Channelized                          |        | None  | ٠       | None |        | None  |  |
| Storage Length                          | ٠      | •     | ٠       | ٠    | 0      | ٠     |  |
| Veh in Median Storage, #                |        | ٠     | ٠       | 0    | 0      | ٠     |  |
| Grade, %                                | 0      | •     | ٠       | 0    | 0      | ٠     |  |
| Peak Hour Factor                        | 95     | 92    | 92      | 92   | 92     | 92    |  |
| Heavy Vehicles, %                       | 7      | 7     | 7       | 7    | 7      | 7     |  |
| Mvmt Flow                               | 161    | 112   | 40      | 78   | 283    | 112   |  |
|                                         |        |       |         |      |        |       |  |
| Major/Minor M                           | Major1 | _     | Major2  | 2    | Minor1 |       |  |
| Conflicting Flow All                    | 0      | 0     | 273     | 0    | 325    | 217   |  |
| Stage 1                                 | ٠      | ٠     | ٠       | ٠    | 217    | ٠     |  |
| Stage 2                                 | ٠      | ٠     | ٠       | ٠    | 108    | ٠     |  |
| Critical Hdwy                           | ٠      | ٠     | 4.12    | ٠    | 6.42   | 6.22  |  |
| Critical Hdwy Stg 1                     | ٠      | •     | ٠       | ٠    | 5.42   | ٠     |  |
| Critical Hdwy Stg 2                     | ٠      | ٠     | ٠       | ٠    | 5.42   | ٠     |  |
| Follow-up Hdwy                          | ٠      | ٠     | - 2.218 | ٠    | 3.518  | 3.318 |  |
| Pot Cap-1 Maneuver                      | ٠      | ٠     | 1290    | ٠    | 699    | 823   |  |
| Stage 1                                 | •      | ٠     | ٠       | ٠    | 819    | ٠     |  |
| Stage 2                                 | ٠      | ٠     | ٠       | ٠    | 916    | ٠     |  |
| Platoon blocked, %                      | ٠      | ٠     |         | ٠    |        |       |  |
| Mov Cap-1 Maneuver                      | ٠      | ٠     | 1290    | ٠    | 648    | 823   |  |
| Mov Cap-2 Maneuver                      | ٠      | ٠     | ٠       | ٠    | 648    | ٠     |  |
| Stage 1                                 | ٠      | ٠     | ٠       | ٠    | 819    | ٠     |  |
| Stage 2                                 | ٠      | ٠     | ٠       | ٠    | 887    | ٠     |  |
|                                         |        |       |         |      |        |       |  |
| Approach                                | B      |       | WB      |      | æ      |       |  |
| HCM Control Delay, s                    | 0      |       | 4.6     |      | 17     |       |  |
| HCM LOS                                 |        |       |         |      | ပ      |       |  |
|                                         |        |       |         |      |        |       |  |
| Minor Lane/Major Mvmt                   | Z      | NBLn1 | EBT     | EBR  | WBL    | WBT   |  |
| Capacity (veh/h)                        |        | 069   | ٠       | ٠    | 1290   | •     |  |
| HCM Lane V/C Ratio                      |        | 0.572 | ٠       | ٠    | 0.031  | ٠     |  |
| HCM Control Delay (s)                   |        | 17    | ٠       | ٠    | 7.9    | 0     |  |
| HCM Lane LOS                            |        | ပ     | ٠       | ٠    | ⋖      | ⋖     |  |
| ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) |        |       |         |      |        |       |  |

Synchro 10 Report Page 1 5:00 pm Baseline

# HCM Signalized Intersection Capacity Analysis 10: Kamamalu St & Mamalahoa Hwy

2026 With Project PM 06/21/2022

|                                          | †          | <i>&gt;</i> | <b>&gt;</b> | ţ     | •                    | •                         |      |
|------------------------------------------|------------|-------------|-------------|-------|----------------------|---------------------------|------|
| Aovement                                 | EB         | EBR         | WBL         | WBT   | BE                   | NBR                       |      |
| ane Configurations                       | ₩\$        |             |             | ₹₩    | ×                    | R.                        |      |
| raffic Volume (vph)                      | 1052       | 210         | 21          | 579   | 339                  | 31                        |      |
| -uture Volume (vph)                      | 1052       | 210         | 21          | 579   | 339                  | 31                        |      |
| deal Flow (vphpl)                        | 1900       | 1900        | 1900        | 1900  | 1900                 | 1900                      |      |
| otal Lost time (s)                       | 2.0        |             |             | 2.0   | 2.0                  | 5.0                       |      |
| ane Util. Factor                         | 0.95       |             |             | 0.95  | 1.00                 | 1.00                      |      |
| rpb, ped/bikes                           | 1.00       |             |             | 1.00  | 1.00                 | 0.99                      |      |
| -Ipb, ped/bikes                          | 1.0        |             |             | 1.00  | 1.00                 | 1.00                      |      |
| Į.                                       | 0.98       |             |             | 1.00  | 1.00                 | 0.85                      |      |
| It Protected                             | 1.00       |             |             | 1.00  | 0.95                 | 1.00                      |      |
| Satd. Flow (prot)                        | 3438       |             |             | 3533  | 1770                 | 1564                      |      |
| It Permitted                             | 1.00       |             |             | 0.81  | 0.95                 | 1.00                      |      |
| Satd. Flow (perm)                        | 3438       |             |             | 2851  | 1770                 | 1564                      |      |
| Peak-hour factor, PHF                    | 06:0       | 06.0        | 06.0        | 06.0  | 0.72                 | 0.72                      |      |
| Adj. Flow (vph)                          | 1169       | 233         | 23          | 643   | 471                  | 43                        |      |
| RTOR Reduction (vph)                     | 23         | 0           | 0           | 0     | 0                    | 18                        |      |
| ane Group Flow (vph)                     | 1379       | 0           | 0           | 999   | 471                  | 25                        |      |
| Confl. Peds. (#/hr)                      |            | _           | -           |       |                      | 2                         |      |
| Confl. Bikes (#/hr)                      |            | 1           |             |       |                      |                           |      |
| um Type                                  | ΑN         |             | pm+pt       | ΑN    | Prot                 | hm+ov                     |      |
| Protected Phases                         | 4          |             | က           | ∞     | 2                    | က                         |      |
| Permitted Phases                         |            |             | 80          |       |                      | 2                         |      |
| Actuated Green, G (s)                    | 29.6       |             |             | 37.4  | 19.6                 | 22.4                      |      |
| Effective Green, g (s)                   | 29.6       |             |             | 37.4  | 19.6                 | 22.4                      |      |
| Actuated g/C Ratio                       | 0.44       |             |             | 0.56  | 0.29                 | 0.33                      |      |
| Slearance Time (s)                       | 2.0        |             |             | 2.0   | 2.0                  | 2.0                       |      |
| /ehicle Extension (s)                    | 3.0        |             |             | 3.0   | 3.0                  | 3.0                       |      |
| ane Grp Cap (vph)                        | 1518       |             |             | 1619  | 217                  | 629                       |      |
| /s Ratio Prot                            | c0.40      |             |             | c0.02 | c0.27                | 0.00                      |      |
| //s Ratio Perm                           |            |             |             | 0.21  |                      | 0.01                      |      |
| /c Ratio                                 | 0.91       |             |             | 0.41  | 0.91                 | 0.04                      |      |
| Jniform Delay, d1                        | 17.4       |             |             | 8.5   | 22.9                 | 15.0                      |      |
| Progression Factor                       | 1.00       |             |             | 1.00  | 9.                   | 1.00                      |      |
| ncremental Delay, d2                     | 8.2        |             |             | 0.2   | 20.3                 | 0.0                       |      |
| Delay (s)                                | 25.6       |             |             | 8.7   | 43.1                 | 15.1                      |      |
| evel of Service                          | ပ          |             |             | ∢     | □                    | Ф                         |      |
| Approach Delay (s)                       | 25.6       |             |             | 8.7   | 40.8                 |                           |      |
| Approach LOS                             | ပ          |             |             | ∢     | Ω                    |                           |      |
| ntersection Summary                      |            |             |             |       |                      |                           |      |
| HCM 2000 Control Delay                   |            |             | 24.3        | <br>  | :M 2000              | HCM 2000 Level of Service | U    |
| <b>ICM 2000 Volume to Capacity ratio</b> | city ratio |             | 0.00        |       |                      |                           |      |
| ctuated Cycle Length (s)                 |            |             | 0.79        | Su    | Sum of lost time (s) | time (s)                  | 15.0 |
| ntersection Capacity Utilization         | tion       |             | 62.9%       | ☲     | J Level o            | ICU Level of Service      | В    |
| Analysis Period (min)                    |            |             | 15          |       |                      |                           |      |
| Critical Long Croup                      |            |             |             |       |                      |                           |      |

c Critical Lane Group

5:00 pm Baseline

Synchro 10 Report Page 2

HCM 6th TWSC 20: KOKA Main Driveway & Hiiaka St

2026 With Project PM 06/21/2022

| Int Delay, s/veh         | 1.5    |       |        |      |        |      |  |
|--------------------------|--------|-------|--------|------|--------|------|--|
| Movement                 | EBT    | EBR   | WBL    | WBT  | B      | NBR  |  |
| Lane Configurations      | ÷      |       |        | ₩    | >      |      |  |
| raffic Vol, veh/h        | 146    | 7     | 33     | 54   | 7      | က    |  |
| Future Vol, veh/h        | 146    | 7     | 33     | 54   | 7      | က    |  |
| Conflicting Peds, #/hr   | 0      | 0     | 0      | 0    | 0      | 0    |  |
| Sign Control             | Free   | Free  | Free   | Free | Stop   | Stop |  |
| RT Channelized           | ٠      | None  | •      | None | ٠      | None |  |
| Storage Length           | ٠      | ٠     | ٠      |      | 0      |      |  |
| Veh in Median Storage, # | 0 #    | •     |        | 0    | 0      |      |  |
| Grade, %                 | 0      | ٠     | •      |      | 0      | ٠    |  |
| Peak Hour Factor         | 2      | 2     | 71     | 71   | 63     | 63   |  |
| Heavy Vehicles, %        | 0      | 0     | 0      |      | 0      | 0    |  |
| Mvmt Flow                | 209    | က     | 46     | 34   | က      | 2    |  |
|                          |        |       |        |      |        |      |  |
| Major/Minor N            | Major1 | _     | Major2 |      | Minor1 |      |  |
| Conflicting Flow All     | 0      | 0     | 212    | 0    | 337    | 211  |  |
| Stage 1                  | ٠      | ٠     | •      | ٠    | 211    | ٠    |  |
| Stage 2                  | ٠      | ٠     | ٠      | ٠    | 126    | ٠    |  |
| Critical Hdwy            | •      | ٠     | 4.1    | ٠    | 6.4    | 6.2  |  |
| Critical Hdwy Stg 1      | ٠      | ٠     | ٠      | ٠    | 5.4    | ٠    |  |
| Critical Hdwy Stg 2      | ٠      | •     |        | •    | 5.4    | ٠    |  |
| Follow-up Hdwy           | ٠      | ٠     | 2.2    | ٠    | 3.5    | 3.3  |  |
| Pot Cap-1 Maneuver       | ٠      | ٠     | 1370   | •    | 993    | 834  |  |
| Stage 1                  | ٠      | ٠     | ٠      | ٠    | 829    | ٠    |  |
| Stage 2                  | ٠      | ٠     | ٠      | ٠    | 902    | ٠    |  |
| Platoon blocked, %       | ٠      | ٠     |        | ٠    |        |      |  |
| Mov Cap-1 Maneuver       | ٠      | ٠     | 1370   | ٠    | 640    | 834  |  |
| Mov Cap-2 Maneuver       | ٠      | ٠     | ٠      | ٠    | 940    | ٠    |  |
| Stage 1                  | •      | •     |        | ٠    | 829    | ٠    |  |
| Stage 2                  | ٠      | •     | •      | •    | 874    | ٠    |  |
|                          |        |       |        |      |        |      |  |
| Approach                 | EB     |       | WB     |      | NB     |      |  |
| HCM Control Delay, s     | 0      |       | 4.5    |      | 6.6    |      |  |
| HCM LOS                  |        |       |        |      | ⋖      |      |  |
|                          |        |       |        |      |        |      |  |
| Minor Lane/Major Mvmt    |        | NBLn1 | EBT    | EBR  | WBL    | WBT  |  |
| Capacity (veh/h)         |        | 744   | ٠      |      | 1370   | ٠    |  |
| HCM Lane V/C Ratio       |        | 0.011 | •      | ٠    | 0.034  | ٠    |  |
| HCM Control Delay (s)    |        | 6.6   | ٠      | ٠    | 7.7    | 0    |  |
| HCM Lane LOS             |        | ∢     | ٠      | ٠    | ⋖      | ⋖    |  |
|                          |        |       |        |      |        |      |  |

5:00 pm Baseline

HCM 6th TWSC 30: KOKA Eastern Driveway & Aniahua Alanui

|              |                  | NBR      |                     | 0                  | 0                 | 0                      | Stop         | None           |                |                          | ٠        | 95               | 2                 | 0         |               | 165                  |         |         | 6.22          |                     |                     | 3.318          | 879                |         |         |                    | 878                |                    |         |         |          |                      |         | WBT                   |                  |                    | 0                     | ¥            |                       |
|--------------|------------------|----------|---------------------|--------------------|-------------------|------------------------|--------------|----------------|----------------|--------------------------|----------|------------------|-------------------|-----------|---------------|----------------------|---------|---------|---------------|---------------------|---------------------|----------------|--------------------|---------|---------|--------------------|--------------------|--------------------|---------|---------|----------|----------------------|---------|-----------------------|------------------|--------------------|-----------------------|--------------|-----------------------|
|              |                  | NBL      | >                   | 0                  | 0                 | 0                      | Stop         | ٠              | 0              | 0                        | 0        | 95               | 7                 | 0         | Minor1        | 273                  | 165     | 108     | 6.42          | 5.45                | 5.45                |                | 716                | 864     | 916     |                    | 269                | 269                | 863     | 893     | 8        | 0                    | ⋖       | WBL                   | 1412             | 0.024              | 9.7                   | ∢            | 0.1                   |
|              |                  | WBT      | 4                   | 39                 | 38                | 0                      | Free         | None           | ٠              | 0                        | 0        | 26               | 2                 | 40        | 2             | 0                    | ٠       | ٠       | ٠             | ٠                   | ٠                   | ٠              | ٠                  | ٠       | ٠       | ٠                  | ٠                  | ٠                  | ٠       | ٠       |          |                      |         | EBR                   | ۰                | ٠                  | ٠                     |              | ٠                     |
|              |                  | WBL      |                     | 33                 | 33                | _                      | Free         | ٠              | ٠              | ٠                        | ٠        | 97               | 7                 | 34        | Major2        | 165                  |         | ٠       | 4.12          | ٠                   | ٠                   | 2.218          | 1413               | ٠       | ٠       |                    | 1412               | ٠                  | ٠       | ٠       | WB       | 3.5                  |         | EBT                   | ۰                | ٠                  | ٠                     | ٠            | ٠                     |
|              |                  | EBR      |                     | 0                  | 0                 | -                      | Free         | None           | ٠              | ٠                        | ٠        | 92               | 2                 | 0         | 2             | 0                    | ٠       | ٠       | ٠             | ٠                   | ٠                   | ٠              | ٠                  | ٠       | ٠       | ٠                  | ٠                  | ٠                  | ٠       | ٠       |          |                      |         | NBLn1                 |                  | ٠                  | 0                     | ⋖            | •                     |
|              | 1.1              | EBT      | 2                   | 156                | 156               | 0                      | Free         | ٠              | ٠              |                          | 0        | 92               | 7                 | 164       | Major1        | 0                    | ٠       | ٠       | ٠             | ٠                   | ٠                   | ٠              | ٠                  | ٠       | ٠       | ٠                  | ٠                  | ٠                  | ٠       | ٠       | 出        | 0                    |         |                       |                  |                    |                       |              |                       |
| Intersection | Int Delay, s/veh | Movement | Lane Configurations | Traffic Vol, veh/h | Future Vol, veh/h | Conflicting Peds, #/hr | Sign Control | RT Channelized | Storage Length | Veh in Median Storage, # | Grade, % | Peak Hour Factor | Heavy Vehicles, % | Mvmt Flow | Major/Minor N | Conflicting Flow All | Stage 1 | Stage 2 | Critical Hdwy | Critical Hdwy Stg 1 | Critical Hdwy Stg 2 | Follow-up Hdwy | Pot Cap-1 Maneuver | Stage 1 | Stage 2 | Platoon blocked, % | Mov Cap-1 Maneuver | Mov Cap-2 Maneuver | Stage 1 | Stage 2 | Approach | HCM Control Delay, s | HCM LOS | Minor Lane/Major Mvmt | Capacity (veh/h) | HCM Lane V/C Ratio | HCM Control Delay (s) | HCM Lane LOS | HCM 95th %tile Q(veh) |

Synchro 10 Report Page 4 5:00 pm Baseline

HCM 6th TWSC 40: Mana Rd & Mamalahoa Hwy

2026 With Project PM 06/21/2022

2026 With Project PM 06/21/2022

| Intersection             |        |             |        |      |        |       |     |
|--------------------------|--------|-------------|--------|------|--------|-------|-----|
| Int Delay, s/veh         | 4.7    |             |        |      |        |       |     |
| Movement                 | EBT    | EBR         | WBL    | WBT  | NBL    | NBR   |     |
| Lane Configurations      | Ž.     |             | *      | *    | r      | ¥.    |     |
| Traffic Vol, veh/h       | 992    | 53          | 75     | 454  | 50     | 138   |     |
| Future Vol, veh/h        | 992    | 53          | 75     | 454  | 70     | 138   |     |
| Conflicting Peds, #/hr   | 0      | 0           | 0      | 0    | 0      | 0     |     |
| Sign Control             | Free   | Free        | Free   | Free | Stop   | Stop  |     |
| RT Channelized           | ٠      | None        | •      | None | ٠      | Stop  |     |
| Storage Length           | ٠      | ٠           | 9      | ٠    | 0      | 22    |     |
| Veh in Median Storage, # | 0 #    | ٠           |        | 0    | 0      | ٠     |     |
| Grade, %                 | 0      | ٠           | ٠      | 0    | 0      | •     |     |
| Peak Hour Factor         | 92     | 92          | 11     | 11   | 83     | 83    |     |
| Heavy Vehides, %         | 7      | 7           | 7      | 7    | 7      | 7     |     |
| Mvmt Flow                | 1044   | 31          | 97     | 221  | 54     | 166   |     |
|                          |        |             |        |      |        |       |     |
| Major/Minor Ma           | Major1 | _           | Major2 | _    | Minor1 |       |     |
| Conflicting Flow All     | 0      | 0           | 1075   | 0    | 1805   | 1060  |     |
| Stage 1                  | ٠      | ٠           | •      | ٠    | 1060   | •     |     |
| Stage 2                  | ٠      | ٠           |        | •    | 745    |       |     |
| Critical Hdwy            | ٠      | ٠           | 4.12   | ٠    | 6.42   | 6.22  |     |
| Critical Hdwy Stg 1      | ٠      | ٠           | ٠      | ٠    | 5.45   | ٠     |     |
| Critical Hdwy Stg 2      | ٠      | ٠           | •      | ٠    | 5.42   | •     |     |
| Follow-up Hdwy           | ٠      | ٠           | 2.218  | ٠    | 3.518  | 3.318 |     |
| Pot Cap-1 Maneuver       | ٠      | ٠           | 649    | ٠    | 87     | 272   |     |
| Stage 1                  | ٠      | ٠           | •      | ٠    | 333    | ٠     |     |
| Stage 2                  | ٠      | ٠           | •      | ٠    | 469    |       |     |
| Platoon blocked, %       | ٠      | ٠           |        | ٠    |        |       |     |
| Mov Cap-1 Maneuver       | ٠      | ٠           | 649    | ٠    | 74     | 272   |     |
| Mov Cap-2 Maneuver       | ٠      | ٠           | ٠      | ٠    | 74     | ٠     |     |
| Stage 1                  | •      | 1           | •      | •    | 333    | ٠     |     |
| Stage 2                  | ٠      | ٠           | •      | ٠    | 336    | ٠     |     |
|                          |        |             |        |      |        |       |     |
| Approach                 | EB     |             | WB     |      | NB     |       |     |
| HCM Control Delay, s     | 0      |             | 1.7    |      | 41.9   |       |     |
| HCM LOS                  |        |             |        |      | ш      |       |     |
|                          |        |             |        |      |        |       |     |
| Minor Lane/Major Mvmt    | _      | NBLn1 NBLn2 | VBLn2  | EBT  | EBR    | WBL   | WBT |
| Capacity (veh/h)         |        | 74          | 272    | ٠    | ٠      | 649   | •   |
| HCM Lane V/C Ratio       |        | 0.326 0.611 | 0.611  | ٠    | ٠      | 0.15  | •   |
| HCM Control Delay (s)    |        | 75.6        |        | ٠    | ٠      | 11.5  |     |
| HCM Lane LOS             |        | ш           | ш      | ٠    | ٠      | Ф     | •   |
| HCM 95th %tile Q(veh)    |        | 1.2         | 3.7    | •    | ٠      | 0.5   |     |
|                          |        |             |        |      |        |       |     |

Synchro 10 Report Page 5 5:00 pm Baseline

2026 With Project PM 06/21/2022

HCM 6th Signalized Intersection Summary 40: Mana Rd & Mamalahoa Hwy

2026 With Project PM 06/22/2022

| Intersection             |       |             |       |      |        |       |     |
|--------------------------|-------|-------------|-------|------|--------|-------|-----|
| Int Delay, s/veh         | 5.9   |             |       |      |        |       |     |
| Movement                 | EBT   | EBR         | WBL   | WBT  | NBL    | NBR   |     |
| Lane Configurations      | Ť,    |             | ×     | *    | ×      | R.    |     |
| Traffic Vol, veh/h       | 992   | 23          | 75    | 0    | 20     | 138   |     |
| Future Vol. veh/h        | 992   | 59          | 75    | 0    | 50     | 138   |     |
| Conflicting Peds, #/hr   | 0     | 0           | 0     | 0    | 0      | 0     |     |
| Sign Control             | Free  | Free        | Free  | Free | Stop   | Stop  |     |
| RT Channelized           | ٠     | None        | ٠     | None | ٠      | Stop  |     |
| Storage Length           | ٠     | ٠           | 8     | ٠    | 0      | 20    |     |
| Veh in Median Storage, # | 0 #   | ٠           | ٠     | 0    | 0      | ٠     |     |
| Grade, %                 |       | ٠           | ٠     | 0    | 0      | ٠     |     |
| Peak Hour Factor         | 95    | 92          | 11    | 11   | 83     | 83    |     |
| Heavy Vehicles, %        | 7     | 7           | 7     |      | 7      | 7     |     |
| Mvmt Flow                | 1044  | 33          | 97    | 0    | 24     | 166   |     |
| Major/Minor M            | Major | _           | Major | _    | Minort |       |     |
| low All                  | - C   | ٥           | 1075  | c    | 1254   | 1060  |     |
| Stane 1                  | , ,   | , •         |       | , •  | 1060   | •     |     |
| Stane 2                  |       |             | ٠     | ١    | 194    | •     |     |
| Critical Hdwv            | ٠     | ٠           | 4 12  | ٠    | 6 42   | 6 22  |     |
| Critical Hdwy Sto 1      | ľ     | ŀ           | ١.    | ŀ    | 5.42   | '     |     |
| Critical Hdwy Sto 2      | •     | ٠           | ٠     | •    | 5 42   | ٠     |     |
| Follow-up Hdwy           | ٠     | •           | 2.218 | ٠    |        | 3.318 |     |
| Pot Cap-1 Maneuver       | ٠     | •           | 649   | ٠    | 190    | 272   |     |
| Stage 1                  | ٠     | ٠           | ٠     | ٠    | 333    | ٠     |     |
| Stage 2                  | •     | ٠           | ٠     | ٠    | 839    | ٠     |     |
| Platoon blocked, %       | ٠     | ٠           |       | ٠    |        |       |     |
| Mov Cap-1 Maneuver       | ٠     | ٠           | 649   | ٠    | 162    | 272   |     |
| Mov Cap-2 Maneuver       | ٠     | ٠           |       | ٠    | 162    | ٠     |     |
| Stage 1                  | ٠     | ٠           | ٠     | ٠    | 333    | ٠     |     |
| Stage 2                  | ٠     | ٠           | ٠     | ٠    | 714    | ٠     |     |
|                          |       |             |       |      |        |       |     |
| Approach                 | B     |             | WB    |      | R      |       |     |
| HCM Control Delay, s     | 0     |             | 11.5  |      | 36.3   |       |     |
| HCM LOS                  |       |             |       |      | ш      |       |     |
|                          |       |             |       |      |        |       |     |
| Minor Lane/Major Mvmt    |       | NBLn1 NBLn2 | VBLn2 | EBT  | EBR    | WBL   | WBT |
| Capacity (veh/h)         |       | 162         | 272   | •    | ٠      | 649   |     |
| HCM Lane V/C Ratio       |       | 0.149 0.611 | 0.611 | ٠    | ٠      | 0.15  |     |
| HCM Control Delay (s)    |       | 31.1        | 37    | •    | •      | 11.5  |     |
| HCM Lane LOS             |       | ۵           | ш     | ٠    | ٠      | മ     |     |
| HCM 95th %tile Q(veh)    |       | 0.5         | 3.7   | •    | •      | 0.5   | •   |
|                          |       |             |       |      |        |       |     |

| Synchro 10 Report | Page 1 |
|-------------------|--------|
|                   |        |
|                   |        |
|                   |        |

5:00 pm Baseline

|   |          |                     |                        |                       |                     |                     |                  |                       |                        |                      |                  |                      |            |                 |                 |                      |                          |                 |                       |              |                        |              |                       |                   |                    |                          |                        |                           |                          |                              |                      |           |                     |                       |              | 000                  | 61.5                     | 5.0                     | 62.0                        | 10.1                         | 3.6                     |                      |                    |             |
|---|----------|---------------------|------------------------|-----------------------|---------------------|---------------------|------------------|-----------------------|------------------------|----------------------|------------------|----------------------|------------|-----------------|-----------------|----------------------|--------------------------|-----------------|-----------------------|--------------|------------------------|--------------|-----------------------|-------------------|--------------------|--------------------------|------------------------|---------------------------|--------------------------|------------------------------|----------------------|-----------|---------------------|-----------------------|--------------|----------------------|--------------------------|-------------------------|-----------------------------|------------------------------|-------------------------|----------------------|--------------------|-------------|
| • | NBR      | R.                  | 138                    | 138                   | 0                   | 1.00                | 1.00             |                       | 1870                   | 166                  | 0.83             | 2                    | 288        | 0.12            | 1585            | 166                  | 1585                     | 7.3             | 7.3                   | 1.00         | 288                    | 0.58         | 467                   | 1.00              | 1.00               | 28.4                     | 1.8                    | 0.0                       | 2.7                      |                              | 30.2                 | ပ         |                     |                       |              |                      |                          |                         |                             |                              |                         |                      |                    |             |
| • | NBL      | ×                   | 70                     | 70                    |                     |                     |                  |                       | Ì                      | 54                   |                  |                      |            | 0.12            | 1781 1          | 24                   |                          | 6.0             |                       |              |                        |              |                       |                   | 1.00               |                          | 0.2                    | 0.0                       | 0.4                      |                              |                      | ٥         | 190                 | 30.1                  | ပ            |                      |                          |                         |                             |                              |                         |                      |                    |             |
| Ţ | WBT      | *                   | 454                    | 424                   | 0                   |                     | 1.00             | S                     | 1870                   | 551                  | 0.77             | 7                    | 1391       | 0.74            | 1870            | 551                  | 1870                     | 8.1             | 8.1                   |              | 1391                   | 0.40         | 1528                  | 1.00              | 1.00               | 3.5                      | 0.2                    | 0.0                       | 1.5                      |                              | 3.7                  | ⋖         | 648                 | 5.9                   | ∢            | 4                    | 52.1                     | 5.0                     | 52.0                        | 41.4                         | 2.2                     |                      |                    |             |
| - | WBL      | K                   | 75                     | 75                    | 0                   | 1.00                | 1.00             |                       | 1870                   | 26                   | 0.77             | 7                    | 250        | 90.0            | 1781            | 26                   | 1781                     | 1.3             | 1.3                   | 1.00         | 250                    | 0.39         | 265                   | 1.00              | 1.00               | 17.3                     | 1.0                    | 0.0                       | 1.0                      |                              | 18.3                 | _         |                     |                       |              | က                    | 9.4                      | 2.0                     | 2.0                         | 3.3                          | 0.0                     |                      | 18.8               | <u>е</u> в  |
| > | EBR      |                     | 53                     | 59                    | 0                   | 1.00                | 1.00             |                       | 1870                   | 31                   | 0.95             | 7                    | 33         | 0.62            | 54              | 1075                 | 1861                     | 39.4            | 39.4                  | 0.03         | 1155                   | 0.93         | 1275                  | 1.00              | 1.00               | 12.9                     | 11.6                   | 0.0                       | 15.0                     |                              | 24.5                 | ပ         |                     |                       |              | 2                    | 14.4                     | 5.0                     | 18.0                        | 93                           | 0.4                     |                      |                    |             |
| † | EBT      | \$                  | 992                    | 992                   | 0                   |                     | 1.00             | S                     | 1870                   | 1044                 | 0.95             | 7                    | 1121       | 0.62            | 1807            | 0                    | 0                        | 0.0             | 0.0                   |              | 0                      | 0.00         | 0                     | 1.00              | 0.00               | 0.0                      | 0.0                    | 0.0                       | 0.0                      |                              | 0.0                  | ∢         | 1075                | 24.5                  | ပ            |                      |                          |                         |                             |                              |                         |                      |                    |             |
|   | Movement | Lane Configurations | Traffic Volume (veh/h) | Future Volume (veh/h) | Initial Q (Qb), veh | Ped-Bike Adj(A_pbT) | Parking Bus, Adj | Work Zone On Approach | Adj Sat Flow, veh/h/In | Adj Flow Rate, veh/h | Peak Hour Factor | Percent Heavy Veh, % | Cap, veh/h | Arrive On Green | Sat Flow, veh/h | Grp Volume(v), veh/h | Grp Sat Flow(s),veh/h/ln | Q Serve(g_s), s | Cycle Q Clear(g_c), s | Prop In Lane | Lane Grp Cap(c), veh/h | V/C Ratio(X) | Avail Cap(c_a), veh/h | HCM Platoon Ratio | Upstream Filter(I) | Uniform Delay (d), s/veh | Incr Delay (d2), s/veh | Initial Q Delay(d3),s/veh | %ile BackOfQ(50%),veh/In | Unsig. Movement Delay, s/veh | LnGrp Delay(d),s/veh | LnGrp LOS | Approach Vol, veh/h | Approach Delay, s/veh | Approach LOS | Timer - Assigned Phs | Phs Duration (G+Y+Rc), s | Change Period (Y+Rc), s | Max Green Setting (Gmax), s | Max Q Clear Time (q c+I1), s | Green Ext Time (p_c), s | Intersection Summary | HCM 6th Ctrl Delay | HCM 6th LOS |

5:00 pm Baseline

2031 With Project AM 06/22/2022 HCM 6th TWSC 2: Future Homestead Road & Hiiaka St

| Major/Minor   Major/Minor   Major                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WBL 1111 1111 1111 1111 1111 1111 1111 1                                                                                                                                           | MBT 185 185 185 185 185 185 185 185 185 185 |       | NBR 14 14 14 14 15 19 19 19 19 19 19 19 19 19 19 19 19 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 138 110 13 | MBL 1111 1111 0 0 2 2 92 22 1211 270 270 270                                                                                                                                       |                                             |       | NBR 14 14 14 14 14 14 19 19 19 19 19 19 19 19 19 19 19 19 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 110 138 110 138 138 138 138 138 138 138 138 138 138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1111<br>101<br>101<br>2<br>2<br>2<br>121<br>121<br>4.12                                                                                                                            |                                             |       | 14 14 14 14 14 14 14 14 14 14 14 14 14 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 1110 138 140 150 150 150 150 150 150 150 150 150 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 111<br>111<br>0<br>0<br>92<br>2<br>2<br>2<br>1121<br>121<br>4.12                                                                                                                   |                                             |       | Sing to the second seco |  |
| ree Free Od 120 120 120 120 120 120 120 120 120 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pree 92 2 2 2 2 270 270 270 270 270 270 2 2.218 1.293                                                                                                                              |                                             |       | Stop 0 14 40ne 40ne 40ne 17 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 195 1 19 |  |
| None Free Free None None None None None None None No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Free                                                                                                                                                                               |                                             |       | Stop Vone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| None of the control o | 92<br>2<br>121<br>270<br>270<br>270<br>271<br>4.12                                                                                                                                 |                                             |       | Vone 195 - 1 - 195 - 1 - 195 - 1 - 195 - 1 - 195 - 1 - 195 - 1 - 195 - 1 - 195 - 1 - 195 - 1 - 195 - 1 - 195 - 1 - 195 - 1 - 195 - 1 - 195 - 1 - 195 - 1 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 1 |  |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 92<br>2<br>2<br>121<br>270<br>270<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>2.2.18<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 0 0 0 1 120 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 92<br>2<br>121<br>270<br>270<br>2.218<br>1293                                                                                                                                      | <b>~</b>                                    |       | 2<br>2<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 90 92 92 92 92 92 92 92 92 92 92 92 92 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 92<br>2<br>121<br>121<br>Aajor2<br>270<br>270<br>270<br>270<br>1293                                                                                                                |                                             |       | 92<br>2<br>2<br>115<br>195<br>6.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Majori   100 150 150 150 150 150 150 150 150 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 92<br>2<br>121<br>270<br>270<br>4.12<br>- 1293                                                                                                                                     |                                             |       | 92<br>2<br>2<br>115<br>195<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 2 2 2 12 120 150 150 150 150 150 150 150 150 150 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2<br>121<br>270<br>270<br>4.12<br>1293                                                                                                                                             | 2                                           |       | 2<br>15<br>195<br>-<br>6.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Majort 150 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121<br>Major2<br>270<br>-<br>4.12<br>-<br>2.218                                                                                                                                    | ~                                           |       | 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Majort 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Aajor2<br>270<br>270<br>4.12<br>2.218<br>1293                                                                                                                                      |                                             |       | 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Majort 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Algor 270 270 270 - 4.12 - 5.2.218 1293                                                                                                                                            |                                             |       | 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 270                                                                                                                                                                                |                                             |       | 195<br>-<br>-<br>6.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.12                                                                                                                                                                               |                                             |       | 6.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.12<br>2.218<br>1293                                                                                                                                                              |                                             |       | 6.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.12<br>2.218<br>1293                                                                                                                                                              |                                             |       | 6.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.218                                                                                                                                                                              |                                             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.218                                                                                                                                                                              |                                             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1293                                                                                                                                                                               |                                             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1293                                                                                                                                                                               |                                             | ,,,   | 3.318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٠                                                                                                                                                                                  |                                             | 14    | 846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                    | ٠                                           | 838   | ٠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٠                                                                                                                                                                                  | ٠                                           | 647   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                    |                                             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1293                                                                                                                                                                               | ٠                                           | 395   | 846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                    | ٠                                           | 395   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٠                                                                                                                                                                                  | •                                           | 838   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٠                                                                                                                                                                                  | ٠                                           | 929   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                    |                                             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WB                                                                                                                                                                                 |                                             | 8     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| HCM Control Delay, s 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | က                                                                                                                                                                                  |                                             | 13.7  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                    |                                             | മ     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                    |                                             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Minor Lane/Major Mvmt NBLn1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EBT                                                                                                                                                                                | EBR                                         | WBL   | WBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                    | ŀ                                           | 1293  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ٠                                                                                                                                                                                  |                                             | 0.093 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| HCM Control Delay (s) 13.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                  |                                             | 8.1   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                    | ٠                                           | 4     | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| HCM 95th %tile Q(veh) 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ٠                                                                                                                                                                                  | •                                           | 0.3   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

Synchro 10 Report Page 1 5:00 pm Baseline

HCM Signalized Intersection Capacity Analysis 10: Kamamalu St & Mamalahoa Hwy

2031 With Project AM 06/22/2022

|                                   | Ė            |      | ğ     | 1     | 2                    | . 9                       |      |
|-----------------------------------|--------------|------|-------|-------|----------------------|---------------------------|------|
| Movement                          | EBI          | EBK  | WBL   | WBI   | NBL                  | NBK                       |      |
| Lane Configurations               | <del>+</del> |      |       | 44    | F                    | *                         |      |
| Traffic Volume (vph)              | 494          | 229  | 31    | 1062  | 219                  | 20                        |      |
| Future Volume (vph)               | 494          | 259  | 31    | 1062  | 219                  | 20                        |      |
| Ideal Flow (vphpl)                | 1900         | 1900 | 1900  | 1900  | 1900                 | 1900                      |      |
| Total Lost time (s)               | 2.0          |      |       | 2.0   | 2.0                  | 5.0                       |      |
| Lane Util. Factor                 | 0.95         |      |       | 0.95  | 1.00                 | 1.00                      |      |
| Frpb, ped/bikes                   | 0.99         |      |       | 1.00  | 1.00                 | 0.99                      |      |
| Flpb, ped/bikes                   | 1.00         |      |       | 1.00  | 1.00                 | 1.00                      |      |
| 표                                 | 0.95         |      |       | 1.00  | 1.00                 | 0.85                      |      |
| Flt Protected                     | 1.00         |      |       | 1.00  | 0.95                 | 1.00                      |      |
| Satd. Flow (prot)                 | 3330         |      |       | 3534  | 1770                 | 1565                      |      |
| -It Permitted                     | 1.00         |      |       | 98.0  | 0.95                 | 1.00                      |      |
| Satd. Flow (perm)                 | 3330         |      |       | 3056  | 1770                 | 1565                      |      |
| Peak-hour factor, PHF             | 0.71         | 0.71 | 0.89  | 0.89  | 0.65                 | 0.65                      |      |
| Adj. Flow (vph)                   | 969          | 365  | 32    | 1193  | 337                  | 77                        |      |
| RTOR Reduction (vph)              | 102          | 0    | 0     | 0     | 0                    | 45                        |      |
| Lane Group Flow (vph)             | 929          | 0    | 0     | 1228  | 337                  | 32                        |      |
| Confl. Peds. (#/hr)               |              | 2    | 7     |       |                      | 2                         |      |
| Turn Type                         | NA           |      | pm+pt | NA    | Prot                 | hm+ov                     |      |
| Protected Phases                  | 4            |      | က     | ∞     | 2                    | က                         |      |
| Permitted Phases                  |              |      | ∞     |       |                      | 5                         |      |
| Actuated Green, G (s)             | 21.8         |      |       | 29.5  | 14.8                 | 17.5                      |      |
| Effective Green, g (s)            | 21.8         |      |       | 29.5  | 14.8                 | 17.5                      |      |
| Actuated g/C Ratio                | 0.40         |      |       | 0.54  | 0.27                 | 0.32                      |      |
| Clearance Time (s)                | 2.0          |      |       | 2.0   | 2.0                  | 5.0                       |      |
| /ehicle Extension (s)             | 3.0          |      |       | 3.0   | 3.0                  | 3.0                       |      |
| -ane Grp Cap (vph)                | 1336         |      |       | 1684  | 482                  | 648                       |      |
| //s Ratio Prot                    | 0.29         |      |       | c0.04 | c0.19                | 0.00                      |      |
| //s Ratio Perm                    |              |      |       | c0.36 |                      | 0.02                      |      |
| //c Ratio                         | 0.72         |      |       | 0.73  | 0.70                 | 0.05                      |      |
| Uniform Delay, d1                 | 13.7         |      |       | 9.4   | 17.7                 | 12.7                      |      |
| Progression Factor                | 1.00         |      |       | 1.00  | 1.00                 | 1.00                      |      |
| Incremental Delay, d2             | 1.9          |      |       | 1.6   | 4.4                  | 0.0                       |      |
| Delay (s)                         | 15.5         |      |       | 11.0  | 22.2                 | 12.7                      |      |
| evel of Service                   | В            |      |       | В     | ပ                    | В                         |      |
| Approach Delay (s)                | 15.5         |      |       | 11.0  | 20.4                 |                           |      |
| Approach LOS                      | മ            |      |       | മ     | ပ                    |                           |      |
| Intersection Summary              |              |      |       |       |                      |                           |      |
| HCM 2000 Control Delay            |              |      | 14.2  | ¥     | :M 2000              | HCM 2000 Level of Service | В    |
| HCM 2000 Volume to Capacity ratio | city ratio   |      | 0.80  |       |                      |                           |      |
| Actuated Cycle Length (s)         |              |      | 54.3  | S     | Sum of lost time (s) | time (s)                  | 15.0 |
| ntersection Capacity Utilization  | ıtion        |      | 72.4% | ᅙ     | J Level o            | ICU Level of Service      | O    |
| Analysis Period (min)             |              |      | 15    |       |                      |                           |      |
| Critical I and Group              |              |      |       |       |                      |                           |      |

Synchro 10 Report Page 2 5:00 pm Baseline

HCM 6th TWSC 20: KOKA Main Driveway & Hiiaka St

2031 With Project AM 06/22/2022

| Intersection             |        |       |        |      |        |      |  |
|--------------------------|--------|-------|--------|------|--------|------|--|
| Int Delay, s/veh         | 7      |       |        |      |        |      |  |
| Movement                 | EBT    | EBR   | WBL    | WBT  | NBL    | NBR  |  |
| Lane Configurations      | ¢      |       |        | ų    | A      |      |  |
| Traffic Vol, veh/h       | 56     | 8     | 93     | 185  | 0      | 0    |  |
| Future Vol, veh/h        | 56     | 8     | 63     | 182  | 0      | 0    |  |
| Conflicting Peds, #/hr   | 0      | 7     | 7      | 0    | 0      | 0    |  |
|                          | Free   | Free  | Free   | Free | Stop   | Stop |  |
| RT Channelized           | ٠      | None  | ٠      | None | •      | None |  |
| Storage Length           |        | ٠     | ٠      | ٠    | 0      |      |  |
| Veh in Median Storage, # | 0      | •     | •      | 0    | 0      | •    |  |
| Grade, %                 | 0      | •     | ٠      | 0    | 0      |      |  |
| Peak Hour Factor         | 29     | 20    | 29     | 20   | 99     | 09   |  |
| Heavy Vehicles, %        | 0      | 0     | 0      | 0    | 0      | 0    |  |
| Mvmt Flow                | 44     | 142   | 166    | 330  | 0      | 0    |  |
|                          |        |       |        |      |        |      |  |
| Major/Minor Ma           | Major1 | _     | Major2 | 2    | Minor1 |      |  |
| Conflicting Flow All     | 0      | 0     | 188    | 0    | 779    | 117  |  |
| Stage 1                  | ٠      | ٠     | ٠      | ٠    | 117    |      |  |
| Stage 2                  | ٠      | ٠     | ٠      | ٠    | 995    |      |  |
| Critical Hdwy            | •      | •     | 4.1    | •    | 6.4    | 6.2  |  |
| Critical Hdwy Stg 1      | ٠      | ٠     | ٠      | ٠    | 5.4    |      |  |
| Critical Hdwy Stg 2      | •      | •     | •      | •    | 5.4    | •    |  |
| Follow-up Hdwy           | ٠      | ٠     | 2.2    | ٠    | 3.5    | 3.3  |  |
| Pot Cap-1 Maneuver       | •      | •     | 1398   | ٠    | 367    | 941  |  |
| Stage 1                  | ٠      | ٠     | ٠      | ٠    | 913    |      |  |
| Stage 2                  | ٠      | ٠     | ٠      | ٠    | 217    |      |  |
| Platoon blocked, %       | ٠      | ٠     |        | ٠    |        |      |  |
| Mov Cap-1 Maneuver       | ٠      | •     | 1395   | ٠    | 313    | 939  |  |
| Mov Cap-2 Maneuver       | •      | •     |        |      | 313    |      |  |
| Stage 1                  | •      | •     | ٠      | ٠    | 911    |      |  |
| Stage 2                  | ٠      | ٠     | ٠      | ٠    | 442    |      |  |
|                          |        |       |        |      |        |      |  |
| Approach                 | 8      |       | WB     |      | R      |      |  |
| HCM Control Delay, s     | 0      |       | 2.7    |      | 0      |      |  |
| HCM LOS                  |        |       |        |      | ⋖      |      |  |
|                          |        |       |        |      |        |      |  |
| Minor Lane/Major Mvmt    | Z      | NBLn1 | EBT    | EBR  | WBL    | WBT  |  |
| Capacity (veh/h)         |        | ٠     | ٠      | ٠    | 1395   |      |  |
| HCM Lane V/C Ratio       |        | ٠     | ٠      | ٠    | 0.119  |      |  |
| HCM Control Delay (s)    |        | 0     | •      | •    | 7.9    | 0    |  |
| HCM Lane LOS             |        | ⋖     | ٠      | ٠    | ⋖      | ∢    |  |
| HCM 95th %tile Q(veh)    |        | •     | •      | •    | 0.4    |      |  |
|                          |        |       |        |      |        |      |  |

Synchro 10 Report Page 3 5:00 pm Baseline

HCM 6th TWSC 30: KOKA Eastern Driveway & Aniahua Alanui

2031 With Project AM 06/22/2022

| nt Delay, s/veh          | 22     |       |         |      |        |       |  |
|--------------------------|--------|-------|---------|------|--------|-------|--|
|                          |        |       |         |      |        |       |  |
| Movement                 | EBT    | EBR   | WBL     | WBT  | N<br>N | NBR   |  |
| Lane Configurations      | 4      |       |         | t    | >-     |       |  |
| Traffic Vol, veh/h       | 56     | 0     | -       | 255  | 107    | 45    |  |
| Future Vol, veh/h        | 56     | 0     | _       | 255  | 107    | 42    |  |
| Conflicting Peds, #/hr   |        | 0     | 0       | 0    | 0      | 0     |  |
| Sign Control             | Free   | Free  | Free    | Free | Stop   | Stop  |  |
| RT Channelized           | 7      | None  | ٠       | None |        | None  |  |
| Storage Length           |        | ٠     | ٠       | ٠    | 0      | ٠     |  |
| Veh in Median Storage, # | 0 #    | ٠     | ٠       | 0    | 0      | ٠     |  |
| Grade, %                 |        | ٠     | ٠       | 0    | 0      | ٠     |  |
| Peak Hour Factor         | 9      | 99    | 99      | 8    | 22     | 22    |  |
| Heavy Vehicles, %        | 7      | 7     | 2       | 7    | 7      | 7     |  |
| Mvmt Flow                | 43     | 0     | 2       | 425  | 195    | 85    |  |
|                          |        |       |         |      |        |       |  |
| Major/Minor M            | Major1 | _     | Major2  | 2    | Minor1 |       |  |
| Conflicting Flow All     | 0      | 0     | 43      | 0    | 472    | 43    |  |
| Stage 1                  | ٠      | ٠     | ٠       | ٠    | 43     |       |  |
| Stage 2                  | ٠      | •     | ٠       | ٠    | 459    | ٠     |  |
| Critical Hdwy            | ٠      | ٠     | 4.12    | ٠    | 6.42   | 6.22  |  |
| Critical Hdwy Stg 1      | ٠      | •     | ٠       | ٠    | 5.45   | •     |  |
| Critical Hdwy Stg 2      | ٠      | ٠     | ٠       | ٠    | 5.45   | ٠     |  |
| -ollow-up Hdwy           | ٠      | ٠     | - 2.218 | ٠    | 3.518  | 3.318 |  |
| Pot Cap-1 Maneuver       | ٠      | ٠     | 1566    | •    | 221    | 1027  |  |
| Stage 1                  | ٠      | ٠     | ٠       | ٠    | 979    | ٠     |  |
| Stage 2                  | ٠      | •     | ٠       | ٠    | 657    | ٠     |  |
| Platoon blocked, %       | ٠      | ٠     |         | ٠    |        |       |  |
| Mov Cap-1 Maneuver       | ٠      | ٠     | 1566    | ٠    | 220    | 1027  |  |
| Mov Cap-2 Maneuver       | ٠      | ٠     | •       | •    | 220    | ٠     |  |
| Stage 1                  | ٠      | ٠     |         | ٠    | 626    | •     |  |
| Stage 2                  | ٠      | ٠     | ٠       | ٠    | 929    | ٠     |  |
|                          |        |       |         |      |        |       |  |
| Approach                 | 8      |       | WB      |      | B      |       |  |
| HCM Control Delay, s     | 0      |       | 0       |      | 14.9   |       |  |
| HCM LOS                  |        |       |         |      | മ      |       |  |
|                          |        |       |         |      |        |       |  |
| Minor Lane/Major Mvmt    | Z      | NBLn1 | EBT     | EBR  | WBL    | WBT   |  |
| Capacity (veh/h)         |        | 638   | •       | •    | 1566   | •     |  |
| HCM Lane V/C Ratio       |        | 0.433 | ٠       | ٠    | 0.001  | ٠     |  |
| HCM Control Delay (s)    |        | 14.9  | ٠       | ٠    | 7.3    | 0     |  |
| HCM Lane LOS             |        | ш     | ٠       |      | ۵      | ⋖     |  |
|                          |        |       |         |      |        | :     |  |

Synchro 10 Report Page 4 5:00 pm Baseline

2031 With Project AM

2031 With Project AM

HCM 6th TWSC 40: Mana Rd & Mamalahoa Hwy

|               | 535                  |         |         | 6.22          |                     |                     | 3.318          | 545                |         |         |                    | 545                |                    |         |         |          |                      |         |
|---------------|----------------------|---------|---------|---------------|---------------------|---------------------|----------------|--------------------|---------|---------|--------------------|--------------------|--------------------|---------|---------|----------|----------------------|---------|
| Minor1        | 0 2254               | - 535   | - 1719  | 6.42          | 5.42                | 5 42                | 3.518 3.318    | - ~ 46             | - 587   | - 159   |                    | - ~ 35             | - ~ 35             | - 587   | - 119   | æ        | 133.5                | ட       |
| Major1 Major2 | 0 545                |         |         | 4 12          |                     |                     | - 2.218        | - 1024             |         |         |                    | - 1024             |                    |         |         | WB       | 1.7                  |         |
| /ajor1        | 0                    |         |         |               |                     | •                   |                |                    |         |         |                    | •                  |                    |         |         | 8        | 0                    |         |
| Major/Minor N | Conflicting Flow All | Stage 1 | Stage 2 | Critical Hdwy | Critical Hdwy Stg 1 | Critical Hdwy Stg 2 | Follow-up Hdwy | Pot Cap-1 Maneuver | Stage 1 | Stage 2 | Platoon blocked, % | Mov Cap-1 Maneuver | Mov Cap-2 Maneuver | Stage 1 | Stage 2 | Approach | HCM Control Delay, s | HCM LOS |

| WBT                                               |                  |                    |                       |              |                       |
|---------------------------------------------------|------------------|--------------------|-----------------------|--------------|-----------------------|
| WBL                                               | 1024             | 0.25               | 9.7                   | ×            | -                     |
| EBR                                               | ٠                |                    | ٠                     |              | ٠                     |
| EBT                                               | ٠                | ٠                  | ٠                     | ٠            | ٠                     |
| BLn2                                              | 545              | 7.235              | 13.6                  | Ф            | 6.0                   |
| NBLn1 N                                           | 35 545           | 1 366 0 235        | \$ 455 13.6           | ட            | 5.1                   |
| Minor Lane/Major Mvmt NBLn1 NBLn2 EBT EBR WBL WBT | Capacity (veh/h) | HCM Lane V/C Ratio | HCM Control Delay (s) | HCM Lane LOS | HCM 95th %tile Q(veh) |

Notes

∼: Volume exceeds capacity \$. Delay exceeds 300s +: Computation Not Defined ∴: All major volume in platoon

5:00 pm Baseline

Synchro 10 Report Page 5

| Intersection             |        |             |        |      |        |              |     |
|--------------------------|--------|-------------|--------|------|--------|--------------|-----|
| Int Delay, s/veh         | 5.8    |             |        |      |        |              |     |
|                          |        |             |        |      |        |              |     |
| Movement                 | EBI    | EBR         | WBL    | WBT  | NBL    | NBR          |     |
| Lane Configurations      | ÷      |             | *      | +    | r      | ¥c_          |     |
| Traffic Vol, veh/h       | 398    | 16          | 218    | 0    | 75     | 29           |     |
| Future Vol, veh/h        | 398    | 16          | 218    | 0    | 52     | 23           |     |
| Conflicting Peds, #/hr   | 0      | 0           | 0      | 0    | 0      | 0            |     |
| Sign Control             | Free   | Free        | Free   | Free | Stop   | Stop         |     |
| RT Channelized           | ٠      | None        | ٠      | None |        | Stop         |     |
| Storage Length           | ٠      | ٠           | 9      | ٠    | 0      | 20           |     |
| Veh in Median Storage, # | 0 #    | ٠           |        | 0    | 0      | ٠            |     |
| Grade, %                 | 0      | ٠           | •      | 0    | 0      | •            |     |
| Peak Hour Factor         | 9/     | 9/          | 82     | 82   | 46     | 46           |     |
| Heavy Vehicles, %        | 7      | 7           | 7      | 2    | 7      | 7            |     |
| Mvmt Flow                | 524    | 21          | 256    | 0    | 48     | 128          |     |
|                          |        |             |        |      |        |              |     |
| Major/Minor M            | Major1 | _           | Major2 | ~    | Minor1 |              |     |
| Conflicting Flow All     | 0      | 0           | 545    | 0    | 1047   | 535          |     |
| Stage 1                  | ٠      | ٠           | ٠      | ٠    | 232    | ٠            |     |
| Stage 2                  | ٠      | ٠           | •      | ٠    | 512    | •            |     |
| Critical Hdwy            | ٠      | ٠           | 4.12   | ٠    | 6.42   | 6.22         |     |
| Critical Hdwy Stg 1      | ٠      | ٠           | •      | ٠    | 5.42   | ٠            |     |
| Critical Hdwy Stg 2      | •      | ٠           |        | ٠    | 5.45   | ٠            |     |
| Follow-up Hdwy           | ٠      | ٠           | 2.218  | ٠    |        | 3.318        |     |
| Pot Cap-1 Maneuver       | ٠      | •           | 1024   | •    | 253    | 242          |     |
| Stage 1                  | ٠      | ٠           | ٠      | ٠    | 287    | ٠            |     |
| Stage 2                  | •      | ٠           |        | ٠    | 602    |              |     |
| Platoon blocked, %       | ٠      | ٠           |        | ٠    |        |              |     |
| Mov Cap-1 Maneuver       | ٠      | •           | 1024   | •    | 190    | 545          |     |
| Mov Cap-2 Maneuver       | ٠      | ٠           | ٠      | ٠    | 190    | ٠            |     |
| Stage 1                  | ٠      | ٠           | ٠      | ٠    | 287    | ٠            |     |
| Stage 2                  | ٠      | ٠           | ٠      | ٠    | 452    | •            |     |
|                          |        |             |        |      |        |              |     |
| Approach                 | 8      |             | WB     |      | R      |              |     |
| HCM Control Delay, s     | 0      |             | 9.7    |      | 18.1   |              |     |
| HCM LOS                  |        |             |        |      | ပ      |              |     |
|                          |        |             |        |      |        |              |     |
| Minor Lane/Major Mvmt    |        | NBLn1 NBLn2 | JBLn2  | EBT  | EBR    | WBL          | WBT |
| Capacity (veh/h)         |        | 190         | 545    | •    | ٠      | 1024         |     |
| HCM Lane V/C Ratio       |        | 0.252 0.235 | 0.235  | ٠    | ٠      | 0.25         | •   |
| HCM Control Delay (s)    |        | 30.2        | 13.6   | ٠    | ٠      | 9.7          |     |
| HCM Lane LOS             |        | Ω           | Ф      |      |        | ⋖            | •   |
| HCM 95th %tile Q(veh)    |        | -           | 0.9    | •    | ٠      | <del>-</del> |     |
|                          |        |             |        |      |        |              |     |

Synchro 10 Report Page 1 5:00 pm Baseline

HCM 6th Signalized Intersection Summary 40: Mana Rd & Mamalahoa Hwy

2031 With Project AM 06/22/2022

|                              | †    | *    | -     |      | -    | _    |      |
|------------------------------|------|------|-------|------|------|------|------|
| Aovement                     | EBT  | EBR  | WBL   | WBT  | NBL  | NBR  |      |
| ane Configurations           | 43   |      | *     | *    | F    | ×    |      |
| raffic Volume (veh/h)        | 398  | 16   | 218   | 1026 | 72   | 29   |      |
| -uture Volume (veh/h)        | 398  | 16   | 218   | 1026 | 22   | 29   |      |
| nitial Q (Qb), veh           | 0    | 0    | 0     | 0    | 0    | 0    |      |
| Ped-Bike Adj(A_pbT)          |      | 1.00 | 1.00  |      | 1.00 | 1.00 |      |
| Parking Bus, Adj             | 1.00 | 1.00 | 1.00  | 1.00 | 1.00 | 1.00 |      |
| Nork Zone On Approach        | 2    |      |       | 2    | 2    |      |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870 | 1870  | 1870 | 1870 | 1870 |      |
| Adj Flow Rate, veh/h         | 254  | 71   | 526   | 1207 | 48   | 128  |      |
| Peak Hour Factor             | 0.76 | 0.76 | 0.85  | 0.85 | 0.46 | 0.46 |      |
| Percent Heavy Veh, %         | 2    | 2    | 2     | 2    | 2    | 2    |      |
| Sap, veh/h                   | 995  | 40   | 603   | 1368 | 185  | 310  |      |
| Arrive On Green              | 0.56 | 0.56 | 60.0  | 0.73 | 0.10 | 0.10 |      |
| Sat Flow, veh/h              | 1786 | 72   | 1781  | 1870 | 1781 | 1585 |      |
| Grp Volume(v), veh/h         | 0    | 545  | 256   | 1207 | 48   | 128  |      |
| 3rp Sat Flow(s),veh/h/ln     | 0    | 1857 | 1781  | 1870 | 1781 | 1585 |      |
| 2 Serve(g_s), s              | 0.0  | 11.2 | 3.2   | 29.7 | 1.5  | 4.3  |      |
| Cycle Q Clear(g_c), s        | 0.0  | 11.2 | 3.2   | 29.7 | 1.5  | 4.3  |      |
| Prop In Lane                 |      | 0.04 | 1.00  |      | 1.00 | 1.00 |      |
| ane Grp Cap(c), veh/h        | 0    | 1035 | 603   | 1368 | 185  | 310  |      |
| //C Ratio(X)                 | 0.00 | 0.53 | 0.42  | 0.88 | 0.26 | 0.41 |      |
| Avail Cap(c_a), veh/h        | 0    | 1377 | 792   | 1910 | 528  | 615  |      |
| HCM Platoon Ratio            | 1.00 | 1.00 | 1.00  | 1.00 | 1.00 | 1.00 |      |
| Jpstream Filter(I)           | 0.00 | 1.00 | 1.00  | 1.00 | 1.00 | 1.00 |      |
| Jniform Delay (d), s/veh     | 0.0  | 8.4  | 9.6   | 6.2  | 25.0 | 21.4 |      |
| ncr Delay (d2), s/veh        | 0.0  | 0.4  | 0.5   | 3.9  | 0.7  | 6.0  |      |
| nitial Q Delay(d3),s/veh     | 0.0  | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  |      |
| 6ile BackOfQ(50%),veh/In     |      | 3.1  | 9.0   | 4.8  | 9.0  | 1.5  |      |
| Jnsig. Movement Delay, s/veh |      |      |       |      |      |      |      |
| nGrp Delay(d),s/veh          | 0.0  | 8.8  | 6.1   | 10.1 | 25.8 | 22.2 |      |
| nGrp LOS                     | 4    | ¥    | 4     | В    | ပ    | ပ    |      |
| Approach Vol, veh/h          | 545  |      |       | 1463 | 176  |      |      |
| Approach Delay, s/veh        | 8.8  |      |       | 9.4  | 23.2 |      |      |
| Approach LOS                 | 4    |      |       | ∢    | ပ    |      |      |
| imer - Assigned Phs          |      | 2    | က     | 4    |      |      | ω    |
| Phs Duration (G+Y+Rc), s     |      | 11.3 | 10.6  | 38.8 |      |      | 49.4 |
| Change Period (Y+Rc), s      |      | 2.0  | 2.0   | 2.0  |      |      | 5.0  |
| Max Green Setting (Gmax), s  |      | 18.0 | 12.0  | 45.0 |      |      | 62.0 |
| Max Q Clear Time (g_c+I1), s |      | 6.3  | 5.2   | 13.2 |      |      | 31.7 |
| Sreen Ext Time (p_c), s      |      | 0.4  | 0.4   | 3.4  |      |      | 12.7 |
| ntersection Summary          |      |      |       |      |      |      |      |
| ON SH OH Delett              |      |      | 7 0 7 |      |      |      |      |
|                              |      |      |       |      |      |      |      |

5:00 pm Baseline Synchro 10 Report Page 1

HCM 6th TWSC 2: Future Homestead Road & Hiiaka St

2031 With Project PM nka St 06/22/2022

|                          |        | I     |         |         |        |       |  |
|--------------------------|--------|-------|---------|---------|--------|-------|--|
| Int Delay, s/veh         | 9.5    |       |         |         |        |       |  |
| Movement                 | EBT    | EBR   | EBR WBL | WBT     | NBL    | NBR   |  |
| Lane Configurations      | Ť,     |       |         | ₹       | >      |       |  |
| Traffic Vol, veh/h       | 148    | 103   | 37      | 56      | 260    | 103   |  |
| Future Vol, veh/h        | 148    | 103   | 37      | 56      | 260    | 103   |  |
| Conflicting Peds, #/hr   | 0      | 0     | 0       | 0       | 0      | 0     |  |
| Sign Control             | Free   | Free  | Free    | Free    | Stop   | Stop  |  |
| RT Channelized           | ٠      | None  | ٠       | None    | ٠      | None  |  |
| Storage Length           | ٠      | ٠     | •       | ٠       | 0      | ٠     |  |
| Veh in Median Storage, # |        | •     | ٠       | 0       | 0      | ٠     |  |
| Grade, %                 | 0      | •     | ٠       | 0       | 0      | ٠     |  |
| Peak Hour Factor         | 92     | 35    | 92      | 92      | 92     | 92    |  |
| Heavy Vehides, %         | 7      | 7     | 7       | 7       | 7      | 7     |  |
| Mvmt Flow                | 161    | 112   | 9       | 78      | 283    | 112   |  |
|                          |        |       |         |         |        |       |  |
| Major/Minor M            | Major1 | 2     | Major2  | 2       | Minor1 |       |  |
| Conflicting Flow All     | 0      | 0     | 273     | 0       | 325    | 217   |  |
| Stage 1                  | ٠      | •     | ٠       | ٠       | 217    | ٠     |  |
| Stage 2                  | ٠      | ٠     | •       | ٠       | 108    | ٠     |  |
| Critical Hdwy            | ٠      | ٠     | 4.12    | ٠       | 6.42   | 6.22  |  |
| Critical Hdwy Stg 1      | ٠      | ٠     | ٠       | ٠       | 5.42   | ٠     |  |
| Critical Hdwy Stg 2      | ٠      | ٠     |         | ٠       | 5.45   | ٠     |  |
| Follow-up Hdwy           | ٠      | ٠     | - 2 218 | ٠       |        | 3.318 |  |
| Pot Cap-1 Maneuver       | ٠      | •     | 1290    | •       | 699    | 823   |  |
| Stage 1                  | ٠      | ٠     | ٠       | ٠       | 819    | ٠     |  |
| Stage 2                  | ٠      | ٠     |         | ٠       | 916    | ٠     |  |
| Platoon blocked, %       | ٠      | ٠     |         | ٠       |        |       |  |
| Mov Cap-1 Maneuver       | ٠      | ٠     | 1290    | ٠       | 648    | 823   |  |
| Mov Cap-2 Maneuver       | ٠      | ٠     | ٠       | ٠       | 648    | ٠     |  |
| Stage 1                  | ٠      | •     | ٠       | •       | 819    | •     |  |
| Stage 2                  | ٠      | ٠     | ٠       | ٠       | 887    | ٠     |  |
|                          |        |       |         |         |        |       |  |
| Approach                 | 8      |       | WB      |         | B      |       |  |
| HCM Control Delay, s     | 0      |       | 4.6     |         | 17     |       |  |
| HCM LOS                  |        |       |         |         | ပ      |       |  |
|                          |        |       | į       | 1       | į      | ļ     |  |
| Minor Lane/Major Mvmt    | _      | NBLn1 |         | EBR WBL | WBL    | WBT   |  |
| Capacity (veh/h)         |        | 069   | ٠       | •       | 1290   | ٠     |  |
| HCM Lane V/C Ratio       |        | 0.572 | ٠       | ٠       | 0.031  | ٠     |  |
| HCM Control Delay (s)    |        | 17    | ٠       | ٠       | 7.9    | 0     |  |
| HCM Lane LOS             |        | ပ     | ٠       | •       | ⋖      | ⋖     |  |
| - /C 11/2 11/2 11/2      |        |       |         |         |        |       |  |

5:00 pm Baseline Synchro 10 Report Page 1

#### HCM Signalized Intersection Capacity Analysis 10: Kamamalu St & Mamalahoa Hwy

apacity Analysis 2031 With Project PM 96/22/2022 96/22/2022

|                                   | †           | <i>&gt;</i> | <b>&gt;</b> | ţ     | •                    | •                         |      |
|-----------------------------------|-------------|-------------|-------------|-------|----------------------|---------------------------|------|
| Movement                          | EBT         | EBR         | WBL         | WBT   | В                    | NBR                       |      |
| Lane Configurations               | ₩           |             |             | 4.14  | M.                   | R.                        |      |
| Traffic Volume (vph)              | 1147        | 210         | 21          | 632   | 339                  | 31                        |      |
| Future Volume (vph)               | 1147        | 210         | 51          | 632   | 339                  | 31                        |      |
| Ideal Flow (vphpl)                | 1900        | 1900        | 1900        | 1900  | 1900                 | 1900                      |      |
| Total Lost time (s)               | 2.0         |             |             | 2.0   | 2.0                  | 2.0                       |      |
| Lane Util. Factor                 | 0.95        |             |             | 0.95  | 1.00                 | 1.00                      |      |
| Frpb, ped/bikes                   | 1.00        |             |             | 1.00  | 1.00                 | 0.99                      |      |
| Flpb, ped/bikes                   | 1.00        |             |             | 1.00  | 1.00                 | 1.00                      |      |
| Frt                               | 0.98        |             |             | 1.00  | 1.00                 | 0.85                      |      |
| Flt Protected                     | 1.00        |             |             | 1.00  | 0.95                 | 1.00                      |      |
| Satd. Flow (prot)                 | 3445        |             |             | 3534  | 1770                 | 1563                      |      |
| Flt Permitted                     | 1.00        |             |             | 0.79  | 0.95                 | 1.00                      |      |
| Satd. Flow (perm)                 | 3445        |             |             | 2799  | 1770                 | 1563                      |      |
| Peak-hour factor, PHF             | 06.0        | 06.0        | 06.0        | 06.0  | 0.72                 | 0.72                      |      |
| Adj. Flow (vph)                   | 1274        | 233         | 23          | 702   | 471                  | 43                        |      |
| RTOR Reduction (vph)              | 48          | 0           | 0           | 0     | 0                    | 17                        |      |
| Lane Group Flow (vph)             | 1489        | 0           | 0           | 725   | 471                  | 26                        |      |
| Confl. Peds. (#/hr)               |             | -           | -           |       |                      | 2                         |      |
| Confl. Bikes (#/hr)               |             | -           |             |       |                      |                           |      |
| Turn Type                         | Α           |             | pm+pt       | ΑN    | Prot                 | vo+mq                     |      |
| Protected Phases                  | 4           |             | က           | ∞     | 2                    | က                         |      |
| Permitted Phases                  |             |             | ∞           |       |                      | 2                         |      |
| Actuated Green, G (s)             | 36.3        |             |             | 1.4   | 22.3                 | 25.1                      |      |
| Effective Green, g (s)            | 36.3        |             |             | 1.4   | 22.3                 | 25.1                      |      |
| Actuated g/C Ratio                | 0.48        |             |             | 0.58  | 0.29                 | 0.33                      |      |
| Clearance Time (s)                | 2.0         |             |             | 2.0   | 2.0                  | 2.0                       |      |
| Vehicle Extension (s)             | 3.0         |             |             | 3.0   | 3.0                  | 3.0                       |      |
| Lane Grp Cap (vph)                | 1636        |             |             | 1642  | 516                  | 615                       |      |
| v/s Ratio Prot                    | c0.43       |             |             | c0.02 | c0.27                | 0.00                      |      |
| v/s Ratio Perm                    |             |             |             | 0.24  |                      | 0.01                      |      |
| v/c Ratio                         | 0.91        |             |             | 0.44  | 0.91                 | 0.04                      |      |
| Uniform Delay, d1                 | 18.5        |             |             | 9.5   | 26.1                 | 17.5                      |      |
| Progression Factor                | 1.00        |             |             | 1.00  | 1.00                 | 1.00                      |      |
| Incremental Delay, d2             | 7.8         |             |             | 0.2   | 20.5                 | 0.0                       |      |
| Delay (s)                         | 26.4        |             |             | 9.4   | 46.6                 | 17.5                      |      |
| Level of Service                  | ပ           |             |             | ∢     | ۵                    | В                         |      |
| Approach Delay (s)                | 26.4        |             |             | 9.4   | 44.2                 |                           |      |
| Approach LOS                      | ပ           |             |             | ∢     | □                    |                           |      |
| Intersection Summary              |             |             |             |       |                      |                           |      |
| HCM 2000 Control Delay            |             |             | 25.2        | Ī     | 000C M               | HCM 2000 Level of Service | ر    |
| HCM 2000 Volume to Capacity ratio | acity ratio |             | 06.0        | É     | 1MI 2000             | revel of Service          | ٥    |
| Actuated Cycle Length (s)         |             |             | 76.4        | S     | Sum of lost time (s) | time (s)                  | 15.0 |
| Intersection Capacity Utilization | ation       |             | 65.5%       | 0     | U Level o            | ICU Level of Service      | O    |
| Analysis Period (min)             |             |             | 15          |       |                      |                           |      |
| Critical Long Croup               |             |             |             |       |                      |                           |      |

c Critical Lane Group

5:00 pm Baseline

Synchro 10 Report Page 2

HCM 6th TWSC 20: KOKA Main Driveway & Hiiaka St

2031 With Project PM 06/22/2022

| Intersection             |        |       |        |      |        |      |  |
|--------------------------|--------|-------|--------|------|--------|------|--|
| Int Delay, s/veh         | 1.5    |       |        |      |        |      |  |
| Movement                 | EBT    | EBR   | WBL    | WBT  | NBL    | NBR  |  |
| Lane Configurations      | æ      |       |        | 4    | >      |      |  |
| Traffic Vol, veh/h       | 146    | 7     | 33     | 54   | 2      | 3    |  |
| Future Vol, veh/h        | 146    | 5     | 33     | 54   | 7      | 3    |  |
| Conflicting Peds, #/hr   |        | 0     | 0      | 0    | 0      | 0    |  |
| Sign Control             | Free   | Free  | Free   | Free | Stop   | Stop |  |
| RT Channelized           | •      | None  | ٠      | None | •      | None |  |
| Storage Length           |        | ٠     | ٠      | ٠    | 0      | •    |  |
| Veh in Median Storage, # | 0 #    | ٠     | ٠      | 0    | 0      | •    |  |
| Grade, %                 |        | ٠     | ٠      | 0    | 0      | •    |  |
| Peak Hour Factor         | 2      | 2     | 7      | 7    | 63     | 63   |  |
| Heavy Vehicles, %        | 0      | 0     | 0      | 0    | 0      | 0    |  |
| Mvmt Flow                | 500    | က     | 46     | 35   | 3      | 5    |  |
|                          |        |       |        |      |        |      |  |
| Major/Minor M            | Major1 | 2     | Major2 | 2    | Minor1 |      |  |
| Conflicting Flow All     | 0      | 0     | 212    | 0    | 337    | 211  |  |
| Stage 1                  | ٠      | ٠     | ٠      | ٠    | 211    | •    |  |
| Stage 2                  | ٠      | ٠     | ٠      | ٠    | 126    | •    |  |
| Critical Hdwy            | ٠      | ٠     | 4.1    | ٠    | 6.4    | 6.2  |  |
| Critical Hdwy Stg 1      | ٠      | ٠     | ٠      | ٠    | 5.4    | •    |  |
| Critical Hdwy Stg 2      | •      | •     | ٠      | ٠    | 2.4    | •    |  |
| Follow-up Hdwy           | ٠      | •     | 2.2    | ٠    | 3.5    | 3.3  |  |
| Pot Cap-1 Maneuver       | •      | •     | 1370   | •    | 993    | 834  |  |
| Stage 1                  |        |       | ٠      | ٠    | 829    |      |  |
| Stage 2                  | ٠      | ٠     | ٠      | ٠    | 902    | •    |  |
| Platoon blocked, %       | ٠      | ٠     |        | ٠    |        |      |  |
| Mov Cap-1 Maneuver       | •      | •     | 1370   | ٠    | 940    | 834  |  |
| Mov Cap-2 Maneuver       | ٠      | ٠     | ٠      | ٠    | 940    | •    |  |
| Stage 1                  | •      | •     | ٠      | ٠    | 829    | •    |  |
| Stage 2                  | ٠      | ٠     | ٠      | ٠    | 874    |      |  |
|                          |        |       |        |      |        |      |  |
| Approach                 | EB     |       | WB     |      | NB     |      |  |
| HCM Control Delay, s     | 0      |       | 4.5    |      | 6.6    |      |  |
| HCM LOS                  |        |       |        |      | ∢      |      |  |
|                          |        |       |        |      |        |      |  |
| Minor Lane/Major Mvmt    |        | NBLn1 | EBT    | EBR  | WBL    | WBT  |  |
| Capacity (veh/h)         |        | 744   | ٠      | ٠    | 1370   |      |  |
| HCM Lane V/C Ratio       |        | 0.011 | ٠      | ٠    | 0.034  | •    |  |
| HCM Control Delay (s)    |        | 6.6   | ٠      | ٠    | 7.7    | 0    |  |
| HCM Lane LOS             |        | ⋖     | ٠      | ٠    | ∢      | А    |  |
| HCM 95th %tile Q(veh)    |        | 0     | •      | •    | 0.1    | •    |  |

5:00 pm Baseline

HCM 6th TWSC 30: KOKA Eastern Driveway & Aniahua Alanui

|              |                  | NBR      |                     | 0                  | 0                 | 0                      | Stop         | None           |                | ٠                        |          | 92               | 2                 | 0         |               | 165                  | ٠       | ٠       | 6.22          | ٠                   | ٠                   | 3.318          | 879                | ٠       |         |                    | 878                |                    | •       |         |          |                      |         | WBT                   |                  | ٠                  | 0                     | ⋖            | 1                     |
|--------------|------------------|----------|---------------------|--------------------|-------------------|------------------------|--------------|----------------|----------------|--------------------------|----------|------------------|-------------------|-----------|---------------|----------------------|---------|---------|---------------|---------------------|---------------------|----------------|--------------------|---------|---------|--------------------|--------------------|--------------------|---------|---------|----------|----------------------|---------|-----------------------|------------------|--------------------|-----------------------|--------------|-----------------------|
|              |                  | NBL      | >                   | 0                  | 0                 | 0                      | Stop         | ٠              | 0              | 0                        | 0        | 95               | 7                 | 0         | Minor1        | 273                  | 165     | 108     | 6.42          | 5.45                | 5.45                | 3.518          | 716                | 864     | 916     |                    | 269                | 697                | 863     | 893     | R        | 0                    | ⋖       | WBL                   | 1412             | 0.024              | 9.7                   | ⋖            | 0.1                   |
|              |                  | WBT      | 4                   | 39                 | 33                | 0                      | Free         | None           | ٠              | 0                        | 0        | 26               | 2                 | 40        | 2             | 0                    | ٠       | ٠       | ٠             | ٠                   | ٠                   | ٠              | ٠                  | ٠       | ٠       | ٠                  | ٠                  | ٠                  | •       | ٠       |          |                      |         | EBR                   | ٠                | ٠                  | ٠                     | ٠            | •                     |
|              |                  | WBL      |                     | 33                 | 33                | _                      | Free         | ٠              | ٠              | ٠                        | ٠        | 97               | 7                 | 34        | Major2        | 165                  | ٠       | ٠       | 4.12          | ٠                   | ٠                   | - 2.218        | 1413               | ٠       | ٠       |                    | 1412               | ٠                  | •       | ٠       | WB       | 3.5                  |         | EBT                   | ٠                | ٠                  | ٠                     | ٠            | •                     |
|              |                  | EBR      |                     | 0                  | 0                 | -                      | Free         | None           | ٠              | ٠                        | ٠        | 92               | 2                 | 0         | ~             | 0                    | ٠       | ٠       | ٠             | ٠                   | •                   | ٠              | ٠                  | ٠       | •       | 1                  | •                  |                    | •       | ٠       |          |                      |         | NBLn1                 |                  | ٠                  | 0                     | ⋖            | •                     |
|              | 1.               | EBT      | 2                   | 156                | 156               | 0                      | Free         | ٠              |                | 0 #                      | 0        | 92               | 7                 | 164       | Major1        | 0                    | ٠       | ٠       | ٠             | ٠                   | ٠                   | ٠              | ٠                  | ٠       | ٠       | ٠                  | ٠                  | ٠                  | •       | ٠       | B        | 0                    |         |                       |                  |                    |                       |              |                       |
| Intersection | Int Delay, s/veh | Movement | Lane Configurations | Traffic Vol, veh/h | Future Vol, veh/h | Conflicting Peds, #/hr | Sign Control | RT Channelized | Storage Length | Veh in Median Storage, # | Grade, % | Peak Hour Factor | Heavy Vehicles, % | Mvmt Flow | Major/Minor N | Conflicting Flow All | Stage 1 | Stage 2 | Critical Hdwy | Critical Hdwy Stg 1 | Critical Hdwy Stg 2 | Follow-up Hdwy | Pot Cap-1 Maneuver | Stage 1 | Stage 2 | Platoon blocked, % | Mov Cap-1 Maneuver | Mov Cap-2 Maneuver | Stage 1 | Stage 2 | Approach | HCM Control Delay, s | HCM LOS | Minor Lane/Major Mvmt | Capacity (veh/h) | HCM Lane V/C Ratio | HCM Control Delay (s) | HCM Lane LOS | HCM 95th %tile Q(veh) |

Synchro 10 Report Page 4 5:00 pm Baseline

HCM 6th TWSC 40: Mana Rd & Mamalahoa Hwy

2031 With Project PM 06/22/2022

2031 With Project PM 06/22/2022

| Intersection             |        |             |         |      |        |       |     |
|--------------------------|--------|-------------|---------|------|--------|-------|-----|
| Int Delay, s/veh         | 2.7    |             |         |      |        |       |     |
| Movement                 | EBT    | EBR         | WBL     | WBT  | NBL    | NBR   |     |
| Lane Configurations      | £,     |             | *       | *    | ×      | R.    |     |
| Traffic Vol, veh/h       | 1082   | 53          | 75      | 463  | 50     | 138   |     |
| Future Vol, veh/h        | 1082   | 83          | 75      | 463  | 50     | 138   |     |
| Conflicting Peds, #/hr   | 0      | 0           | 0       | 0    | 0      | 0     |     |
| Sign Control             | Free   | Free        | Free    | Free | Stop   | Stop  |     |
| RT Channelized           | ٠      | None        | ٠       | None | ٠      | Stop  |     |
| Storage Length           | ٠      | ٠           | 99      | ٠    | 0      | 20    |     |
| Veh in Median Storage, # | 0 #    | ٠           | ٠       | 0    | 0      | ٠     |     |
| Grade, %                 | 0      | ٠           | ٠       | 0    | 0      | ٠     |     |
| Peak Hour Factor         | 92     | 92          | 11      | 11   | 83     | 83    |     |
| Heavy Vehicles, %        | 7      | 7           | 7       | 7    | 7      | 7     |     |
| Mvmt Flow                | 1139   | 31          | 97      | 601  | 24     | 166   |     |
|                          |        |             |         |      |        |       |     |
| Major/Minor N            | Major1 | _           | Major2  | 2    | Minor1 |       |     |
| Conflicting Flow All     | 0      | 0           | 1170    | 0    | 1950   | 1155  |     |
| Stage 1                  | ٠      |             |         | ٠    | 1155   | ٠     |     |
| Stage 2                  | •      | ٠           |         | ٠    | 795    | ٠     |     |
| Critical Hdwy            | ٠      |             | 4.12    | ٠    | 6.42   | 6.22  |     |
| Critical Hdwy Stg 1      | ٠      | ٠           | ٠       | ٠    | 5.45   | ٠     |     |
| Critical Hdwy Stg 2      | ٠      | •           | •       | ٠    | 5.45   | ٠     |     |
| Follow-up Hdwy           | ٠      | ٠           | - 2.218 | ٠    |        | 3.318 |     |
| Pot Cap-1 Maneuver       | •      | ٠           | 262     | •    | 7      | 240   |     |
| Stage 1                  | ٠      | ٠           | ٠       | ٠    | 300    | ٠     |     |
| Stage 2                  | •      | ٠           | ٠       | •    | 445    | ٠     |     |
| Platoon blocked, %       | ٠      | ٠           |         | ٠    |        |       |     |
| Mov Cap-1 Maneuver       | ٠      | •           | 297     | ٠    | 26     | 240   |     |
| Mov Cap-2 Maneuver       | ٠      | ٠           | ٠       | ٠    | 29     | ٠     |     |
| Stage 1                  | •      | ٠           | •       | •    | 300    | ٠     |     |
| Stage 2                  | ٠      | ٠           | •       | ٠    | 373    | ٠     |     |
|                          |        |             |         |      |        |       |     |
| Approach                 | EB     |             | WB      |      | NB     |       |     |
| HCM Control Delay, s     | 0      |             | 1.7     |      | 22     |       |     |
| HCM LOS                  |        |             |         |      | ш      |       |     |
|                          |        |             |         |      |        |       |     |
| Minor Lane/Major Mvmt    |        | NBLn1 NBLn2 | ABLn2   | EBT  | EBR    | WBL   | WBT |
| Capacity (veh/h)         |        | 29          | 240     | ٠    | ٠      | 297   |     |
| HCM Lane V/C Ratio       |        | 0.408 0.693 | 0.693   | ٠    | ٠      | 0.163 | •   |
| HCM Control Delay (s)    |        | 103         | 48.1    | •    | •      | 12.2  |     |
| HCM Lane LOS             |        | ш           | ш       | ٠    | ٠      | മ     | •   |
| HCM 95th %tile Q(veh)    |        | 1.5         | 4.5     | •    | •      | 9.0   |     |
|                          |        |             |         |      |        |       |     |

Synchro 10 Report Page 5 5:00 pm Baseline

2031 With Project PM

2031 With Project PM 06/22/2022

HCM 6th Signalized Intersection Summary 40: Mana Rd & Mamalahoa Hwy

| Int Delay, s/veh<br>Movement<br>Lane Configurations | 6.9    |             | į      | Ta/W | NBL    | agin  |     |
|-----------------------------------------------------|--------|-------------|--------|------|--------|-------|-----|
| Movement<br>Lane Configurations                     |        |             |        | Ta/M | NBL    | NBD   |     |
| Lane Configurations                                 | EBT    | EBR         | WBL    | WDI  |        | יוטעו |     |
|                                                     | æ.     |             | ×      | *    | K      | R.    |     |
| Traffic Vol, veh/h                                  | 1082   | 53          | 75     | 0    | 20     | 138   |     |
| Future Vol, veh/h                                   | 1082   | 53          | 75     | 0    | 50     | 138   |     |
| Conflicting Peds, #/hr                              | 0      | 0           | 0      |      | 0      | 0     |     |
| Sign Control                                        | Free   | Free        | Free   |      | Stop   | Stop  |     |
| RT Channelized                                      | •      | None        | •      | None | •      | Stop  |     |
| Storage Length                                      |        | ٠           | 9      | ٠    | 0      | 20    |     |
| Veh in Median Storage, #                            | 0 #.   | ٠           | ٠      | 0    | 0      | ٠     |     |
| Grade, %                                            | 0      | ٠           |        | 0    | 0      |       |     |
| Peak Hour Factor                                    | 92     | 92          | 11     | 11   | 8      | 83    |     |
| Heavy Vehicles, %                                   | 7      | 7           | 7      | 7    | 7      | 7     |     |
| Mvmt Flow                                           | 1139   | 34          | 97     | 0    | 54     | 166   |     |
|                                                     |        |             |        |      |        |       |     |
|                                                     | Major1 | _           | Major2 | 2    | Minor1 |       |     |
| Conflicting Flow All                                | 0      | 0           | 0 1170 | 0    | 0 1349 | 1155  |     |
| Stage 1                                             | ٠      | ٠           | •      | ٠    | 1155   | •     |     |
| Stage 2                                             | ٠      | ٠           | ٠      | ٠    | 194    |       |     |
| Critical Hdwy                                       | •      | •           | 4.12   | ٠    | 6.42   | 6.22  |     |
| Critical Hdwy Stg 1                                 | ٠      | ٠           | ٠      | ٠    | 5.45   |       |     |
| Critical Hdwy Stg 2                                 | ٠      | ٠           | ٠      | •    | 5.45   | •     |     |
| Follow-up Hdwy                                      | ٠      | ٠           | 2.218  | ٠    | 3.518  | 3.318 |     |
| Pot Cap-1 Maneuver                                  | ٠      | ٠           | 262    | •    | 166    | 240   |     |
| Stage 1                                             | ٠      | ٠           |        | ٠    | 300    |       |     |
| Stage 2                                             | ٠      | ٠           | ٠      | ٠    | 839    | ٠     |     |
| Platoon blocked, %                                  | ٠      | ٠           |        | ٠    |        |       |     |
| Mov Cap-1 Maneuver                                  | ٠      | ٠           | 297    | •    | 139    | 240   |     |
| Mov Cap-2 Maneuver                                  | ٠      | ٠           |        | ٠    | 139    |       |     |
| Stage 1                                             | ٠      | ٠           | ٠      | ٠    | 300    | ٠     |     |
| Stage 2                                             | •      | •           | •      | ٠    | 703    | •     |     |
| Annroach                                            | H      |             | W      |      | ä      |       |     |
| HCM Control Delay, s                                |        |             | 12.2   |      | 46.6   |       |     |
| HCM LOS                                             |        |             |        |      | ш      |       |     |
|                                                     |        |             |        |      |        |       |     |
| Minor Lane/Major Mvmt                               |        | NBLn1 NBLn2 | JBLn2  | EBT  | EBR    | WBL   | WBT |
| Capacity (veh/h)                                    |        | 139         | 240    |      |        | 262   |     |
| HCM Lane V/C Ratio                                  |        | 0 173 0 693 | 0.693  | ٠    | ٠      | 0.163 |     |
| HCM Control Delay (s)                               |        | 36.3        | 48.1   |      | ٠      | 12.2  |     |
| HCM Lane LOS                                        |        | ш           | ш      | ٠    | ٠      | Ф     | •   |
| HCM 95th %tile Q(veh)                               |        | 9.0         | 4.5    | •    | •      | 9.0   |     |

| Synchro 10 Report | Page 1 |
|-------------------|--------|
|                   |        |

5:00 pm Baseline

| •           | NBR          | 'n.                 | 138    | 138                        | 0                   | 1.00                | 1.00                  |         | 1870      | 166                       | 0.83                  | 2    | 282 | 0.12                 | 1585                 | 166                  | 1585                     | 7.8                 | 7.8                       | 1.00         | 282                    | 0.59              | 437                   | 1.00                   | 1.00      | 30.8 | 2.0                        | 0.0 | 2.9                          |           | 32.7         | رد |     |                            |              | 8                    | 66.4                     | 5.0                     | 62.0                        | 11.5                         | 4.0                     |                      |                        |
|-------------|--------------|---------------------|--------|----------------------------|---------------------|---------------------|-----------------------|---------|-----------|---------------------------|-----------------------|------|-----|----------------------|----------------------|----------------------|--------------------------|---------------------|---------------------------|--------------|------------------------|-------------------|-----------------------|------------------------|-----------|------|----------------------------|-----|------------------------------|-----------|--------------|----|-----|----------------------------|--------------|----------------------|--------------------------|-------------------------|-----------------------------|------------------------------|-------------------------|----------------------|------------------------|
| <b>√</b>    | JBN          |                     | 3 20   |                            | 0                   | 1.00                | 1.00                  |         | . 0/81    | 24                        | 0.83                  | 2    | 219 | 0.12                 | 1781                 |                      | 1781                     |                     |                           |              | 219                    | 0.11              | 394                   | 1.00                   | 1.00      | 31.7 | 2 0.2                      |     | 3 0.4                        |           | 32.0         |    |     | 32                         | A C          | 4                    |                          |                         | 0                           |                              |                         |                      |                        |
| <u> </u>    | WBL WBT      |                     | 75 463 |                            | 0 0                 |                     | 1.00 1.00             |         | 1870 1870 |                           | 0.77 0.77             |      | •   | 0.05 0.75            | 1781 1870            | 97 601               | _                        | 1.3 9.5             | 1.3 9.5                   | 1.00         | ·                      | 0.49 0.43         | 210 1424              |                        | 1.00 1.00 |      | 1.9 0.2                    |     | 1.2 1.8                      |           | 23.1 3.8     |    | 869 | 6.5                        | 4            | 3 6                  | 9.4 57.0                 | 5.0 5.0                 | ۵,                          | 3.3 51.9                     |                         |                      |                        |
| <i>&gt;</i> | T EBR        | 4                   |        | 2 29                       | 0 0                 | 1.00                | 0 1.00                |         | #         |                           |                       | 2 2  |     | 4 0.64               | 2 49                 | 0 1170               | 0 1861                   |                     |                           | 0.03         | 0 1188                 |                   | 0 1188                |                        |           |      | 0 22.5                     |     | 0 22.0                       |           | 0 36.8       |    | 0   | 8                          |              | 2                    | 15.0                     | 20                      | 18.0                        | 8.6                          | 0.3                     |                      |                        |
| T           | Movement EBT | Lane Configurations | (L     | Future Volume (veh/h) 1082 | Initial Q (Qb), veh | Ped-Bike Adj(A_pbT) | Parking Bus, Adj 1 00 | pproach | -         | Adj Flow Rate, veh/h 1139 | Peak Hour Factor 0.95 | h, % |     | Arrive On Green 0.64 | Sat Flow, veh/h 1812 | Grp Volume(v), veh/h | Grp Sat Flow(s),veh/h/ln | Q Serve(g_s), s 0.0 | Cycle Q Clear(g_c), s 0.0 | Prop In Lane | Lane Grp Cap(c), veh/h | V/C Ratio(X) 0.00 | Avail Cap(c_a), veh/h | HCM Platoon Ratio 1.00 | J         | eh   | Incr Delay (d2), s/veh 0.0 |     | %ile BackOfQ(50%),veh/ln 0.0 | ay, s/veh | y(d),s/veh 0 |    | •   | Approach Delay, s/veh 36.8 | Approach LOS | Timer - Assigned Phs | Phs Duration (G+Y+Rc), s | Change Period (Y+Rc), s | Max Green Setting (Gmax), s | Max Q Clear Time (g_c+l1), s | Green Ext Time (p_c), s | Intersection Summary | microconori Odillinary |

5:00 pm Baseline

HCM 6th TWSC 2: Future Homestead Road & Hiiaka St

2041 With Project AM 06/21/2022

| acito constant           |        |       |                                         |      |        |       |   |
|--------------------------|--------|-------|-----------------------------------------|------|--------|-------|---|
| Intersection             | 0      |       |                                         |      |        |       |   |
| Int Delay, s/ven         | 7.0    |       |                                         |      |        |       |   |
| Movement                 | EBT    | EBR   | WBL                                     | WBT  | NBL    | NBR   |   |
| Lane Configurations      | Ž,     |       |                                         | 4    | >      |       | ı |
| Traffic Vol, veh/h       | 110    | 138   | ======================================= | 185  | 34     | 14    |   |
| Future Vol, veh/h        | 110    | 138   | 1                                       | 185  | 34     | 14    |   |
| Conflicting Peds, #/hr   | 0      | 0     | 0                                       | 0    | 0      | 0     |   |
|                          | Free   | Free  | Free                                    | Free | Stop   | Stop  |   |
| RT Channelized           | ٠      | None  | ٠                                       | None | •      | None  |   |
| Storage Length           |        | ٠     | ٠                                       | ٠    | 0      | •     |   |
| Veh in Median Storage, # | 0 #    | ٠     | ٠                                       | 0    | 0      | •     |   |
| Grade, %                 | 0      | ٠     | ٠                                       | 0    | 0      |       |   |
| Peak Hour Factor         | 92     | 92    | 92                                      | 92   | 92     | 92    |   |
| Heavy Vehicles, %        | 7      | 7     | 7                                       | 2    | 2      | 2     |   |
| Mvmt Flow                | 120    | 150   | 121                                     | 201  | 37     | 15    |   |
|                          |        |       |                                         |      |        |       |   |
| Major/Minor Ma           | Major1 | _     | Major2                                  | _    | Minor1 |       |   |
| Conflicting Flow All     | 0      | 0     | 270                                     | 0    | 638    | 195   | ı |
| Stage 1                  | •      | ٠     | ٠                                       | ٠    | 195    |       |   |
| Stage 2                  | ٠      | ٠     | ٠                                       | ٠    | 443    |       |   |
| Critical Hdwy            | •      | ٠     | 4.12                                    | ٠    | 6.42   | 6.22  |   |
| Critical Hdwy Stg 1      | ٠      | ٠     | ٠                                       | ٠    | 5.42   | •     |   |
| Critical Hdwy Stg 2      | ٠      | ٠     | ٠                                       | ٠    |        | •     |   |
| Follow-up Hdwy           | ٠      | ٠     | 2.218                                   | ٠    |        | 3.318 |   |
| Pot Cap-1 Maneuver       | •      | ٠     | 1293                                    | ٠    | 44     | 846   |   |
| Stage 1                  | ٠      | ٠     | ٠                                       | ٠    | 838    | •     |   |
| Stage 2                  | •      | •     | •                                       | ٠    | 647    | •     |   |
| Platoon blocked, %       | ٠      | ٠     |                                         | ٠    |        |       |   |
| Mov Cap-1 Maneuver       | •      | •     | 1293                                    | ٠    | 392    | 846   |   |
| Mov Cap-2 Maneuver       | ٠      | ٠     | ٠                                       | ٠    | 395    | •     |   |
| Stage 1                  | •      | ٠     | •                                       | ٠    | 838    | •     |   |
| Stage 2                  |        | ٠     | ٠                                       | ٠    | 226    |       |   |
|                          |        |       |                                         |      |        |       |   |
| Approach                 | EB     |       | WB                                      |      | NB     |       |   |
| HCM Control Delay, s     | 0      |       | က                                       |      | 13.7   |       |   |
| HCM LOS                  |        |       |                                         |      | മ      |       |   |
|                          |        |       |                                         |      |        |       |   |
| Minor Lane/Major Mvmt    | Z      | NBLn1 | EBT                                     | EBR  | WBL    | WBT   |   |
| Capacity (veh/h)         |        | 468   | ٠                                       | ٠    | 1293   |       |   |
| HCM Lane V/C Ratio       | _      | 0.111 | ٠                                       | ٠    | 0.093  | •     |   |
| HCM Control Delay (s)    |        | 13.7  | ٠                                       | ٠    | 8.1    | 0     |   |
| HCM Lane LOS             |        | Ф     | ٠                                       | ٠    | ⋖      | A     |   |
| HCM 95th %tile Q(veh)    |        | 0.4   | •                                       | •    | 0.3    |       |   |
|                          |        |       |                                         |      |        |       |   |

Synchro 10 Report Page 1 5:00 pm Baseline

HCM Signalized Intersection Capacity Analysis 10: Kamamalu St & Mamalahoa Hwy

2041 With Project AM 06/21/2022

|                                   | †         | 1    | -     | ļ     | •                    | •                         |      |
|-----------------------------------|-----------|------|-------|-------|----------------------|---------------------------|------|
| Movement                          | EBT       | EBR  | WBL   | WBT   | NBL                  | NBR                       |      |
| Lane Configurations               | <b>₩</b>  |      |       | ₩.₽   | je.                  | R.                        |      |
| Traffic Volume (vph)              | 288       | 259  | 31    | 1261  | 219                  | 20                        |      |
| Future Volume (vph)               | 288       | 259  | 31    | 1261  | 219                  | 20                        |      |
| Ideal Flow (vphpl)                | 1900      | 1900 | 1900  | 1900  | 1900                 | 1900                      |      |
| Total Lost time (s)               | 2.0       |      |       | 2.0   | 2.0                  | 5.0                       |      |
| Lane Util. Factor                 | 0.95      |      |       | 0.95  | 1.00                 | 1.00                      |      |
| Frpb, ped/bikes                   | 0.99      |      |       | 1.00  | 1.00                 | 66.0                      |      |
| Flpb, ped/bikes                   | 1.00      |      |       | 1.00  | 1.00                 | 1.00                      |      |
| Fr                                | 0.95      |      |       | 1.00  | 1.00                 | 0.85                      |      |
| Fit Protected                     | 1.00      |      |       | 1.00  | 0.95                 | 1.00                      |      |
| Satd. Flow (prot)                 | 3353      |      |       | 3535  | 1770                 | 1565                      |      |
| Flt Permitted                     | 1.00      |      |       | 0.85  | 0.95                 | 1.00                      |      |
| Satd. Flow (perm)                 | 3353      |      |       | 3018  | 1770                 | 1565                      |      |
| Peak-hour factor, PHF             | 0.71      | 0.71 | 0.89  | 0.89  | 0.65                 | 0.65                      |      |
| Adj. Flow (vph)                   | 828       | 365  | 32    | 1417  | 337                  | 11                        |      |
| RTOR Reduction (vph)              | 73        | 0    | 0     | 0     | 0                    | 36                        |      |
| Lane Group Flow (vph)             | 1120      | 0    | 0     | 1452  | 337                  | 41                        |      |
| Confl Peds (#/hr)                 |           | 2    | 2     |       |                      | 2                         |      |
| Turn Type                         | ¥         |      | pm+pt | Α     | Prot                 | vo+md                     |      |
| Protected Phases                  | 4         |      | က     | ∞     | 2                    | က                         |      |
| Permitted Phases                  |           |      | 80    |       |                      | 5                         |      |
| Actuated Green, G (s)             | 25.7      |      |       | 33.5  | 14.8                 | 17.6                      |      |
| Effective Green, g (s)            | 25.7      |      |       | 33.5  | 14.8                 | 17.6                      |      |
| Actuated g/C Ratio                | 0.44      |      |       | 0.57  | 0.25                 | 0.30                      |      |
| Clearance Time (s)                | 2.0       |      |       | 2.0   | 2.0                  | 5.0                       |      |
| Vehicle Extension (s)             | 3.0       |      |       | 3.0   | 3.0                  | 3.0                       |      |
| Lane Grp Cap (vph)                | 1478      |      |       | 1759  | 449                  | 909                       |      |
| v/s Ratio Prot                    | 0.33      |      |       | c0.04 | c0.19                | 0.00                      |      |
| v/s Ratio Perm                    |           |      |       | c0.43 |                      | 0.02                      |      |
| v/c Ratio                         | 0.76      |      |       | 0.83  | 0.75                 | 20.0                      |      |
| Uniform Delay, d1                 | 13.7      |      |       | 10.0  | 20.0                 | 14.5                      |      |
| Progression Factor                | 1.00      |      |       | 1.00  | 1.00                 | 1.00                      |      |
| Incremental Delay, d2             | 2.3       |      |       | 3.3   | 6.9                  | 0.0                       |      |
| Delay (s)                         | 16.0      |      |       | 13.3  | 27.0                 | 14.5                      |      |
| Level of Service                  | മ         |      |       | മ     | ပ                    | Ф                         |      |
| Approach Delay (s)                | 16.0      |      |       | 13.3  | 24.7                 |                           |      |
| Approach LOS                      | В         |      |       | ω     | ပ                    |                           |      |
| Intersection Summary              |           |      |       |       |                      |                           |      |
| HCM 2000 Control Delay            |           |      | 15.9  | ĭ     | CM 2000              | HCM 2000 Level of Service | В    |
| HCM 2000 Volume to Capacity ratio | ity ratio |      | 0.89  |       |                      |                           |      |
| Actuated Cycle Length (s)         |           |      | 58.3  | જ     | Sum of lost time (s) | time (s)                  | 15.0 |
| Intersection Capacity Utilization | ion       |      | 77.7% | ೦     | U Level o            | ICU Level of Service      | D    |
| Analysis Period (min)             |           |      | 15    |       |                      |                           |      |
| c Critical Lane Group             |           |      |       |       |                      |                           |      |

5:00 pm Baseline

HCM 6th TWSC 20: KOKA Main Driveway & Hijaka St

2041 With Project AM 06/21/2022

HCM 6th TWSC 30: KOKA Eastern Driveway & Aniahua Alanui

2041 With Project AM 06/21/2022

| Intersection             |        |      |         |      |        |      |  |
|--------------------------|--------|------|---------|------|--------|------|--|
| Int Delay, s/veh         | 7      |      |         |      |        |      |  |
| Movement                 | EBT    | EBR  | EBR WBL | WBT  | NBL    | NBR  |  |
| Lane Configurations      | ÷      |      |         | 4    | >      |      |  |
| Traffic Vol, veh/h       | 56     | 8    | 83      | 185  | 0      | 0    |  |
| Future Vol, veh/h        | 56     | 8    | 83      | 185  | 0      | 0    |  |
| Conflicting Peds, #/hr   | 0      | 2    | 2       | 0    | 0      | 0    |  |
| Sign Control             | Free   | Free | Free    | Free | Stop   | Stop |  |
| RT Channelized           | ٠      | None | ٠       | None |        | None |  |
| Storage Length           | ٠      | ٠    | ٠       | ٠    | 0      | ı    |  |
| Veh in Median Storage, # | 0 #    | ٠    | •       | 0    | 0      |      |  |
| Grade, %                 | 0      | ٠    | ٠       | 0    | 0      | ı    |  |
| Peak Hour Factor         | 29     | 29   | 29      | 20   | 99     | 09   |  |
| Heavy Vehicles, %        | 0      | 0    | 0       | 0    | 0      | 0    |  |
| Mvmt Flow                | 44     | 142  | 166     | 330  | 0      | 0    |  |
|                          |        |      |         |      |        |      |  |
| Major/Minor M            | Major1 | _    | Major2  | 2    | Minor1 |      |  |
| Conflicting Flow All     | 0      | 0    | 188     | 0    | 779    | 117  |  |
| Stage 1                  | ٠      |      | ٠       | ٠    | 117    | į    |  |
| Stage 2                  | ٠      | ٠    | ٠       | ٠    | 99     | Ē    |  |
| Critical Hdwy            | •      | •    | 4.1     | ٠    | 6.4    | 6.2  |  |
| Critical Hdwy Stg 1      | ٠      | ٠    | ٠       | ٠    | 5.4    | Ē    |  |
| Critical Hdwy Stg 2      | ٠      | •    | •       | ٠    | 5.4    |      |  |
| Follow-up Hdwy           | ٠      | ٠    | 2.2     | ٠    | 3.5    | 3.3  |  |
| Pot Cap-1 Maneuver       | ٠      | ٠    | 1398    | ٠    | 367    | 941  |  |
| Stage 1                  | ٠      | ٠    | ٠       | ٠    | 913    | Ē    |  |
| Stage 2                  | •      | ٠    | ٠       | ٠    | 217    | •    |  |
| Platoon blocked, %       | ٠      | ٠    |         | ٠    |        |      |  |
| Mov Cap-1 Maneuver       | •      | •    | 1395    | ٠    | 313    | 939  |  |
| Mov Cap-2 Maneuver       | ٠      | ٠    | ٠       | ٠    | 313    |      |  |
| Stage 1                  | ٠      | •    | •       | ٠    | 911    |      |  |
| Stage 2                  | ٠      | ٠    | ٠       | ٠    | 442    | Ē    |  |
|                          |        |      |         |      |        |      |  |
| Approach                 | EB     |      | WB      |      | NB     |      |  |
| HCM Control Delay, s     | 0      |      | 2.7     |      | 0      |      |  |
| HCM LOS                  |        |      |         |      | ⋖      |      |  |
|                          |        |      |         |      |        |      |  |

| Movement   EBT EBR WBL WBT NBR   NBR   NBR   Lane Confidentiations   P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Int Delay, s/veh       | 5.5   |       |        |      |        |       |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------|-------|--------|------|--------|-------|---|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Movement               | EBT   | EBR   | WBL    | WBT  | NBL    | NBR   | 2 |
| 26 0 1 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107   17 255 107     | Lane Configurations    | ÷     |       |        | 4    | >      |       |   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Traffic Vol, veh/h     | 56    |       | _      | 255  | 107    | 45    | 2 |
| Free Free Free Sup   None      | Future Vol, veh/h      | 56    |       | ~      | 255  | 107    | 42    | 2 |
| Free   Free   Free   Shop   199, #   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Conflicting Peds, #/hr | 0     | 0     | 0      | 0    | 0      | 0     |   |
| None      | Sign Control           | Free  |       | Free   | Free | Stop   | Stop  |   |
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RT Channelized         | ٠     | None  | ٠      | None |        | None  |   |
| Najor   Najo   | Storage Length         | ٠     | ٠     | ٠      | ٠    | 0      |       |   |
| 0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Veh in Median Storage, |       | ٠     | ٠      | 0    | 0      |       |   |
| Majort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Grade, %               | 0     | ٠     | •      | 0    | 0      | ٠     |   |
| 2   2   2   2   2   2   3   4   3   4   3   4   3   4   4   3   4   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Peak Hour Factor       | 09    | 09    | 09     | 99   | 22     | 22    | 2 |
| Majori                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Heavy Vehicles, %      | 7     | 7     | 7      | 7    | 7      | 7     |   |
| Major1   Major2   Minor1   Major2   Minor1   Major3   Minor1   Major3   Minor1   Major3   M   | Mvmt Flow              | 43    | 0     | 2      | 425  | 195    | 82    |   |
| Major1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |       |       |        |      |        |       |   |
| r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | ajor1 | _     | Najor2 | 2    | linor1 |       |   |
| r 4.12 - 4.42 - 4.42 - 4.42 - 4.42 - 4.42 - 4.42 - 4.42 - 4.42 - 4.42 - 4.42 - 4.42 - 4.42 - 4.42 - 4.42 - 4.42 - 4.42 - 4.42 - 4.42 - 4.42 - 4.42 - 4.42 - 4.42 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.43 - 4.44 - 4.44 - 4.44 - 4.44 - 4.44 - 4.44 - 4.44 - 4.44 - 4.44 - 4.44 - 4.44 - 4.44 - 4.44 - 4.44 - 4.44 - 4.44 - 4.44 - 4.44 - 4.44 - 4.44 - 4.44 - 4.44 - 4.44 - 4.44 - 4.44 - 4.44 - 4.44 - 4.44 -  | Conflicting Flow All   | 0     | 0     | 43     | 0    | 472    | 43    | 8 |
| r 4.12 - 4.29 4.12 - 5.42 2.218 - 3.518 r 1566 - 351 er 1566 er 1566 er 1566 er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stage 1                | ٠     | ٠     | ٠      | ٠    | 43     |       |   |
| r 4.12 - 6.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stage 2                | ٠     | ٠     | ٠      | ٠    | 429    |       |   |
| r 2.218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Critical Hdwy          | ٠     | ٠     | 4.12   | ٠    | 6.42   | 6.22  |   |
| r - 1542 - 542 r - 1566 - 547 er - 1566 - 550 er - 1566 - 1456 er - 1566 - 1566 - 1566 - 1566 - 1566 er - 1566 - 1566 - 1566  | Critical Hdwy Stg 1    | ٠     | ٠     | •      | ٠    | 5.42   |       |   |
| r - 2.218 - 3.518 r - 1566 - 551 er - 1566 - 557 er - 1566 - 550 er - 1566 - 1450 er - 1566 - 1566 - 1566 er - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 - 1566 | Critical Hdwy Stg 2    | ٠     | ٠     | ٠      | ٠    | 5.45   |       |   |
| Fr - 1566 - 551 102  er - 1566 - 550 102  er - 1566 - 550 102  er - 1566 - 550 102  FB WB NB NB  s 0 0 149  writ NBLn1 EBT EBR WBL WB  c 0.433 - 1566  en 0.433 - 0.001  (s) H9 - 7.3  eh) 2.2 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Follow-up Hdwy         | ٠     | ٠     | 2.218  | ٠    | 3.518  | 3.318 |   |
| er - 1566 - 550 102 er - 1566 - 1566 er - 1566 - 1566 er - 149 er | Pot Cap-1 Maneuver     | ٠     | ٠     | 1566   | ٠    | 221    | 1027  |   |
| er 657 102 er 1566 550 102 er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stage 1                | ٠     | ٠     | ٠      | ٠    | 979    | ٠     |   |
| er - 1566 - 550 102 er - 1566 - 550 102 er 1566 er 143 er 143 er 143 er 143 er 143 er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stage 2                | ٠     | ٠     | ٠      | ٠    | 657    |       |   |
| EB WB NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Platoon blocked, %     | ٠     | ٠     |        | ٠    |        |       |   |
| EB WB NB  O 0 14.9  NBLn1 EBT EBR WBL WB 638 - 1566 638 - 1566 0433 - 0.001 14.9 - 7.3  B - 7.3  2.2 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mov Cap-1 Maneuver     | ٠     | ٠     | 1566   | ٠    | 220    | 1027  |   |
| EB WB NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mov Cap-2 Maneuver     | ٠     | ٠     | ٠      | ٠    | 220    | •     | • |
| EB WB NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stage 1                | ٠     | •     | ٠      | •    | 979    | •     |   |
| 0 14.9 B B B B B B B B B B B B B B B B B B B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stage 2                | ٠     | ٠     | ٠      | ٠    | 929    | •     |   |
| EB WB NB<br>0 0 14.9<br>B B<br>NBLn1 EBT EBR WBL WB<br>638 - 1566<br>0.433 - 0.001<br>14.9 - 7.3<br>B - 7.3<br>B - 7.3<br>2.2 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |       |       |        |      |        |       |   |
| 0 0 14.9 B B B WBL WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Approach               | EB    |       | WB     |      | NB     |       |   |
| B NBLn1 EBT EBR WBL WB 638 - 1566 0.433 - 0.001 14.9 - 7.3 B B - 0.22 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HCM Control Delay, s   | 0     |       | 0      |      | 14.9   |       |   |
| NBLn1 EBT EBR WBL WB 638 - 1566 0.433 - 0.001 14,9 - 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HCM LOS                |       |       |        |      | Ф      |       |   |
| NBLn1 EBT EBR WBL WB<br>638 - 1566<br>0.433 - 0.001<br>14,9 - 7,3<br>B - 7,3<br>2,2 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |       |       |        |      |        |       |   |
| 638 - 1566<br>0.433 - 0.001<br>14,9 - 7.3<br>B - A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Minor Lane/Major Mvmt  |       | VBLn1 | EBT    | EBR  | WBL    | WBT   |   |
| 0.433 - 0.001<br>14.9 - 7.3<br>B - A<br>) 2.2 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Capacity (veh/h)       |       | 638   | ٠      | ٠    | 1566   |       |   |
| 14.9 - 7.3<br>B - A<br>0 2.2 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HCM Lane V/C Ratio     |       | 0.433 | ٠      | ٠    | 0.001  | ٠     |   |
| B A<br>2.2 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HCM Control Delay (s)  |       | 14.9  | ٠      | ٠    | 7.3    | 0     |   |
| 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HCM Lane LOS           |       | Ф     | ٠      | ٠    | ⋖      | ⋖     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HCM 95th %tile Q(veh)  |       | 2.2   | ٠      | •    | 0      |       |   |

5:00 pm Baseline

Synchro 10 Report Page 3

5:00 pm Baseline

NBLn1 EBT EBR WBL WBT

Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS HCM Bane LOS

2041 With Project AM 06/21/2022

|             |                  |          |                     |                    |                   |                        |              |                |                |                          |          |                  |                   |           |               |                      |         |         |               |                     |                     |                |                    |         |         |                    |                    |                    |         |         |          |                      |         |                       |                  |                    |                       |              |                       |       | *. All major volume in platfoon | . All Italy voiding in prawon |
|-------------|------------------|----------|---------------------|--------------------|-------------------|------------------------|--------------|----------------|----------------|--------------------------|----------|------------------|-------------------|-----------|---------------|----------------------|---------|---------|---------------|---------------------|---------------------|----------------|--------------------|---------|---------|--------------------|--------------------|--------------------|---------|---------|----------|----------------------|---------|-----------------------|------------------|--------------------|-----------------------|--------------|-----------------------|-------|---------------------------------|-------------------------------|
|             |                  | ~        |                     |                    |                   |                        |              |                |                |                          |          |                  |                   | ~         |               | _                    |         |         |               |                     |                     |                |                    |         |         |                    |                    |                    |         |         |          |                      |         | . WBT                 |                  |                    |                       |              | •                     |       | + Computation Not Defined       | וואחומות ואסו הפוווסס         |
|             |                  | NBR      | *                   | 29                 | 29                | 0                      |              | Stop           | 20             | ٠                        | ٠        | 46               | 2                 | 128       |               | 633                  |         |         | 6.22          |                     |                     | 3.318          |                    |         |         |                    | 480                | •                  |         | ۰       |          |                      |         | WBL                   | 942              | 0.272              | 10.2                  | ω            | 1.1                   |       | t.<br>Con                       | 5                             |
|             |                  | NBL      | *                   | 22                 | 22                | 0                      | Stop         |                | 0              | 0                        | 0        | 46               | 7                 | 48        | Minor1        | 2580                 | 633     | 1947    | 6.42          | 5.42                | 5.42                | 3.518          | ~ 28               | 529     | 122     |                    | ~ 20               | ~ 20               | 529     | 88      | 9        | 293                  | ш       | EBR                   |                  | ľ                  | •                     | ٠            | •                     |       |                                 |                               |
|             |                  | WBT      | *                   | 1220               | 1220              | 0                      | Free         | None           | ٠              | 0                        | 0        | 82               | 7                 | 1435      | _             | 0                    | ٠       | ٠       | ٠             | ٠                   | ٠                   | ٠              | ٠                  | ٠       | ٠       | ٠                  | ٠                  | ٠                  | ٠       | ٠       |          |                      |         | EBT                   |                  | ľ                  | ٠                     | •            | •                     |       | S. Delay exceeds 300s           | oc cnap                       |
|             |                  | WBL      | *                   | 218                | 218               | 0                      | Free         | ٠              | 09             | •                        | ٠        | 82               | 7                 | 256       | Major2        | 643                  | ٠       | ٠       | 4.12          | ٠                   | ٠                   | 2 2 1 8        | 942                | •       | ٠       |                    | 945                | ٠                  | ٠       | ٠       | WB       | 1.6                  |         | IBLn2                 | 480              | 0.267              | 15.2                  | ပ            | <u></u>               |       | ove ve                          | dy cvo                        |
|             |                  | EBR      |                     | 16                 | 16                | 0                      | Free         | None           | ٠              | ٠                        | ٠        | 9/               | 2                 | 77        | _             | 0                    | ٠       | ٠       | ٠             | ٠                   | ٠                   | ٠              | ٠                  | ٠       | ٠       | ٠                  | ٠                  | ٠                  | ٠       | ٠       |          |                      |         | NBLn1 NBLn2           | 8                | 2,391 0,267        | 1038.1                | щ            | 6.3                   |       | S.                              | ÷                             |
|             | 21.6             | EBT      | Ť,                  | 473                | 473               | 0                      | Free         | ٠              |                | 0 #                      |          | 9/               | 7                 | 622       | Major1        | 0                    | ٠       | ٠       | ٠             | ٠                   | ٠                   | •              | ٠                  | •       | ٠       | ٠                  | ٠                  | ٠                  | ٠       | ٠       | 出        | 0                    |         |                       |                  |                    | s<br>1                |              |                       |       | acity                           | dCity                         |
| Information | Int Delay, s/veh | Movement | Lane Configurations | Traffic Vol, veh/h | Future Vol, veh/h | Conflicting Peds, #/hr | Sign Control | RT Channelized | Storage Length | Veh in Median Storage, # | Grade, % | Peak Hour Factor | Heavy Vehicles, % | Mvmt Flow | Major/Minor M | Conflicting Flow All | Stage 1 | Stage 2 | Critical Hdwy | Critical Hdwy Stg 1 | Critical Hdwy Stg 2 | Follow-up Hdwy | Pot Cap-1 Maneuver | Stage 1 | Stage 2 | Platoon blocked, % | Mov Cap-1 Maneuver | Mov Cap-2 Maneuver | Stage 1 | Stage 2 | Approach | HCM Control Delay, s | HCM LOS | Minor Lane/Major Mvmt | Capacity (veh/h) | HCM Lane V/C Ratio | HCM Control Delay (s) | HCM Lane LOS | HCM 95th %tile Q(veh) | Notes | ~: Volume exceeds canacity      | י. Vuiuiila avuadus vap       |

Synchro 10 Report Page 5 5:00 pm Baseline

HCM 6th TWSC 40: Mana Rd & Mamalahoa Hwy

2041 With Project AM 06/21/2022

| Int Delay, s/veh         | 2.9    |             |         |      |         |       |     |
|--------------------------|--------|-------------|---------|------|---------|-------|-----|
| Movement                 | EBT    | EBR         | WBL     | WBT  | R       | NBR   |     |
| Lane Configurations      | ¢*     |             | *       | *    | F       | K     |     |
| Traffic Vol, veh/h       | 473    | 16          | 218     | 0    | 52      | 29    |     |
| Future Vol, veh/h        | 473    | 16          | 218     | 0    | 22      | 29    |     |
| Conflicting Peds, #/hr   | 0      | 0           | 0       | 0    | 0       | 0     |     |
| Sign Control             | Free   | Free        | Free    | Free | Stop    | Stop  |     |
| RT Channelized           | •      | None        | ٠       | None | •       | Stop  |     |
| Storage Length           | ٠      | ٠           | 99      | ٠    | 0       | 20    |     |
| Veh in Median Storage, # |        | ٠           |         | 0    | 0       | ٠     |     |
| Grade, %                 | 0      | ٠           | •       | 0    | 0       | ٠     |     |
| Peak Hour Factor         | 9/     | 9/          | 82      | ~    | 46      | 46    |     |
| Heavy Vehicles, %        | 2      | 7           | 2       |      | 7       | 7     |     |
| Mvmt Flow                | 622    | 21          | 256     | 0    | 48      | 128   |     |
|                          |        |             |         |      |         |       |     |
| Major/Minor              | Major1 |             | Major2  |      | Minor1  |       |     |
| Conflicting Flow All     | 0      | 0           | 643     | 0    | 1145    | 633   |     |
| Stage 1                  | ٠      | ٠           |         | ٠    | 633     | ٠     |     |
| Stage 2                  | ٠      | ٠           | •       | ٠    | 512     | ٠     |     |
| Critical Hdwy            | ٠      | ٠           | 4.12    | ٠    | 6.42    | 6.22  |     |
| Critical Hdwy Stg 1      | ٠      | ٠           | ٠       | ٠    | 5.45    | ٠     |     |
| Critical Hdwy Stg 2      | •      | ٠           | •       | ٠    | 5.42    | •     |     |
| Follow-up Hdwy           | ٠      | ٠           | - 2.218 | ٠    |         | (,)   |     |
| Pot Cap-1 Maneuver       | •      | •           | 945     | •    | 221     | 480   |     |
| Stage 1                  | ٠      | ٠           | ٠       | ٠    | 529     | ٠     |     |
| Stage 2                  | ٠      | ٠           |         | ٠    | 602     | ٠     |     |
| Platoon blocked, %       | ٠      | ٠           |         | ٠    |         |       |     |
| Mov Cap-1 Maneuver       | •      | •           | 945     | •    | 161     | 480   |     |
| Mov Cap-2 Maneuver       | ٠      |             | •       | ٠    | 161     |       |     |
| Stage 1                  | •      | •           | ٠       | •    | 529     | •     |     |
| Stage 2                  | ٠      | ٠           | ٠       | ٠    | 438     | ٠     |     |
|                          |        |             |         |      |         |       |     |
| Approach                 | EB     |             | WB      |      | NB      |       |     |
| HCM Control Delay, s     | 0      |             | 10.2    |      | 21      |       |     |
| HCM LOS                  |        |             |         |      | ပ       |       |     |
|                          |        |             |         |      |         |       |     |
| Minor Lane/Major Mvmt    |        | NBLn1 NBLn2 | VBLn2   | EBT  | EBR WBL | WBL   | WBT |
| Capacity (veh/h)         |        | 161         | 480     | ٠    | ٠       | 942   |     |
| HCM Lane V/C Ratio       |        | 0.297 0.267 | 0.267   | ٠    | ٠       | 0.272 | •   |
| HCM Control Delay (s)    |        | 36.5        | 15.2    | ٠    | ٠       | 10.2  | •   |
| HCM Lane LOS             |        | ш           | ပ       | ٠    | ٠       | В     | Ī   |
|                          |        |             |         |      |         |       |     |

Synchro 10 Report Page 1 5:00 pm Baseline

HCM 6th Signalized Intersection Summary 40: Mana Rd & Mamalahoa Hwy

2041 With Project AM 06/22/2022

| •           | NBR          | 'n.        | 29                        | 59       | 0                    | 1.00                | 1.00                  |                          | 1870      | 128 | 0.46                  | 2                    | 254 | 0.10                 | 1585                 | 128                    | 1585      | 7.2 | 7.2                       | 1.00         | 254                     | 0:50              | 395      | 1.00 | 1.00      | 37.2 | 1.5                       | 0.0 | 7.8                          | 38.8                         | 200      |             |              |                | 8                   | 82.7                     | 5.0                     | 82.0                        | 62.9                         | 11.7                    |   |                     |
|-------------|--------------|------------|---------------------------|----------|----------------------|---------------------|-----------------------|--------------------------|-----------|-----|-----------------------|----------------------|-----|----------------------|----------------------|------------------------|-----------|-----|---------------------------|--------------|-------------------------|-------------------|----------|------|-----------|------|---------------------------|-----|------------------------------|------------------------------|----------|-------------|--------------|----------------|---------------------|--------------------------|-------------------------|-----------------------------|------------------------------|-------------------------|---|---------------------|
| •           | NBL          |            | . 22                      |          | 0                    | 1.00                | 1.00                  |                          | . 0/81    | 48  | 0.46                  | 2                    | 172 | 0.10                 | 1781                 | 48                     | 1781 1    | 2.4 | 2.4                       | 1.00         | 172                     | 0.28              | 330      | 1.00 | 1.00      | 40.7 | 6.0                       | 0.0 |                              | 416                          | 2 0      | 176         | ľ            | Ω              |                     |                          |                         |                             |                              |                         |   |                     |
| <u>/</u> ↑  | WBL WBT      | *          | 218 1220                  | 218 1220 | 0 0                  |                     | 1.00 1.00             | <sub>N</sub>             | 1870 1870 | ľ   | 0.85 0.85             | 2 2                  | ·   | 0.00 0.80            | 1781 1870            |                        |           |     | 3.8 63.9                  |              | 595 1497                |                   | 721 1580 |      | 1.00 1.00 |      | 0.5 13.8                  |     | 0.9 17.0                     | 60 224                       | 0.0<br>A | 1691        | 19.6         | æ              | 3 4                 | 71                       |                         |                             | 5.8 18.2                     | 0.4 4.5                 |   |                     |
| <i>&gt;</i> | T EBR        |            |                           | 3 16     |                      |                     | 0 1.00                |                          | 18        |     | 92.0 9                |                      |     | 69.0                 | 9 61                 |                        |           |     |                           | 0.03         | 0 1274                  |                   | •        |      | 0 1.00    |      | 0.3                       |     |                              | 77                           |          |             | _            | 4              | 2                   | 14.4                     | 2.0                     | 18.0                        | 9.2                          | 0.3                     |   |                     |
| T           | Movement EB1 | igurations | raffic Volume (veh/h) 473 | h/h)     | nitial Q (Qb), veh 0 | Ped-Bike Adj(A_pbT) | Parking Bus, Adj 1.00 | Nork Zone On Approach No | _         |     | Peak Hour Factor 0.76 | Percent Heavy Veh, % |     | Arrive On Green 0.69 | Sat Flow, veh/h 1799 | 3rp Volume(v), veh/h 0 | .veh/h/In |     | Cycle Q Clear(g_c), s 0.0 | Prop In Lane | ane Grp Cap(c), veh/h 0 | //C Ratio(X) 0.00 | Ę        | 0    | J         | 뉴    | ncr Delay (d2), s/veh 0.0 |     | %ile BackOrQ(50%),veh/in 0.0 | nisig. Movement Delay, s/ven |          | ol, veh/h 6 | <del>ا</del> | Approach LOS A | imer - Assigned Phs | Phs Duration (G+Y+Rc), s | Change Period (Y+Rc), s | Max Green Setting (Gmax), s | Max Q Clear Time (g_c+I1), s | Sreen Ext Time (p_c), s | ; | ntersection Summary |

Synchro 10 Report Page 1 5:00 pm Baseline

HCM 6th TWSC 2: Future Homestead Road & Hiiaka St

2041 With Project PM 06/21/2022

| nt Delay s/yeh           | 0        |       |         |        |        |       |  |
|--------------------------|----------|-------|---------|--------|--------|-------|--|
|                          |          |       |         |        |        |       |  |
| Movement                 | EBT      | EBR   | WBL     | WBT    | NBL    | NBR   |  |
| Lane Configurations      | <b>2</b> |       |         | ₹      | >      |       |  |
| raffic Vol, veh/h        | 148      | 103   | 37      | 56     | 260    | 103   |  |
| -uture Vol, veh/h        | 148      | 103   | 37      | 56     | 260    | 103   |  |
| Conflicting Peds, #/hr   | 0        | 0     | 0       | 0      | 0      | 0     |  |
|                          | Free     | Free  | Free    | Free   | Stop   | Stop  |  |
| RT Channelized           | -        | None  | ٠       | - None | ٠      | None  |  |
| Storage Length           |          | ٠     | ٠       | ٠      | 0      | ٠     |  |
| /eh in Median Storage, # | 0        | ٠     | ٠       | 0      | 0      | ٠     |  |
| Grade, %                 |          | ٠     | •       | 0      | 0      | ٠     |  |
| Peak Hour Factor         | 95       | 92    | 92      | 92     | 92     | 92    |  |
| Heavy Vehicles, %        | 7        | 7     | 7       | 7      | 7      | 7     |  |
| Mvmt Flow                | 161      | 112   | 40      | 28     | 283    | 112   |  |
|                          |          |       |         |        |        |       |  |
| Major/Minor Ma           | Major1   | 2     | Major2  | 2      | Minor1 |       |  |
| Conflicting Flow All     | 0        | 0     | 273     | 0      | 325    | 217   |  |
| Stage 1                  | ٠        | ٠     | ٠       | ٠      | 217    | ٠     |  |
| Stage 2                  |          | ٠     | •       | ٠      | 108    | ٠     |  |
| Critical Hdwy            |          | ٠     | 4.12    | ٠      | 6.42   | 6.22  |  |
| Critical Hdwy Stg 1      |          | ٠     | ٠       | ٠      | 5.42   | ٠     |  |
| Critical Hdwy Stg 2      |          | ٠     | ٠       | ٠      | 5.42   | ٠     |  |
| Follow-up Hdwy           |          | ٠     | - 2.218 | ٠      | 3.518  | 3.318 |  |
| Pot Cap-1 Maneuver       |          | ٠     | 1290    | ٠      | 699    | 823   |  |
| Stage 1                  | ٠        | ٠     | ٠       | ٠      | 819    | ٠     |  |
| Stage 2                  |          | ٠     | •       | •      | 916    | •     |  |
| Platoon blocked, %       |          | ٠     |         | ٠      |        |       |  |
| Mov Cap-1 Maneuver       | ٠        | ٠     | 1290    | ٠      | 648    | 823   |  |
| Mov Cap-2 Maneuver       | ٠        | ٠     | ٠       | ٠      | 648    | ٠     |  |
| Stage 1                  |          | ٠     | •       | ٠      | 819    | ٠     |  |
| Stage 2                  | ٠        | ٠     | ٠       | ٠      | 887    | ٠     |  |
|                          |          |       |         |        |        |       |  |
| Approach                 | 8        |       | WB      |        | B      |       |  |
| HCM Control Delay, s     | 0        |       | 4.6     |        | 17     |       |  |
| HCM LOS                  |          |       |         |        | ပ      |       |  |
|                          |          |       |         |        |        |       |  |
| Minor Lane/Major Mvmt    | Ä        | NBLn1 | EBT     | EBR    | WBL    | WBT   |  |
| Capacity (veh/h)         |          | 069   | ٠       | ٠      | 1290   | ٠     |  |
| HCM Lane V/C Ratio       | 0        | 0.572 | ٠       | ٠      | 0.031  | ٠     |  |
| HCM Control Delay (s)    |          | 17    | ٠       | ٠      | 7.9    | 0     |  |
| HCM Lane LOS             |          | ပ     | ٠       | ٠      | ⋖      | ⋖     |  |
|                          |          |       |         |        |        |       |  |

Synchro 10 Report Page 1 5:00 pm Baseline

# HCM Signalized Intersection Capacity Analysis 10: Kamamalu St & Mamalahoa Hwy

2041 With Project PM 06/21/2022

|                                   | 1           | *    | -     | ļ     | •         | •                         |      |
|-----------------------------------|-------------|------|-------|-------|-----------|---------------------------|------|
| Movement                          | EBT         | EBR  | WBL   | WBT   | NBL       | NBR                       |      |
| -ane Configurations               | 413         |      |       | ₩.₽   | r         | R.                        |      |
| Traffic Volume (vph)              | 1363        | 210  | 21    | 752   | 339       | 31                        |      |
| -uture Volume (vph)               | 1363        | 210  | 21    | 752   | 339       | 31                        |      |
| Ideal Flow (vphpl)                | 1900        | 1900 | 1900  | 1900  | 1900      | 1900                      |      |
| Total Lost time (s)               | 2.0         |      |       | 2.0   | 2.0       | 2.0                       |      |
| Lane Util Factor                  | 0.95        |      |       | 0.95  | 1.00      | 1.00                      |      |
| Frpb, ped/bikes                   | 1.00        |      |       | 1.00  | 1.00      | 0.99                      |      |
| -Ipb, ped/bikes                   | 1.00        |      |       | 1.00  | 1.00      | 1.00                      |      |
| Į.                                | 0.98        |      |       | 1.00  | 1.00      | 0.85                      |      |
| It Protected                      | 1.00        |      |       | 1.00  | 0.95      | 1.00                      |      |
| Satd. Flow (prot)                 | 3458        |      |       | 3534  | 1770      | 1562                      |      |
| It Permitted                      | 1.00        |      |       | 0.75  | 0.95      | 1.00                      |      |
| Satd. Flow (perm)                 | 3458        |      |       | 2646  | 1770      | 1562                      |      |
| Peak-hour factor, PHF             | 06.0        | 06.0 | 06.0  | 06.0  | 0.72      | 0.72                      |      |
| Adj. Flow (vph)                   | 1514        | 233  | 23    | 836   | 471       | 43                        |      |
| REDICTION (vph)                   | 13          | 0    | 0     | 0     | 0         | 13                        |      |
| ane Group Flow (vph)              | 1734        | 0    | 0     | 826   | 471       | 30                        |      |
| Confl. Peds. (#/hr)               |             | _    | _     |       |           | 2                         |      |
| Confl. Bikes (#/hr)               |             | 1    |       |       |           |                           |      |
| urn Type                          | NA          |      | pm+pt | A     | Prot      | hm+ov                     |      |
| Protected Phases                  | 4           |      | က     | ∞     | 2         | 3                         |      |
| Permitted Phases                  |             |      | ∞     |       |           | 2                         |      |
| Actuated Green, G (s)             | 46.2        |      |       | 54.1  | 24.1      | 27.0                      |      |
| Effective Green, g (s)            | 46.2        |      |       | 54.1  | 24.1      | 27.0                      |      |
| Actuated g/C Ratio                | 0.52        |      |       | 0.61  | 0.27      | 0.31                      |      |
| Slearance Time (s)                | 2.0         |      |       | 2.0   | 2.0       | 2.0                       |      |
| /ehicle Extension (s)             | 3.0         |      |       | 3.0   | 3.0       | 3.0                       |      |
| ane Grp Cap (vph)                 | 1811        |      |       | 1652  | 483       | 566                       |      |
| //s Ratio Prot                    | c0.50       |      |       | c0.02 | c0.27     | 0.00                      |      |
| //s Ratio Perm                    |             |      |       | 0.30  |           | 0.02                      |      |
| //c Ratio                         | 96.0        |      |       | 0.52  | 0.98      | 0.05                      |      |
| Jniform Delay, d1                 | 20.1        |      |       | 9.7   | 31.8      | 21.6                      |      |
| Progression Factor                | 1.00        |      |       | 1.00  | 1.00      | 1.00                      |      |
| ncremental Delay, d2              | 12.4        |      |       | 0.3   | 34.3      | 0.0                       |      |
| Jelay (s)                         | 32.5        |      |       | 10.0  | 0.99      | 21.6                      |      |
| evel of Service                   | ပ           |      |       | ∢     | ш         | ပ                         |      |
| Approach Delay (s)                | 32.5        |      |       | 10.0  | 62.3      |                           |      |
| Approach LOS                      | ပ           |      |       | ∢     | ш         |                           |      |
| ntersection Summary               |             |      |       |       |           |                           |      |
| HCM 2000 Control Delay            |             |      | 31.2  | H     | :M 2000   | HCM 2000 Level of Service | U    |
| HCM 2000 Volume to Capacity ratio | icity ratio |      | 96.0  |       |           |                           |      |
| ctuated Cycle Length (s)          |             |      | 88.2  | Su    | m of lost | Sum of lost time (s)      | 15.0 |
| ntersection Capacity Utilization  | ation       |      | 71.5% | ಠ     | J Level o | ICU Level of Service      | O    |
| Analysis Period (min)             |             |      | 15    |       |           |                           |      |
| Critical Long Group               |             |      |       |       |           |                           |      |

c Critical Lane Group

5:00 pm Baseline

Synchro 10 Report Page 2

HCM 6th TWSC 20: KOKA Main Driveway & Hiiaka St

2041 With Project PM 06/21/2022

| Int Delay, s/veh         | 1.5    |       |         |      |        |      |  |
|--------------------------|--------|-------|---------|------|--------|------|--|
| Movement                 | EBT    | EBR   | EBR WBL | WBT  | В      | NBR  |  |
| Lane Configurations      | 2      |       |         | 4    | >      |      |  |
| Fraffic Vol, veh/h       | 146    | 2     | 33      | 54   | 7      | က    |  |
| Future Vol, veh/h        | 146    | 7     | 33      | 54   | 7      | က    |  |
| Conflicting Peds, #/hr   | 0      | 0     | 0       | 0    | 0      | 0    |  |
| Sign Control             | Free   | Free  | Free    | Free | Stop   | Stop |  |
| RT Channelized           | ٠      | None  | ٠       | None | ٠      | None |  |
| Storage Length           | ٠      | ٠     | ٠       | ٠    | 0      | ٠    |  |
| /eh in Median Storage, # | 0 #    |       | ٠       | 0    | 0      | ٠    |  |
| Grade, %                 |        | ٠     | ٠       | 0    | 0      | •    |  |
| Peak Hour Factor         | 2      | 2     | 7       | 71   | 63     | 63   |  |
| Heavy Vehicles, %        | 0      | 0     | 0       | 0    | 0      | 0    |  |
| Mvmt Flow                | 209    | က     | 46      | 34   | 3      | 2    |  |
|                          |        |       |         |      |        |      |  |
| Major/Minor N            | Major1 | Ī     | Major2  | _    | Minor1 |      |  |
| Conflicting Flow All     | 0      | 0     | 212     | 0    | 337    | 211  |  |
| Stage 1                  | ٠      |       | ٠       | ٠    | 211    | ٠    |  |
| Stage 2                  | ٠      | ٠     | ٠       | ٠    | 126    | ٠    |  |
| Critical Hdwy            | ٠      | •     | 4.1     | ٠    | 6.4    | 6.2  |  |
| Critical Hdwy Stg 1      | ٠      | ٠     | ٠       | ٠    | 5.4    | ٠    |  |
| Critical Hdwy Stg 2      | ٠      | •     | •       | ٠    | 5.4    |      |  |
| -ollow-up Hdwy           | ٠      | ٠     | 2.2     | ٠    | 3.5    | 33   |  |
| Pot Cap-1 Maneuver       | •      | •     | 1370    | •    | 663    | 834  |  |
| Stage 1                  | ٠      | ٠     | ٠       | ٠    | 829    | ٠    |  |
| Stage 2                  | ٠      | •     | •       | ٠    | 902    | •    |  |
| Platoon blocked, %       | ٠      | ٠     |         | ٠    |        |      |  |
| Mov Cap-1 Maneuver       | ٠      | ٠     | 1370    | ٠    | 640    | 834  |  |
| Mov Cap-2 Maneuver       | ٠      | ٠     | ٠       | ٠    | 640    | ٠    |  |
| Stage 1                  | •      | •     | •       | •    | 829    | •    |  |
| Stage 2                  | ٠      | ٠     | ٠       | ٠    | 874    | ٠    |  |
|                          |        |       |         |      |        |      |  |
| Approach                 | 8      |       | WB      |      | B      |      |  |
| HCM Control Delay, s     | 0      |       | 4.5     |      | 6.6    |      |  |
| HCM LOS                  |        |       |         |      | 4      |      |  |
|                          |        |       |         |      |        |      |  |
| Minor Lane/Major Mvmt    |        | NBLn1 | EBT     | EBR  | WBL    | WBT  |  |
| Capacity (veh/h)         |        | 744   | ٠       | ٠    | 1370   | ٠    |  |
| HCM Lane V/C Ratio       |        | 0.011 | ٠       | ٠    | 0.034  | ٠    |  |
| HCM Control Delay (s)    |        | 6.6   | ٠       | ٠    | 7.7    | 0    |  |
| HCM Lane LOS             |        | ⋖     | ٠       | ٠    | ⋖      | ⋖    |  |
|                          |        |       |         |      |        |      |  |

5:00 pm Baseline

HCM 6th TWSC 30: KOKA Eastern Driveway & Aniahua Alanui

2041 With Project PM 06/21/2022

| Intersection             |        |       |        |      |        |       |  |
|--------------------------|--------|-------|--------|------|--------|-------|--|
| Int Delay, s/veh         | Ξ.     |       |        |      |        |       |  |
| Movement                 | EBT    | EBR   | WBL    | WBT  | NBL    | NBR   |  |
| Lane Configurations      | æ      |       |        | ₩    | >      |       |  |
| Traffic Vol, veh/h       | 156    | 0     | 33     | 33   | 0      | 0     |  |
| Future Vol, veh/h        | 126    | 0     | 33     | 39   | 0      | 0     |  |
| eds, #/hr                |        | -     | _      | 0    | 0      | 0     |  |
|                          | Free   | Free  | Free   | Free | Stop   | Stop  |  |
| RT Channelized           | -      | None  | ٠      | None |        | None  |  |
| Storage Length           |        | ٠     | ٠      | ٠    | 0      | ı     |  |
| Veh in Median Storage, # | 0 #    | ٠     | ٠      | 0    | 0      |       |  |
| Grade, %                 | 0      | ٠     | ٠      | 0    | 0      | i     |  |
| Peak Hour Factor         | 92     | 92    | 6      | 97   | 92     | 92    |  |
| Heavy Vehicles, %        | 7      | 7     | 7      | 7    | 7      | 2     |  |
| Mvmt Flow                | 164    | 0     | 34     | 40   | 0      | 0     |  |
|                          |        |       |        |      |        |       |  |
| Major/Minor Ma           | Major1 | 2     | Major2 | 2    | Minor1 |       |  |
| Conflicting Flow All     | 0      | 0     | 165    | 0    | 273    | 165   |  |
| Stage 1                  | ٠      | ٠     | ٠      |      | 165    |       |  |
| Stage 2                  | ٠      | ٠     | ٠      | ٠    | 108    | ı     |  |
| Critical Hdwy            | •      | ٠     | 4.12   | ٠    | 6.42   | 6.22  |  |
| Critical Hdwy Stg 1      | ٠      | ٠     | ٠      | ٠    | 5.45   |       |  |
| Critical Hdwy Stg 2      |        | ٠     | ٠      | •    |        |       |  |
| Follow-up Hdwy           | ٠      | •     | 2.218  | ٠    |        | 3.318 |  |
| Pot Cap-1 Maneuver       |        | ٠     | 1413   |      | 716    | 879   |  |
| Stage 1                  | ٠      | ٠     | ٠      | ٠    | 864    | ı     |  |
| Stage 2                  | ٠      | ٠     | ٠      | ٠    | 916    |       |  |
| Platoon blocked, %       |        | ٠     |        | ٠    |        |       |  |
| Mov Cap-1 Maneuver       | •      | ٠     | 1412   |      | 269    | 878   |  |
| Mov Cap-2 Maneuver       | ٠      | ٠     | ٠      | ٠    | 269    | ı     |  |
| Stage 1                  | •      | •     | •      | •    | 863    | •     |  |
| Stage 2                  | ٠      | ٠     | ٠      | ٠    | 893    | ı     |  |
|                          |        |       |        |      |        |       |  |
| Approach                 | 8      |       | WB     |      | R      |       |  |
| HCM Control Delay, s     | 0      |       | 3.5    |      | 0      |       |  |
| HCM LOS                  |        |       |        |      | ⋖      |       |  |
|                          |        |       |        |      |        |       |  |
| Minor Lane/Major Mvmt    | Z      | NBLn1 | EBT    | EBR  | WBL    | WBT   |  |
| Capacity (veh/h)         |        | ٠     | ٠      | ٠    | 1412   |       |  |
| HCM Lane V/C Ratio       |        | ٠     | ٠      | ٠    | 0.024  |       |  |
| HCM Control Delay (s)    |        | 0     | ٠      | ٠    | 9.7    | 0     |  |
| HCM Lane LOS             |        | ⋖     | ٠      | ٠    | ٧      | ۷     |  |
| HCM 95th %tile Q(veh)    |        | •     | •      | •    | 0.1    | •     |  |
|                          |        |       |        |      |        |       |  |

Synchro 10 Report Page 4 5:00 pm Baseline

HCM 6th TWSC 40: Mana Rd & Mamalahoa Hwy

2041 With Project PM 06/21/2022

| Int Delay, s/veh         | 10     |             |             |        |        |       |     |
|--------------------------|--------|-------------|-------------|--------|--------|-------|-----|
| Movement                 | EBT    | EBR         | WBL         | WBT    | BE     | NBR   |     |
| Lane Configurations      | ţ.     |             | F           | +      | *      | K     |     |
| Traffic Vol, veh/h       | 1288   | 53          | 75          | 220    | 20     | 138   |     |
| Future Vol, veh/h        | 1288   | 23          | 75          | 220    | 20     | 138   |     |
| Conflicting Peds, #/hr   | 0      | 0           | 0           | 0      | 0      | 0     |     |
| Sign Control             | Free   | Free        | Free        | Free   | Stop   | Stop  |     |
| RT Channelized           |        | None        | ٠           | - None | •      | Stop  |     |
| Storage Length           |        | ٠           | 90          | ٠      | 0      | 20    |     |
| Veh in Median Storage, # | 0 #    | •           | ٠           | 0      | 0      | ٠     |     |
| Grade, %                 | 0      | ٠           | ٠           | 0      | 0      | ٠     |     |
| Peak Hour Factor         | 92     | 92          | 11          | 11     | 8      | 83    |     |
| Heavy Vehides, %         | 7      | 2           | 2           | 2      | 2      | 7     |     |
| Mvmt Flow                | 1356   | 31          | 97          | 714    | 24     | 166   |     |
|                          |        |             |             |        |        |       |     |
| Major/Minor M            | Major1 | _           | Major2      | _      | Minor1 |       |     |
| Conflicting Flow All     | 0      | 0           | 1387        | 0      | 2280   | 1372  |     |
| Stage 1                  |        |             | ٠           | ٠      | 1372   | ٠     |     |
| Stage 2                  | ٠      | ٠           | ٠           | ٠      | 806    | ٠     |     |
| Critical Hdwy            |        |             | 4.12        | ٠      | 6.42   | 6.22  |     |
| Critical Hdwy Stg 1      | ٠      | ٠           | ٠           | ٠      | 5.45   | ٠     |     |
| Critical Hdwy Stg 2      | •      | ۰           | •           | ٠      | 5.42   | ٠     |     |
| Follow-up Hdwy           | ٠      | •           | 2.218       | •      | 3.518  | 3.318 |     |
| Pot Cap-1 Maneuver       | ٠      | ٠           | 494         | ٠      | 44     | 179   |     |
| Stage 1                  | ٠      | ٠           | ٠           | ٠      | 236    | ٠     |     |
| Stage 2                  | ٠      | ٠           | •           | ٠      | 393    | ٠     |     |
| Platoon blocked, %       | ٠      | ٠           |             | ٠      |        |       |     |
| Mov Cap-1 Maneuver       | ٠      | ٠           | 494         | ٠      | 32     | 179   |     |
| Mov Cap-2 Maneuver       | ٠      | ٠           | ٠           | ٠      | 32     | ٠     |     |
| Stage 1                  | ٠      | ٠           | ٠           | ٠      | 236    | ٠     |     |
| Stage 2                  | ٠      | ٠           | ٠           | ٠      | 316    | ٠     |     |
|                          |        |             |             |        |        |       |     |
| Approach                 | EB     |             | WB          |        | NB     |       |     |
| HCM Control Delay, s     | 0      |             | 1.7         |        | 118.3  |       |     |
| HCM LOS                  |        |             |             |        | ш      |       |     |
|                          |        |             |             |        |        |       |     |
| Minor Lane/Major Mvmt    |        | NBLn1 NBLn2 | VBLn2       | EBT    | EBR    | WBL   | WBT |
| Capacity (veh/h)         |        | 35          | 179         | ٠      | ٠      | 464   | •   |
| HCM Lane V/C Ratio       |        | 0.688       | 0.688 0.929 | ٠      |        | 0.197 | •   |
| HCM Control Delay (s)    |        | 229.5 102.2 | 102.2       | ٠      | ٠      | 141   | •   |
| HCM Lane LOS             |        | ш           | ш           | •      | ١      | α     |     |
|                          |        |             |             |        |        | د     |     |

Synchro 10 Report Page 5 5:00 pm Baseline

2041 With Project PM 06/21/2022

| 2041 With Project PM                    | 06/22/2022                  |
|-----------------------------------------|-----------------------------|
| HCM 6th Signalized Intersection Summary | 40: Mana Rd & Mamalahoa Hwy |

| Intercontion             |        |             |          |      |          |       |     |
|--------------------------|--------|-------------|----------|------|----------|-------|-----|
| ,eh                      | 11.7   |             |          |      |          |       |     |
|                          |        |             |          | 1    | į        |       |     |
| Movement                 | EBT    | EBR         | WBL      | WBT  | NBL      | NBR   |     |
| SI                       | 4      |             | <u>_</u> | +    | <u>_</u> | R_    |     |
|                          | 1288   | 53          | 75       | 0    | 20       | 138   |     |
| Future Vol, veh/h 1,     | 1288   | 23          | 75       | 0    | 20       | 138   |     |
| Conflicting Peds, #/hr   | 0      | 0           | 0        | 0    | 0        | 0     |     |
|                          | Free F | Free        | Free     | Free | Stop     | Stop  |     |
| RT Channelized           | z      | None        | ٠        | None | ٠        | Stop  |     |
| Storage Length           |        | ٠           | 9        | ٠    | 0        | 20    |     |
| Veh in Median Storage, # | 0      |             | ٠        | 0    | 0        | •     |     |
| Grade, %                 | 0      | ٠           | ٠        | 0    | 0        | ٠     |     |
| Peak Hour Factor         | 92     | 32          | 11       |      | 83       | 83    |     |
| cles, %                  | 2 5    | 7 7         | 7 5      | 7    | 7 5      | 2     |     |
| Mvmt Flow                | 1356   | 33          | 6        | 0    | 74       | 166   |     |
| Major/Minor Maj          | Major1 | Σ           | Major?   | Σ    | Minor1   |       |     |
| IIA wol                  | _      | c           | 0 1387   | ٦    | 1566     | 1372  |     |
| Stage 1                  | , .    |             |          |      | 1372     |       |     |
| Stage 2                  |        | ٠           | ١        | ٠    | 194      | ٠     |     |
| Critical Hdwy            |        | ٠           | 4.12     | •    | 6.42     | 6.22  |     |
| Critical Hdwy Stg 1      |        | ٠           | ٠        | ٠    | 5.45     |       |     |
| Critical Hdwy Stg 2      |        | ٠           | ٠        | ٠    | 5.45     |       |     |
| Follow-up Hdwy           |        |             | 2.218    | ·    |          | 3.318 |     |
| Pot Cap-1 Maneuver       | ٠      | ٠           | 494      | •    | 122      | 179   |     |
| Stage 1                  |        | ٠           | ٠        | ٠    | 236      |       |     |
| Stage 2                  | •      | ٠           | ٠        | •    | 833      | •     |     |
| Platoon blocked, %       |        | ٠           |          | ٠    |          |       |     |
| Mov Cap-1 Maneuver       |        | ٠           | 464      | •    | 88       | 179   |     |
| Mov Cap-2 Maneuver       |        |             | ٠        | ٠    | 88       | ٠     |     |
| Stage 1                  |        | ٠           | ٠        | •    | 236      | •     |     |
| Stage 2                  |        |             | •        | •    | 675      | ٠     |     |
|                          |        |             |          |      |          |       |     |
| Approach                 | EB     |             | WB       |      | NB       |       |     |
| HCM Control Delay, s     | 0      |             | 14.1     |      | 96       |       |     |
| HCM LOS                  |        |             |          |      | ட        |       |     |
|                          |        |             |          |      |          |       |     |
| Minor Lane/Major Mvmt    | NB     | NBLn1 NBLn2 | BLn2     | EBT  | EBR      | WBL   | WBT |
| Capacity (veh/h)         |        | 86          | 179      | ٠    | ٠        | 494   |     |
| HCM Lane V/C Ratio       | 0      | 0.246 0.929 | 926      | ٠    | ٠        | 0.197 |     |
| HCM Control Delay (s)    |        | 53.3 102.2  | 102.2    | ٠    | ٠        | 14.1  | •   |
| HCM Lane LOS             |        | ட           | ட        | ٠    | ٠        | В     | •   |
| HCM 95th %tile Q(veh)    |        | 0.9         | 7.1      | •    | ٠        | 0.7   |     |
|                          |        |             |          |      |          |       |     |

|                              |      |       |      |       | -    | •    |       |
|------------------------------|------|-------|------|-------|------|------|-------|
| Movement                     | EBT  | EBR   | WBL  | WBT   | NBL  | NBR  |       |
| Lane Configurations          | £,   |       | ×    | *     | r    | W.   |       |
| Traffic Volume (veh/h)       | 1288 | 53    | 75   | 220   | 50   | 138  |       |
| Future Volume (veh/h)        | 1288 | 59    | 22   | 220   | 20   | 138  |       |
| Initial Q (Qb), veh          | 0    | 0     | 0    | 0     | 0    | 0    |       |
| Ped-Bike Adj(A_pbT)          |      | 1.00  | 1.00 |       | 1.00 | 1.00 |       |
| Parking Bus, Adj             | 1.00 | 1.00  | 1.00 | 00.   | 1.00 | 1.00 |       |
| Work Zone On Approach        | 8    |       |      | શ     | શ    |      |       |
| Adj Sat Flow, veh/h/In       | 1870 | 1870  | 1870 | 1870  | 1870 | 1870 |       |
| Adj Flow Rate, veh/h         | 1356 | 31    | 6    | 714   | 54   | 166  |       |
| Peak Hour Factor             | 0.95 | 0.95  | 0.77 | 0.77  | 0.83 | 0.83 |       |
| Percent Heavy Veh, %         | 2    | 2     | 2    | 2     | 7    | 2    |       |
| Cap, veh/h                   | 1363 | 31    | 119  | 1531  | 202  | 237  |       |
| Arrive On Green              | 0.75 | 0.75  | 0.04 | 0.82  | 0.11 | 0.11 |       |
| Sat Flow, veh/h              | 1821 | 42    | 1781 | 1870  | 1781 | 1585 |       |
| Grp Volume(v), veh/h         | 0    | 1387  | 26   | 714   | 24   | 166  |       |
| Grp Sat Flow(s),veh/h/ln     | 0    | 1863  | 1781 | 1870  | 1781 | 1585 |       |
| Q Serve(g_s), s              | 0.0  | 107.9 | 3.4  | 16.5  | 1.8  | 14.6 |       |
| Cycle Q Clear(g_c), s        | 0.0  | 107.9 | 3.4  | 16.5  | 1.8  | 14.6 |       |
| Prop In Lane                 |      | 0.02  | 1.00 |       | 1.00 | 1.00 |       |
| Lane Grp Cap(c), veh/h       | 0    | 1394  | 119  | 1531  | 202  | 237  |       |
| V/C Ratio(X)                 | 0.00 | 1.00  | 0.81 | 0.47  | 0.12 | 0.70 |       |
| Avail Cap(c_a), veh/h        | 0    | 1394  | 139  | 1552  | 218  | 252  |       |
| HCM Platoon Ratio            | 1.00 | 1.00  | 1.00 | 1.00  | 1.00 | 1.00 |       |
| Upstream Filter(I)           | 0.00 | 1.00  | 1.00 | 0.0   | 1.00 | 1.00 |       |
| Uniform Delay (d), s/veh     | 0.0  | 18.2  | 52.2 | 3.9   | 58.6 | 59.3 |       |
| Incr Delay (d2), s/veh       | 0.0  | 22.9  | 26.4 | 0.2   | 0.3  | 7.8  |       |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0   | 0.0  | 0.0   | 0.0  | 0.0  |       |
| %ile BackOfQ(50%),veh/ln     | 0.0  | 45.5  | 4.4  | 4.5   | 8.0  | 6.3  |       |
| Unsig. Movement Delay, s/veh |      |       |      |       |      |      |       |
| LnGrp Delay(d),s/veh         | 0.0  | 41.1  | 78.7 | 4.1   | 28.8 | 67.1 |       |
| LnGrp LOS                    | 4    |       | ш    | ٨     | ш    | ш    |       |
| Approach Vol, veh/h          | 1387 |       |      | 811   | 190  |      |       |
| Approach Delay, s/veh        | 41.1 |       |      | 13.1  | 99.1 |      |       |
| Approach LOS                 | ۵    |       |      | В     | ш    |      |       |
| Timer - Assigned Phs         |      | 2     | 3    | 4     |      |      | 8     |
| Phs Duration (G+Y+Rc), s     |      | 21.7  | 10.3 | 115.0 |      |      | 125.3 |
| Change Period (Y+Rc), s      |      | 2.0   | 2.0  | 2.0   |      |      | 5.0   |
| Max Green Setting (Gmax), s  |      | 18.0  | 7.0  | 110.0 |      |      | 122.0 |
| Max Q Clear Time (g_c+I1), s |      | 16.6  | 5.4  | 109.9 |      |      | 18.5  |
| Green Ext Time (p_c), s      |      | 0.1   | 0.0  | 0.1   |      |      | 5.3   |
| Intersection Summary         |      |       |      |       |      |      |       |
|                              |      | ŀ     | 1    |       |      |      |       |
| HCM 6th Ctr Delay            |      |       | 33.6 |       |      |      |       |

5:00 pm Baseline

Synchro 10 Report Page 1

5:00 pm Baseline