

Papakōlea-Kalāwahine Community Meeting

January 16, 2024 Stevenson Middle School 6pm – 7pm

Agenda

- Pule and Welcome
- Team Introductions
- Phase 1 Completed Individual Property Assessments (2022 2023)
 - Geotechnical Conditions
 - Structural Observations
 - Findings
- Phase 2 Geotechnical & Structural Monitoring & Continued Assessment
 - Monitoring Plan
 - -Surveys
 - -Crack Gauges
 - -Groundwater monitoring
- Next Steps

Team Introductions

DHHL (Department of Hawaiian Homelands)
Kehaulani Quartero – Project Manager, Land Development Division
Stewart Matsunaga – Administrator, Land Development Division
Stacelynn Eli – Information and Community Relations Officer

 G70 (Project Management & Community Outreach Consultant) Ryan Char – Principal Engineer Kahea Winchester – Project Manager Kai Akiona-Ferriman – Project Engineer

• HALEY & ALDRICH (Geotechnical Consultant)

Dave Buscheck – Geotechnical Engineer Daniel Shinsato – Geotechnical Engineer

• WSP (Structural Consultant) Kimberly Hall – Structural Engineer

Phase 1

Individual Property Assessments Completed

Individual Property Assessments

- 87 total homes were each contacted via DHHL letters, phone calls and doorto-door solicitation to schedule an appointment for a visual inspection
- 59 homes each elected to participate in an individual property assessment
- Attended various community meeting presentations (2022)
- A Walk-Through Survey conducted between May-Oct. 2022 visually assessed the following on each property:
 - Site: topography, drainage and pavement conditions
 - Structural: foundations and building's interior and exterior envelope
 - Geotechnical: soils at foundations (where visible), and interior and exterior ground conditions

Individual Property Assessments

- Findings for the 59 homes include the following (some homes may be in multiple categories):
 - No homes were identified to have immediate life-safety issues at the time
 - A few homes were identified for further evaluation due to signs of potential structural compromise (signs of more significant building movement and larger foundation cracks/spalls)
 - A few homes had visible wet areas within soils under the home or under the road fronting the home; identified for further geotechnical investigation via borings (groundwater and soils)
 - Some homes identified for further, quarterly monitoring due to minor movements/cracking
 - Some homes did not have any indication of significant movement or water issues and have no recommendations for further investigation / monitoring.
- G70 presented the findings to DHHL at the end of 2022 and continued to scope the next phase of assessments in 2023.
- In the interim, BWS elected not to proceed with the water tank work.

Geotechnical Conditions

- Kalāwahine Streamside foundation systems consist of shallow foundations bearing on the underlying soil or rock
 - Type 1 House perimeter strip footings with concrete slab
 - Type 2 House predominantly column footings
 - Type 3 House combination of column and strip footings

• Soil conditions

- Fill soils Placed during construction
- Clays and Silts Tantalus Silty Clay or Kaena Stony Clay
- Weathered Volcanic Rock (Saprolite) Thin layer
- Tuff or Basalt Bedrock Hard bearing materials
- Groundwater Conditions
 - Very deep aquifers
 - Localized perched stormwater on bedrock

Silts and Clays with Varying amount of stone (gravel, cobbles, etc.)

Weathered Rock

Tuff or Basalt "bedrock"

Site Conditions

- Surface Water (regional)
 - Historical maps represented possible surface water flow paths
 - Community members have stated that there were springs in the area
 - There are no documented streams or water bodies in the area besides Kanahā stream
- Surface Water (properties)
 - Water was observed seeping out of the ground in the road and under a home.
 - Moisture was observed under a few homes
 - Roof drainage should be directed away from the homes
- Erosion Hazards
 - Some homes have foundations on a slope that is steeper than 1 horizontal to 1 vertical; can cause movement in building foundations.
 - Water flowing under homes can contribute to an eroding slope

Structural Observations

- No visible signs of structural distress, no immediate life safety concerns.
- Minor cracking in concrete retaining walls and slabs-on-grade. Cracks of interest were identified for further monitoring (cracks wider than approximately 1/16").
- CMU pier spalling and cracking, weathered shell.
- Drywall cracks, gaps and cracks in siding and molding, stuck window and doors may be indication of building movement.
- Review of original structural drawings indicates standard residential framing, detailing, and foundations.

Individual Property Assessments Findings

Regionally, all properties will undergo an aerial survey to set baseline ground elevation. Around 7 homes will receive borings (4) to assess subsurface conditions (groundwater/soils). 30 homes will require ongoing monitoring including crack gauges / level surveys for movement monitoring.

<u>2 homes will require</u> exploratory investigation. Some homes were <u>already</u> <u>identified</u> for recommended repairs that will be <u>further</u> <u>confirmed</u> in this phase.

Report recommended to share results of **visual assessment** with lessees.

Continued Structural & Geotechnical Monitoring and Investigations

What can cause a house to move...

+δ_H

-δ_н

- Settlement downwards vertical deformation of the foundation, may be caused by:
 - Loading of compressible materials (long-term)
 - Loading of poorly compacted fill soil (rapid)
 - Increases in loads
- Shrink/Swell of soil seasonal cyclical vertical deformation (heave + and settlement -) of the foundation
 - Caused by susceptible soils exposed to water during rainy periods and shrinkage during dry periods
 - Could be poor fill
- Erosion/Inadequate Embedment Slope adjacent foundations deform due to loss of soil restraint.
 - Caused by loss of soil due to erosion.
 - Erosion caused by lack of vegetative cover or stormwater runoff directed to slope.

Monitoring Plan

HOW TO MONITOR FOR MOVEMENT?

• Aerial and Floor Level Surveys –

- establish a baseline survey with current elevation conditions (interior and exterior)
- monitor for any future ground deformations with subsequent survey

Crack Gauge Monitoring –

- establish baseline measurements of opening/closure of existing cracks in foundations
- monitor for any future foundation deformations with subsequent crack measurements

• Groundwater Monitoring and Soil Sampling –

- preform borings for soil sampling and geologic evaluation
- install and monitor groundwater observation wells

Monitoring Plan - Surveys

Aerial Survey of Area of Interest

- Drone-mounted LiDAR scan of Kapahu Street, Kamalehua Place, Ha'alelea Place and adjacent properties
- Establish baseline for monitoring potential future ground deformations

Aerial Exterior Survey

- Drone-mounted LiDAR scan of the exterior façade at select properties
- Establish baseline for monitoring potential future deformation of the home exteriors
- Floor Level Survey
 - Tripod-mounted LiDAR scan of the lowest floor levels at select properties (closest to the foundation level)
 - Create a snapshot plan of current conditions
 - Establish baseline for monitoring potential future deformation of the home interiors

Monitoring Plan - Surveys

<

Monitoring Plan- Crack Gauges

- Measure opening/closure of existing cracks in foundations
 - Measures in two directions (X-Y or Y-Z)
- Mounted with screws and epoxy
- In visible areas caliper points can be substituted upon request
- A crackmeter ruler will be used in instances where installation of crack gauges could further damage the structure or installation is infeasible and/or undesirable.
- Gauges will be removed upon completion of monitoring

Y-Z Crack Gauge

X-Y Caliper Points

Crackmeter Ruler

Monitoring Plan – Groundwater Study

- Groundwater monitoring & soil sampling plan
 - 4 test borings near 7 properties planned
 - Soil sampling and geologic evaluation (blue outline)
 - 2 observation wells planned
 - Equipment allows for automated hourly measurments over a 1-year period
 - Comparison of groundwater fluctuations to precipitation data
 - Data gathered in-person, quarterly
 - Geotechnical Laboratory Program
 - Submit soil samples from boring locations to assess physical characteristics of soil that may affect expansion/compression properties of material under load.
- Water intrusion can also cause potential damage to structural support elements (spalling).

Geotechnical Borings And Observation Wells

Install 4 test explorations and install 2 groundwater observation wells at select locations.

Geotechnical Borings And Observation Wells

E

Monitoring Plan by Property

Property Address	Floor	Crack Gauges	Targeted for
	Level		Geotechnical Drilling and Groundwater Monitoring
2031 Haalelea Place	Х		
2034 Haalelea Place	Х		Х
2252 Kapahu Street	Х		
2001 Haalelea Place			
2002 Kamalalehua Place		х	
2009 Haalelea Place	Х		
2014 Kamalalehua Place	Х		
2019 Kamalalehua Place	Х	х	
2022 Kamalalehua Place		х	
2025 Haalealea Place		Х	
2026 Haalelea Place		х	
2028 Kamalalehua Place		Х	
2038 Haalelea Place	Х		Х
2038 Kamalalehua Place			
2042 Haalelea Place	Х	Х	Х
2048 Haalelea Place	Х		
2049 Haalelea Place	Х	Х	
2212 Kapahu Street		Х	
2218 Kapahu Street		Х	
2234 Kapahu Street	Х		Х
2237 Kapahu Street	Х		
2246 Kapahu Street		Х	
2256 Kapahu Street	Х		
2262 Kapahu Street		Х	
2264 Kapahu Street	Х		
2274 Kapahu Street		Х	Х
2292 Kapahu Street		Х	
2298 Kapahu Street		Х	
2302 Kapahu Street	Х	Х	
2319 Kapahu Street		Х	
2238 Kapahu Street			Х
2242 Kapahu Street			Х
Total	15	17	7

Individual notices will go out to each lessee

Site Map

LEGEND

Individual notices will go out to each lessee

Monitoring Next Steps

- Individual notice to lessees for aerial/floor level surveys, crack gauges, and geotechnical borings
- Conduct aerial & floor survey, install crack gauges, install monitoring wells in DHHL-owned streets.
- Upon completion of initial assessments, monitor movement / groundwater concerns quarterly (crack gauges / groundwater monitoring)
- Identify properties where future surveys and/or exploratory investigation may be recommended
- Confirm / identify repairs that may be proposed
 - o Some previously identified in visual assessments
 - Some will be identified during this phase.
 - Address either structure/ground/water issues.
- Determine with DHHL the scope of future phases.

Near-Term Next Steps

Dates (subject to change)

January 2024

February 2024

Milestone

Individual notices to lessees for aerial/floor level surveys, crack gauges, and geotechnical borings

Coordinate and schedule with individual lessees

Conduct aerial survey over Kalāwahine-Papakolea project area. Perform exploratory investigation. Install crack gauges and/or observation wells at homes recommended for continued monitoring.

March - April 2024 Conduct first quarterly monitoring of crack gauges May - June 2024 and observation wells Continued quarterly monitoring of crack gauges and June 2024 – June 2025 observation wells (with notice)

Thank You – Q & A